Skip to main content
Top
Published in: Italian Journal of Pediatrics 1/2022

Open Access 01-12-2022 | SARS-CoV-2 | Research

Increasing trend of type 1 diabetes incidence in the pediatric population of the Calabria region in 2019–2021

Authors: Stefano Passanisi, Giuseppina Salzano, Monica Aloe, Bruno Bombaci, Felice Citriniti, Fiorella De Berardinis, Rosaria De Marco, Nicola Lazzaro, Maria C. Lia, Rosanna Lia, Francesco Mammì, Filomena A. Stamati, Rosanna M. R. Toscano, Claudia Ventrici, Dario Iafusco, Fortunato Lombardo

Published in: Italian Journal of Pediatrics | Issue 1/2022

Login to get access

Abstract

Background

Although type 1 diabetes (T1D) represents one of the most common chronic diseases in pediatric age, few studies on the epidemiology of T1D exist globally and the exact prevalence and incidence rates of the disease are unknown. In many countries, including Italy, national registries are missing.

Methods

This study aims to assess T1D incidence in the pediatric population of the Calabria region (southern Italy) in the period 2019–2021. The secondary objective was to describe the main demographical, clinical and immunological features of incident cases. Case ascertainment and all clinical data were assessed by retrospectively reviewing the electronic medical records of children and adolescents diagnosed with diabetes at any Pediatric Diabetes Center belonging to the Rete Diabetologica Calabrese (Calabria Region Diabetes Network), from January 2019 to December 2021. The incidence of T1D was estimated for the entire region and was stratified according to age group (0–4 years, 5–9 years, and 10–14 years) and gender. Standardized incidence ratios for each province in the region were also calculated.

Results

The crude incidence of T1D was 20.6/100,000 person/years. Incidence rates were higher among females and children aged 5–9 years. The crude incidence of T1D was higher in the province of Reggio Calabria (26.5/100,000 person-years). The provinces of Crotone, Catanzaro, and Vibo Valentia showed significantly lower standardized incidence ratios. The annual incidence in the region progressively increased by 43% during the study period.

Conclusions

Our study revealed a relatively high incidence in the Calabria region. The marked increasing incidence trend over the past two years could be related to the global impact of the COVID-19 pandemic, but further long-scale population-based studies are needed to confirm these findings.
Literature
1.
go back to reference Patterson CC, Karuranga S, Salpea P, Saeedi P, Dahlquist G, Soltesz G, et al. Worldwide estimates of incidence, prevalence and mortality of type 1 diabetes in children and adolescents: results from the International diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107842.CrossRef Patterson CC, Karuranga S, Salpea P, Saeedi P, Dahlquist G, Soltesz G, et al. Worldwide estimates of incidence, prevalence and mortality of type 1 diabetes in children and adolescents: results from the International diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107842.CrossRef
2.
go back to reference Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.CrossRef Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.CrossRef
3.
go back to reference American Diabetes Association Professional Practice Committee, Draznin B, Aroda VR, Bakris G, Benson G, et al. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Supplement_1):S17-38.CrossRef American Diabetes Association Professional Practice Committee, Draznin B, Aroda VR, Bakris G, Benson G, et al. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Supplement_1):S17-38.CrossRef
4.
go back to reference Ferrito L, Passanisi S, Bonfanti R, Cherubini V, Minuto N, Schiaffini R, et al. Efficacy of advanced hybrid closed loop systems for the management of type 1 diabetes in children. Minerva Pediatr. 2021;73:474–85. Ferrito L, Passanisi S, Bonfanti R, Cherubini V, Minuto N, Schiaffini R, et al. Efficacy of advanced hybrid closed loop systems for the management of type 1 diabetes in children. Minerva Pediatr. 2021;73:474–85.
5.
go back to reference Piona C, Ventrici C, Marcovecchio L, Chiarelli F, Maffeis C, Bonfanti R, et al. Long-term complications of type 1 diabetes: what do we know and what do we need to understand? Minerva Pediatr. 2021;73:504–22. Piona C, Ventrici C, Marcovecchio L, Chiarelli F, Maffeis C, Bonfanti R, et al. Long-term complications of type 1 diabetes: what do we know and what do we need to understand? Minerva Pediatr. 2021;73:504–22.
6.
go back to reference Adeloye D, Chan KY, Thorley N, Jones C, Johnstone D, L’Heveder A, et al. Global and regional estimates of the morbidity due to type I diabetes among children aged 0–4 years: a systematic review and analysis. J Glob Health. 2018;8:021101.CrossRef Adeloye D, Chan KY, Thorley N, Jones C, Johnstone D, L’Heveder A, et al. Global and regional estimates of the morbidity due to type I diabetes among children aged 0–4 years: a systematic review and analysis. J Glob Health. 2018;8:021101.CrossRef
7.
go back to reference Tatovic D, Dayan CM. Replacing insulin with immunotherapy: Time for a paradigm change in Type 1 diabetes. Diabet Med J. 2021;38:e14696. Tatovic D, Dayan CM. Replacing insulin with immunotherapy: Time for a paradigm change in Type 1 diabetes. Diabet Med J. 2021;38:e14696.
8.
go back to reference Dayan CM, Besser REJ, Oram RA, Hagopian W, Vatish M, Bendor-Samuel O, et al. Preventing type 1 diabetes in childhood. Science. 2021;373:506–10.CrossRef Dayan CM, Besser REJ, Oram RA, Hagopian W, Vatish M, Bendor-Samuel O, et al. Preventing type 1 diabetes in childhood. Science. 2021;373:506–10.CrossRef
9.
go back to reference Patterson CC, Harjutsalo V, Rosenbauer J, Neu A, Cinek O, Skrivarhaug T, et al. Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 1989–2013: a multicentre prospective registration study. Diabetologia. 2019;62:408–17.CrossRef Patterson CC, Harjutsalo V, Rosenbauer J, Neu A, Cinek O, Skrivarhaug T, et al. Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 1989–2013: a multicentre prospective registration study. Diabetologia. 2019;62:408–17.CrossRef
10.
go back to reference Yang Z, Long X, Shen J, Liu D, Dorman JS, Laporte RE, et al. Epidemics of type 1 diabetes in China. Pediatr Diabetes. 2005;6:122–8.CrossRef Yang Z, Long X, Shen J, Liu D, Dorman JS, Laporte RE, et al. Epidemics of type 1 diabetes in China. Pediatr Diabetes. 2005;6:122–8.CrossRef
11.
go back to reference Ehehalt S, Popovic P, Muntoni S, Muntoni S, Willasch A, Hub R, et al. Incidence of diabetes mellitus among children of Italian migrants substantiates the role of genetic factors in the pathogenesis of type 1 diabetes. Eur J Pediatr. 2009;168:613–7.CrossRef Ehehalt S, Popovic P, Muntoni S, Muntoni S, Willasch A, Hub R, et al. Incidence of diabetes mellitus among children of Italian migrants substantiates the role of genetic factors in the pathogenesis of type 1 diabetes. Eur J Pediatr. 2009;168:613–7.CrossRef
12.
go back to reference Mobasseri M, Shirmohammadi M, Amiri T, Vahed N, Hosseini Fard H, Ghojazadeh M. Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. Health Promot Perspect. 2020;10:98–115.CrossRef Mobasseri M, Shirmohammadi M, Amiri T, Vahed N, Hosseini Fard H, Ghojazadeh M. Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis. Health Promot Perspect. 2020;10:98–115.CrossRef
13.
go back to reference Mayer-Davis EJ, Kahkoska AR, Jefferies C, Dabelea D, Balde N, Gong CX, et al. ISPAD clinical practice consensus guidelines 2018: definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr Diabetes. 2018;19(Suppl 27):7–19.CrossRef Mayer-Davis EJ, Kahkoska AR, Jefferies C, Dabelea D, Balde N, Gong CX, et al. ISPAD clinical practice consensus guidelines 2018: definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr Diabetes. 2018;19(Suppl 27):7–19.CrossRef
14.
go back to reference Carle F, Gesuita R, Bruno G, Coppa GV, Falorni A, Lorini R, et al. Diabetes incidence in 0- to 14-year age-group in Italy: a 10-year prospective study. Diabetes Care. 2004;27:2790–6.CrossRef Carle F, Gesuita R, Bruno G, Coppa GV, Falorni A, Lorini R, et al. Diabetes incidence in 0- to 14-year age-group in Italy: a 10-year prospective study. Diabetes Care. 2004;27:2790–6.CrossRef
15.
go back to reference Songini M, Mannu C, Targhetta C, Bruno G. Type 1 diabetes in Sardinia: facts and hypotheses in the context of worldwide epidemiological data. Acta Diabetol. 2017;54:9–17.CrossRef Songini M, Mannu C, Targhetta C, Bruno G. Type 1 diabetes in Sardinia: facts and hypotheses in the context of worldwide epidemiological data. Acta Diabetol. 2017;54:9–17.CrossRef
16.
go back to reference Norris JM, Johnson RK, Stene LC. Type 1 diabetes-early life origins and changing epidemiology. Lancet Diabetes Endocrinol. 2020;8:226–38.CrossRef Norris JM, Johnson RK, Stene LC. Type 1 diabetes-early life origins and changing epidemiology. Lancet Diabetes Endocrinol. 2020;8:226–38.CrossRef
17.
go back to reference Valent F, Candido R, Faleschini E, Tonutti L, Tortul C, Zanatta M, et al. The incidence rate and prevalence of pediatric type 1 diabetes mellitus (age 0–18) in the Italian region Friuli Venezia Giulia: population-based estimates through the analysis of health administrative databases. Acta Diabetol. 2016;53:629–35.CrossRef Valent F, Candido R, Faleschini E, Tonutti L, Tortul C, Zanatta M, et al. The incidence rate and prevalence of pediatric type 1 diabetes mellitus (age 0–18) in the Italian region Friuli Venezia Giulia: population-based estimates through the analysis of health administrative databases. Acta Diabetol. 2016;53:629–35.CrossRef
18.
go back to reference Maffeis C, Mancioppi V, Piona C, Avossa F, Fedeli U, Marigliano M. Type 1 diabetes prevalence and incidence rates in the pediatric population of Veneto Region (Italy) in 2015–2020. Diabetes Res Clin Pract. 2021;179:109020.CrossRef Maffeis C, Mancioppi V, Piona C, Avossa F, Fedeli U, Marigliano M. Type 1 diabetes prevalence and incidence rates in the pediatric population of Veneto Region (Italy) in 2015–2020. Diabetes Res Clin Pract. 2021;179:109020.CrossRef
19.
go back to reference Fortunato F, Cappelli MG, Vece MM, Caputi G, Delvecchio M, Prato R, et al. Incidence of Type 1 diabetes among children and adolescents in Italy between 2009 and 2013: the role of a regional childhood diabetes registry. J Diabetes Res. 2016;2016:7239692.CrossRef Fortunato F, Cappelli MG, Vece MM, Caputi G, Delvecchio M, Prato R, et al. Incidence of Type 1 diabetes among children and adolescents in Italy between 2009 and 2013: the role of a regional childhood diabetes registry. J Diabetes Res. 2016;2016:7239692.CrossRef
20.
go back to reference Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, et al. Incidence trends of Type 1 and Type 2 diabetes among youths, 2002–2012. N Engl J Med. 2017;376:1419–29.CrossRef Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, et al. Incidence trends of Type 1 and Type 2 diabetes among youths, 2002–2012. N Engl J Med. 2017;376:1419–29.CrossRef
21.
go back to reference Karvonen M, Pitkäniemi J, Tuomilehto J. The onset age of type 1 diabetes in finnish children has become younger. The finnish childhood diabetes registry group. Diabetes Care. 1999;22:1066–70.CrossRef Karvonen M, Pitkäniemi J, Tuomilehto J. The onset age of type 1 diabetes in finnish children has become younger. The finnish childhood diabetes registry group. Diabetes Care. 1999;22:1066–70.CrossRef
22.
go back to reference Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J. Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) project group. Diabetes Care. 2000;23:1516–26.CrossRef Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J. Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) project group. Diabetes Care. 2000;23:1516–26.CrossRef
23.
go back to reference Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594:259–64.CrossRef Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594:259–64.CrossRef
24.
go back to reference Ayoubkhani D, Khunti K, Nafilyan V, Maddox T, Humberstone B, Diamond I, et al. Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study. BMJ. 2021;372:n693.CrossRef Ayoubkhani D, Khunti K, Nafilyan V, Maddox T, Humberstone B, Diamond I, et al. Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study. BMJ. 2021;372:n693.CrossRef
25.
go back to reference Passanisi S, Pecoraro M, Pira F, Alibrandi A, Donia V, Lonia P, et al. Quarantine due to the COVID-19 pandemic from the perspective of pediatric patients with Type 1 diabetes: a web-based survey. Front Pediatr. 2020;8:491.CrossRef Passanisi S, Pecoraro M, Pira F, Alibrandi A, Donia V, Lonia P, et al. Quarantine due to the COVID-19 pandemic from the perspective of pediatric patients with Type 1 diabetes: a web-based survey. Front Pediatr. 2020;8:491.CrossRef
26.
go back to reference Salzano G, Passanisi S, Pira F, Sorrenti L, La Monica G, Pajno GB, et al. Quarantine due to the COVID-19 pandemic from the perspective of adolescents: the crucial role of technology. Ital J Pediatr. 2021;47:40.CrossRef Salzano G, Passanisi S, Pira F, Sorrenti L, La Monica G, Pajno GB, et al. Quarantine due to the COVID-19 pandemic from the perspective of adolescents: the crucial role of technology. Ital J Pediatr. 2021;47:40.CrossRef
27.
go back to reference Tittel SR, Rosenbauer J, Kamrath C, Ziegler J, Reschke F, Hammersen J, et al. Did the COVID-19 lockdown affect the incidence of pediatric Type 1 diabetes in Germany? Diabetes Care. 2020;43:e172–3.CrossRef Tittel SR, Rosenbauer J, Kamrath C, Ziegler J, Reschke F, Hammersen J, et al. Did the COVID-19 lockdown affect the incidence of pediatric Type 1 diabetes in Germany? Diabetes Care. 2020;43:e172–3.CrossRef
28.
go back to reference Vlad A, Serban V, Timar R, Sima A, Botea V, Albai O, et al. Increased Incidence of Type 1 diabetes during the COVID-19 pandemic in Romanian Children. Med Kaunas Lith. 2021;57:973. Vlad A, Serban V, Timar R, Sima A, Botea V, Albai O, et al. Increased Incidence of Type 1 diabetes during the COVID-19 pandemic in Romanian Children. Med Kaunas Lith. 2021;57:973.
29.
go back to reference Unsworth R, Wallace S, Oliver NS, Yeung S, Kshirsagar A, Naidu H, et al. New-onset Type 1 diabetes in children during COVID-19: multicenter regional findings in the U.K. Diabetes Care. 2020;43:e170–1.CrossRef Unsworth R, Wallace S, Oliver NS, Yeung S, Kshirsagar A, Naidu H, et al. New-onset Type 1 diabetes in children during COVID-19: multicenter regional findings in the U.K. Diabetes Care. 2020;43:e170–1.CrossRef
30.
go back to reference Barrett CE, Koyama AK, Alvarez P, Chow W, Lundeen EA, Perrine CG, et al. Risk for newly diagnosed diabetes >30 days after SARS-CoV-2 infection among persons aged <18 years - United States, March 1, 2020-June 28, 2021. MMWR Morb Mortal Wkly Rep. 2022;71:59–65.CrossRef Barrett CE, Koyama AK, Alvarez P, Chow W, Lundeen EA, Perrine CG, et al. Risk for newly diagnosed diabetes >30 days after SARS-CoV-2 infection among persons aged <18 years - United States, March 1, 2020-June 28, 2021. MMWR Morb Mortal Wkly Rep. 2022;71:59–65.CrossRef
31.
go back to reference Wu C, Lidsky PV, Xiao Y, Lee IT, Cheng R, Nakayama T, et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab. 2021;33:1565–76.CrossRef Wu C, Lidsky PV, Xiao Y, Lee IT, Cheng R, Nakayama T, et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab. 2021;33:1565–76.CrossRef
32.
go back to reference Hayden MR. An immediate and long-term complication of COVID-19 may be Type 2 diabetes mellitus: the central role of β-cell dysfunction, apoptosis and exploration of possible mechanisms. Cells. 2020;9:2475.CrossRef Hayden MR. An immediate and long-term complication of COVID-19 may be Type 2 diabetes mellitus: the central role of β-cell dysfunction, apoptosis and exploration of possible mechanisms. Cells. 2020;9:2475.CrossRef
33.
go back to reference Bronson SC. Practical scenarios and day-to-day challenges in the management of diabetes in COVID-19 - dealing with the «double trouble». Prim Care Diabetes. 2021;15:737–9.CrossRef Bronson SC. Practical scenarios and day-to-day challenges in the management of diabetes in COVID-19 - dealing with the «double trouble». Prim Care Diabetes. 2021;15:737–9.CrossRef
34.
go back to reference Lawrence C, Seckold R, Smart C, King BR, Howley P, Feltrin R, et al. Increased paediatric presentations of severe diabetic ketoacidosis in an Australian tertiary centre during the COVID-19 pandemic. Diabet Med J. 2021;38:e14417. Lawrence C, Seckold R, Smart C, King BR, Howley P, Feltrin R, et al. Increased paediatric presentations of severe diabetic ketoacidosis in an Australian tertiary centre during the COVID-19 pandemic. Diabet Med J. 2021;38:e14417.
35.
go back to reference Salmi H, Heinonen S, Hästbacka J, Lääperi M, Rautiainen P, Miettinen PJ, et al. New-onset type 1 diabetes in finnish children during the COVID-19 pandemic. Arch Dis Child. 2022;107:180–5.CrossRef Salmi H, Heinonen S, Hästbacka J, Lääperi M, Rautiainen P, Miettinen PJ, et al. New-onset type 1 diabetes in finnish children during the COVID-19 pandemic. Arch Dis Child. 2022;107:180–5.CrossRef
36.
go back to reference Rabbone I, Schiaffini R, Cherubini V, Maffeis C, Scaramuzza A, Diabetes Study Group of the Italian Society for Pediatric Endocrinology and Diabetes. Has COVID-19 delayed the diagnosis and worsened the presentation of Type 1 diabetes in children? Diabetes Care. 2020;43:2870–2.CrossRef Rabbone I, Schiaffini R, Cherubini V, Maffeis C, Scaramuzza A, Diabetes Study Group of the Italian Society for Pediatric Endocrinology and Diabetes. Has COVID-19 delayed the diagnosis and worsened the presentation of Type 1 diabetes in children? Diabetes Care. 2020;43:2870–2.CrossRef
37.
go back to reference Kamrath C, Mönkemöller K, Biester T, Rohrer TR, Warncke K, Hammersen J, et al. Ketoacidosis in children and adolescents with newly diagnosed Type 1 diabetes during the COVID-19 pandemic in Germany. JAMA. 2020;324:801–4.CrossRef Kamrath C, Mönkemöller K, Biester T, Rohrer TR, Warncke K, Hammersen J, et al. Ketoacidosis in children and adolescents with newly diagnosed Type 1 diabetes during the COVID-19 pandemic in Germany. JAMA. 2020;324:801–4.CrossRef
38.
go back to reference Lazzerini M, Barbi E, Apicella A, Marchetti F, Cardinale F, Trobia G. Delayed access or provision of care in Italy resulting from fear of COVID-19. Lancet Child Adolesc Health. 2020;4:e10–1.CrossRef Lazzerini M, Barbi E, Apicella A, Marchetti F, Cardinale F, Trobia G. Delayed access or provision of care in Italy resulting from fear of COVID-19. Lancet Child Adolesc Health. 2020;4:e10–1.CrossRef
39.
go back to reference Passanisi S, Salzano G, Gasbarro A, Urzì Brancati V, Mondio M, Pajno GB, et al. Influence of age on partial clinical remission among children with newly diagnosed Type 1 diabetes. Int J Environ Res Public Health. 2020;17:4801.CrossRef Passanisi S, Salzano G, Gasbarro A, Urzì Brancati V, Mondio M, Pajno GB, et al. Influence of age on partial clinical remission among children with newly diagnosed Type 1 diabetes. Int J Environ Res Public Health. 2020;17:4801.CrossRef
Metadata
Title
Increasing trend of type 1 diabetes incidence in the pediatric population of the Calabria region in 2019–2021
Authors
Stefano Passanisi
Giuseppina Salzano
Monica Aloe
Bruno Bombaci
Felice Citriniti
Fiorella De Berardinis
Rosaria De Marco
Nicola Lazzaro
Maria C. Lia
Rosanna Lia
Francesco Mammì
Filomena A. Stamati
Rosanna M. R. Toscano
Claudia Ventrici
Dario Iafusco
Fortunato Lombardo
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Italian Journal of Pediatrics / Issue 1/2022
Electronic ISSN: 1824-7288
DOI
https://doi.org/10.1186/s13052-022-01264-z

Other articles of this Issue 1/2022

Italian Journal of Pediatrics 1/2022 Go to the issue