Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2019

Open Access 01-12-2019 | Biomarkers | Research

LRG-1 promotes pancreatic cancer growth and metastasis via modulation of the EGFR/p38 signaling

Authors: Zhi-Bo Xie, Yi-Fan Zhang, Chen Jin, Yi-Shen Mao, De-Liang Fu

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2019

Login to get access

Abstract

Background

The abnormal expression of leucine-rich-alpha-2-glycoprotein 1 (LRG-1) is reported to be associated with multiple malignancies, but its role in the progression of pancreatic ductal adenocarcinoma (PDAC) remains to be determined.

Methods

The expression of LRG-1 was assessed in PDAC tissues by RT-PCR, Western blot and immunohistochemistry. LRG-1-silenced or overexpressed cell lines were constructed using shRNA or LRG-1-overexpressing plasmids. EdU incorporation assay, Transwell invasion and wound-healing assays were performed to evaluate the proliferation, invasion and migration of PDAC cells. In addition, protein expression of the mitogen-activated protein kinase (MAPK) pathway was detected using Western blot. Finally, Co-immunoprecipitation assay was conducted in search of the potential interaction between LRG-1 and epidermal growth factor receptor (EGFR).

Results

The expression of LRG-1 in PDAC tissue was significantly higher than that in adjacent normal tissue, and high LRG-1 expression predicted poor survival and a late tumor stage. In addition, LRG-1 markedly promoted the viability, proliferation, migration and invasion of PDAC cells in vitro and facilitated tumor growth in vivo. More importantly, we revealed that these bioactivities of LRG-1 might result from its selective interaction with EGFR, which might further activate the p38/MAPK signaling pathways.

Conclusion

LRG-1 may prove to be a promising biomarker for predicting prognosis of PDAC patients. Inhibition of LRG-1 or its downstream pathway could be a potential therapeutic target for the treatment of PDAC.
Literature
1.
2.
go back to reference Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371(22):2140–1.PubMed Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371(22):2140–1.PubMed
3.
go back to reference Zell JA, Rhee JM, Ziogas A, et al. Race, socioeconomic status, treatment, and survival time among pancreatic cancer cases in California. Cancer Epidemiol Biomark Prev. 2007;16(3):546–52.CrossRef Zell JA, Rhee JM, Ziogas A, et al. Race, socioeconomic status, treatment, and survival time among pancreatic cancer cases in California. Cancer Epidemiol Biomark Prev. 2007;16(3):546–52.CrossRef
4.
go back to reference Lau MK, Davila JA, Shaib YH. Incidence and survival of pancreatic head and body and tail cancers: a population-based study in the United States. Pancreas. 2010;39(4):458–62.PubMedCrossRef Lau MK, Davila JA, Shaib YH. Incidence and survival of pancreatic head and body and tail cancers: a population-based study in the United States. Pancreas. 2010;39(4):458–62.PubMedCrossRef
5.
go back to reference Quaresma M, Coleman MP, Rachet B. 40-year trends in an index of survival for all cancers combined and survival adjusted for age and sex for each cancer in England and Wales, 1971-2011: a population-based study. Lancet. 2015;385(9974):1206–18.PubMedCrossRef Quaresma M, Coleman MP, Rachet B. 40-year trends in an index of survival for all cancers combined and survival adjusted for age and sex for each cancer in England and Wales, 1971-2011: a population-based study. Lancet. 2015;385(9974):1206–18.PubMedCrossRef
6.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRef
8.
go back to reference Hu H, Han T, Zhuo M, et al. Elevated COX-2 expression promotes angiogenesis through EGFR/p38-MAPK/Sp1-dependent Signalling in pancreatic Cancer. Sci Rep. 2017;7(1):470.PubMedPubMedCentralCrossRef Hu H, Han T, Zhuo M, et al. Elevated COX-2 expression promotes angiogenesis through EGFR/p38-MAPK/Sp1-dependent Signalling in pancreatic Cancer. Sci Rep. 2017;7(1):470.PubMedPubMedCentralCrossRef
9.
go back to reference Hu Y, Su H, Li X, et al. The NOTCH ligand JAGGED2 promotes pancreatic cancer metastasis independent of NOTCH signaling activation. Mol Cancer Ther. 2015;14(1):289–97.PubMedCrossRef Hu Y, Su H, Li X, et al. The NOTCH ligand JAGGED2 promotes pancreatic cancer metastasis independent of NOTCH signaling activation. Mol Cancer Ther. 2015;14(1):289–97.PubMedCrossRef
10.
go back to reference Matsuda Y, Yoshimura H, Suzuki T, et al. Inhibition of fibroblast growth factor receptor 2 attenuates proliferation and invasion of pancreatic cancer. Cancer Sci. 2014;105(9):1212–9.PubMedPubMedCentralCrossRef Matsuda Y, Yoshimura H, Suzuki T, et al. Inhibition of fibroblast growth factor receptor 2 attenuates proliferation and invasion of pancreatic cancer. Cancer Sci. 2014;105(9):1212–9.PubMedPubMedCentralCrossRef
11.
go back to reference Shi H, Fang W, Liu M, et al. Complement component 1, q subcomponent binding protein (C1QBP) in lipid rafts mediates hepatic metastasis of pancreatic cancer by regulating IGF-1/IGF-1R signaling. Int J Cancer. 2017;141(7):1389–401.PubMedCrossRef Shi H, Fang W, Liu M, et al. Complement component 1, q subcomponent binding protein (C1QBP) in lipid rafts mediates hepatic metastasis of pancreatic cancer by regulating IGF-1/IGF-1R signaling. Int J Cancer. 2017;141(7):1389–401.PubMedCrossRef
12.
go back to reference Rozengurt E, Sinnett-Smith J, Eibl G. Yes-associated protein (YAP) in pancreatic cancer: at the epicenter of a targetable signaling network associated with patient survival. Signal Transduct Target Ther. 2018;3:11.PubMedPubMedCentralCrossRef Rozengurt E, Sinnett-Smith J, Eibl G. Yes-associated protein (YAP) in pancreatic cancer: at the epicenter of a targetable signaling network associated with patient survival. Signal Transduct Target Ther. 2018;3:11.PubMedPubMedCentralCrossRef
13.
go back to reference Kanteti R, Mirzapoiazova T, Riehm JJ, et al. Focal adhesion kinase a potential therapeutic target for pancreatic cancer and malignant pleural mesothelioma. Cancer Biol Ther. 2018;19(4):316–27.PubMedPubMedCentralCrossRef Kanteti R, Mirzapoiazova T, Riehm JJ, et al. Focal adhesion kinase a potential therapeutic target for pancreatic cancer and malignant pleural mesothelioma. Cancer Biol Ther. 2018;19(4):316–27.PubMedPubMedCentralCrossRef
14.
go back to reference Haupt H, Baudner S. Isolation and characterization of an unknown, leucine-rich 3.1-S-alpha2-glycoprotein from human serum (author's transl). Hoppe Seylers Z Physiol Chem. 1977;358(6):639–46.PubMedCrossRef Haupt H, Baudner S. Isolation and characterization of an unknown, leucine-rich 3.1-S-alpha2-glycoprotein from human serum (author's transl). Hoppe Seylers Z Physiol Chem. 1977;358(6):639–46.PubMedCrossRef
15.
go back to reference Wang X, Abraham S, McKenzie JAG, et al. LRG1 promotes angiogenesis by modulating endothelial TGF-beta signalling. Nature. 2013;499(7458):306–11.PubMedCrossRef Wang X, Abraham S, McKenzie JAG, et al. LRG1 promotes angiogenesis by modulating endothelial TGF-beta signalling. Nature. 2013;499(7458):306–11.PubMedCrossRef
16.
go back to reference Zhang J, Zhu L, Fang J, et al. LRG1 modulates epithelial-mesenchymal transition and angiogenesis in colorectal cancer via HIF-1alpha activation. J Exp Clin Cancer Res. 2016;35:29.PubMedPubMedCentralCrossRef Zhang J, Zhu L, Fang J, et al. LRG1 modulates epithelial-mesenchymal transition and angiogenesis in colorectal cancer via HIF-1alpha activation. J Exp Clin Cancer Res. 2016;35:29.PubMedPubMedCentralCrossRef
17.
go back to reference Ladd JJ, Busald T, Johnson MM, et al. Increased plasma levels of the APC-interacting protein MAPRE1, LRG1, and IGFBP2 preceding a diagnosis of colorectal cancer in women. Cancer Prev Res. 2012;5(4):655–64.CrossRef Ladd JJ, Busald T, Johnson MM, et al. Increased plasma levels of the APC-interacting protein MAPRE1, LRG1, and IGFBP2 preceding a diagnosis of colorectal cancer in women. Cancer Prev Res. 2012;5(4):655–64.CrossRef
18.
go back to reference Wen SY, Zhang LN, Yang XM, et al. LRG1 is an independent prognostic factor for endometrial carcinoma. Tumor Biol. 2014;35(7):7125–33.CrossRef Wen SY, Zhang LN, Yang XM, et al. LRG1 is an independent prognostic factor for endometrial carcinoma. Tumor Biol. 2014;35(7):7125–33.CrossRef
19.
go back to reference Li Y, Zhang Y, Qiu F, et al. Proteomic identification of exosomal LRG1: a potential urinary biomarker for detecting NSCLC. Electrophoresis. 2011;32(15):1976–83.PubMedCrossRef Li Y, Zhang Y, Qiu F, et al. Proteomic identification of exosomal LRG1: a potential urinary biomarker for detecting NSCLC. Electrophoresis. 2011;32(15):1976–83.PubMedCrossRef
20.
go back to reference Zhong D, He G, Zhao S, et al. LRG1 modulates invasion and migration of glioma cell lines through TGF-beta signaling pathway. Acta Histoch. 2015;117(6):551–8.CrossRef Zhong D, He G, Zhao S, et al. LRG1 modulates invasion and migration of glioma cell lines through TGF-beta signaling pathway. Acta Histoch. 2015;117(6):551–8.CrossRef
21.
go back to reference Furukawa K, Kawamoto K, Eguchi H, et al. Clinicopathological significance of leucine-rich alpha2-Glycoprotein-1 in sera of patients with pancreatic Cancer. Pancreas. 2015;44(1):93–8.PubMedCrossRef Furukawa K, Kawamoto K, Eguchi H, et al. Clinicopathological significance of leucine-rich alpha2-Glycoprotein-1 in sera of patients with pancreatic Cancer. Pancreas. 2015;44(1):93–8.PubMedCrossRef
22.
go back to reference Capello M, Bantis LE, Scelo G, et al. Sequential Validation of Blood-Based Protein Biomarker Candidates for Early-Stage Pancreatic Cancer. J Nation Cancer Ins. 2017;109(4). Capello M, Bantis LE, Scelo G, et al. Sequential Validation of Blood-Based Protein Biomarker Candidates for Early-Stage Pancreatic Cancer. J Nation Cancer Ins. 2017;109(4).
23.
go back to reference Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222.PubMedPubMedCentralCrossRef Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222.PubMedPubMedCentralCrossRef
24.
go back to reference Huang W, Zhang H, Hao Y, et al. A non-synonymous single nucleotide polymorphism in the HJURP gene associated with susceptibility to hepatocellular carcinoma among Chinese. PLoS One. 2016;11(2):e0148618.PubMedPubMedCentralCrossRef Huang W, Zhang H, Hao Y, et al. A non-synonymous single nucleotide polymorphism in the HJURP gene associated with susceptibility to hepatocellular carcinoma among Chinese. PLoS One. 2016;11(2):e0148618.PubMedPubMedCentralCrossRef
25.
go back to reference Collins MA, Yan W, Sebolt-Leopold JS, et al. MAPK signaling is required for dedifferentiation of acinar cells and development of pancreatic intraepithelial neoplasia in mice. Gastroenterology. 2014;146(3):822–34 e827.PubMedCrossRef Collins MA, Yan W, Sebolt-Leopold JS, et al. MAPK signaling is required for dedifferentiation of acinar cells and development of pancreatic intraepithelial neoplasia in mice. Gastroenterology. 2014;146(3):822–34 e827.PubMedCrossRef
26.
27.
go back to reference Wang Y, Xu J, Zhang X, et al. TNF-alpha-induced LRG1 promotes angiogenesis and mesenchymal stem cell migration in the subchondral bone during osteoarthritis. Cell Death Dis. 2017;8(3):e2715.PubMedPubMedCentralCrossRef Wang Y, Xu J, Zhang X, et al. TNF-alpha-induced LRG1 promotes angiogenesis and mesenchymal stem cell migration in the subchondral bone during osteoarthritis. Cell Death Dis. 2017;8(3):e2715.PubMedPubMedCentralCrossRef
28.
go back to reference Sun TY, Xie HJ, Li Z, et al. miR-34a regulates HDAC1 expression to affect the proliferation and apoptosis of hepatocellular carcinoma. Am J Transl Res. 2017;9(1):103–14.PubMedPubMedCentral Sun TY, Xie HJ, Li Z, et al. miR-34a regulates HDAC1 expression to affect the proliferation and apoptosis of hepatocellular carcinoma. Am J Transl Res. 2017;9(1):103–14.PubMedPubMedCentral
29.
go back to reference O'Sullivan H, Kelleher FC, Lavelle M, et al. Therapeutic potential for FGFR inhibitors in SOX9-FGFR2 Coexpressing pancreatic Cancer. Pancreas. 2017;46(8):e67–9.PubMedCrossRef O'Sullivan H, Kelleher FC, Lavelle M, et al. Therapeutic potential for FGFR inhibitors in SOX9-FGFR2 Coexpressing pancreatic Cancer. Pancreas. 2017;46(8):e67–9.PubMedCrossRef
30.
go back to reference Yin H, Chen N, Guo R, et al. Antitumor potential of a synthetic interferon-alpha/PLGF-2 positive charge peptide hybrid molecule in pancreatic cancer cells. Sci Rep. 2015;5:16975.PubMedPubMedCentralCrossRef Yin H, Chen N, Guo R, et al. Antitumor potential of a synthetic interferon-alpha/PLGF-2 positive charge peptide hybrid molecule in pancreatic cancer cells. Sci Rep. 2015;5:16975.PubMedPubMedCentralCrossRef
31.
go back to reference Balogh J, Victor D 3rd, Asham EH, et al. Hepatocellular carcinoma: a review. J Hepat Carcinoma. 2016;3:41–53.CrossRef Balogh J, Victor D 3rd, Asham EH, et al. Hepatocellular carcinoma: a review. J Hepat Carcinoma. 2016;3:41–53.CrossRef
32.
go back to reference Matsuyama D, Kawahara K. Proliferation of neonatal cardiomyocytes by connexin43 knockdown via synergistic inactivation of p38 MAPK and increased expression of FGF1. Basic Res Cardiol. 2009;104(6):631–42.PubMedCrossRef Matsuyama D, Kawahara K. Proliferation of neonatal cardiomyocytes by connexin43 knockdown via synergistic inactivation of p38 MAPK and increased expression of FGF1. Basic Res Cardiol. 2009;104(6):631–42.PubMedCrossRef
33.
go back to reference Reckenbeil J, Kraus D, Stark H, et al. Insulin-like growth factor 1 (IGF1) affects proliferation and differentiation and wound healing processes in an inflammatory environment with p38 controlling early osteoblast differentiation in periodontal ligament cells. Arch Oral Biol. 2017;73:142–50.PubMedCrossRef Reckenbeil J, Kraus D, Stark H, et al. Insulin-like growth factor 1 (IGF1) affects proliferation and differentiation and wound healing processes in an inflammatory environment with p38 controlling early osteoblast differentiation in periodontal ligament cells. Arch Oral Biol. 2017;73:142–50.PubMedCrossRef
34.
go back to reference Jiang W, Tian W, Ijaz M, et al. Inhibition of EGF-induced migration and invasion by sulfated polysaccharide of Sepiella maindroni ink via the suppression of EGFR/Akt/p38 MAPK/MMP-2 signaling pathway in KB cells. Biomed Pharmacother. 2017;95:95–102.PubMedCrossRef Jiang W, Tian W, Ijaz M, et al. Inhibition of EGF-induced migration and invasion by sulfated polysaccharide of Sepiella maindroni ink via the suppression of EGFR/Akt/p38 MAPK/MMP-2 signaling pathway in KB cells. Biomed Pharmacother. 2017;95:95–102.PubMedCrossRef
35.
go back to reference Kim BS, Park JY, Kang HJ, et al. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling. Biochem Biophys Res Commun. 2014;450(4):1333–8.PubMedCrossRef Kim BS, Park JY, Kang HJ, et al. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling. Biochem Biophys Res Commun. 2014;450(4):1333–8.PubMedCrossRef
36.
go back to reference Wang Y, Deng W, Zhang Y, et al. MICAL2 promotes breast cancer cell migration by maintaining epidermal growth factor receptor (EGFR) stability and EGFR/P38 signalling activation. Acta Physiol. 2018;222(2). Wang Y, Deng W, Zhang Y, et al. MICAL2 promotes breast cancer cell migration by maintaining epidermal growth factor receptor (EGFR) stability and EGFR/P38 signalling activation. Acta Physiol. 2018;222(2).
37.
go back to reference Ma Y, Fu S, Lu L, et al. Role of androgen receptor on cyclic mechanical stretch-regulated proliferation of C2C12 myoblasts and its upstream signals: IGF-1-mediated PI3K/Akt and MAPKs pathways. Mol Cell Endocrinol. 2017;450:83–93.PubMedCrossRef Ma Y, Fu S, Lu L, et al. Role of androgen receptor on cyclic mechanical stretch-regulated proliferation of C2C12 myoblasts and its upstream signals: IGF-1-mediated PI3K/Akt and MAPKs pathways. Mol Cell Endocrinol. 2017;450:83–93.PubMedCrossRef
38.
go back to reference Biankin AV, Waddell N, Kassahn KS, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491(7424):399–405.PubMedPubMedCentralCrossRef Biankin AV, Waddell N, Kassahn KS, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491(7424):399–405.PubMedPubMedCentralCrossRef
39.
go back to reference Kleeff J, Korc M, Apte M, et al. Pancreatic cancer. Nat Review Dis Primers. 2016;2:16022.CrossRef Kleeff J, Korc M, Apte M, et al. Pancreatic cancer. Nat Review Dis Primers. 2016;2:16022.CrossRef
40.
go back to reference Shinzaki S, Matsuoka K, Iijima H, et al. Leucine-rich Alpha-2 glycoprotein is a serum biomarker of mucosal healing in ulcerative colitis. J Crohns Colitis. 2017;11(1):84–91.PubMedCrossRef Shinzaki S, Matsuoka K, Iijima H, et al. Leucine-rich Alpha-2 glycoprotein is a serum biomarker of mucosal healing in ulcerative colitis. J Crohns Colitis. 2017;11(1):84–91.PubMedCrossRef
41.
go back to reference Xu Y, He Z, Li Z, et al. Irgm1 is required for the inflammatory function of M1 macrophage in early experimental autoimmune encephalomyelitis. J Leukoc Biol. 2017;101(2):507–17.PubMedCrossRef Xu Y, He Z, Li Z, et al. Irgm1 is required for the inflammatory function of M1 macrophage in early experimental autoimmune encephalomyelitis. J Leukoc Biol. 2017;101(2):507–17.PubMedCrossRef
42.
go back to reference Serada S, Fujimoto M, Terabe F, et al. Serum leucine-rich alpha-2 glycoprotein is a disease activity biomarker in ulcerative colitis. Inflamm Bowel Dis. 2012;18(11):2169–79.PubMedCrossRef Serada S, Fujimoto M, Terabe F, et al. Serum leucine-rich alpha-2 glycoprotein is a disease activity biomarker in ulcerative colitis. Inflamm Bowel Dis. 2012;18(11):2169–79.PubMedCrossRef
43.
go back to reference Yamamoto M, Takahashi T, Serada S, et al. Overexpression of leucine-rich alpha2-glycoprotein-1 is a prognostic marker and enhances tumor migration in gastric cancer. Cancer Sci. 2017;108(10):2052–60.PubMedPubMedCentralCrossRef Yamamoto M, Takahashi T, Serada S, et al. Overexpression of leucine-rich alpha2-glycoprotein-1 is a prognostic marker and enhances tumor migration in gastric cancer. Cancer Sci. 2017;108(10):2052–60.PubMedPubMedCentralCrossRef
44.
go back to reference Wang CH, Li M, Liu LL, et al. LRG1 expression indicates unfavorable clinical outcome in hepatocellular carcinoma. Oncotarget. 2015;6(39):42118–29.PubMedPubMedCentral Wang CH, Li M, Liu LL, et al. LRG1 expression indicates unfavorable clinical outcome in hepatocellular carcinoma. Oncotarget. 2015;6(39):42118–29.PubMedPubMedCentral
45.
go back to reference Zhong D, Zhao S, He G, et al. Stable knockdown of LRG1 by RNA interference inhibits growth and promotes apoptosis of glioblastoma cells in vitro and in vivo. Tumor Biol. 2015;36(6):4271–8.CrossRef Zhong D, Zhao S, He G, et al. Stable knockdown of LRG1 by RNA interference inhibits growth and promotes apoptosis of glioblastoma cells in vitro and in vivo. Tumor Biol. 2015;36(6):4271–8.CrossRef
46.
go back to reference Zhou Y, Zhang X, Zhang J, et al. LRG1 promotes proliferation and inhibits apoptosis in colorectal cancer cells via RUNX1 activation. PLoS One. 2017;12(4):e0175122.PubMedPubMedCentralCrossRef Zhou Y, Zhang X, Zhang J, et al. LRG1 promotes proliferation and inhibits apoptosis in colorectal cancer cells via RUNX1 activation. PLoS One. 2017;12(4):e0175122.PubMedPubMedCentralCrossRef
47.
go back to reference Yang K, Li Y, Lian G, et al. KRAS promotes tumor metastasis and chemoresistance by repressing RKIP via the MAPK-ERK pathway in pancreatic cancer. Int J Cancer. 2018;142(11):2323–34.PubMedCrossRef Yang K, Li Y, Lian G, et al. KRAS promotes tumor metastasis and chemoresistance by repressing RKIP via the MAPK-ERK pathway in pancreatic cancer. Int J Cancer. 2018;142(11):2323–34.PubMedCrossRef
48.
go back to reference Sheng W, Chen C, Dong M, et al. Calreticulin promotes EGF-induced EMT in pancreatic cancer cells via integrin/EGFR-ERK/MAPK signaling pathway. Cell Death Dis. 2017;8(10):e3147.PubMedPubMedCentralCrossRef Sheng W, Chen C, Dong M, et al. Calreticulin promotes EGF-induced EMT in pancreatic cancer cells via integrin/EGFR-ERK/MAPK signaling pathway. Cell Death Dis. 2017;8(10):e3147.PubMedPubMedCentralCrossRef
49.
go back to reference Tzeng CW, Frolov A, Frolova N, et al. EGFR genomic gain and aberrant pathway signaling in pancreatic cancer patients. J Surg Res. 2007;143(1):20–6.PubMedCrossRef Tzeng CW, Frolov A, Frolova N, et al. EGFR genomic gain and aberrant pathway signaling in pancreatic cancer patients. J Surg Res. 2007;143(1):20–6.PubMedCrossRef
50.
go back to reference Tzeng CW, Frolov A, Frolova N, et al. Epidermal growth factor receptor (EGFR) is highly conserved in pancreatic cancer. Surgery. 2007;141(4):464–9.PubMedCrossRef Tzeng CW, Frolov A, Frolova N, et al. Epidermal growth factor receptor (EGFR) is highly conserved in pancreatic cancer. Surgery. 2007;141(4):464–9.PubMedCrossRef
51.
go back to reference Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Reviews Mol Cell Biol. 2001;2(2):127–37.CrossRef Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Reviews Mol Cell Biol. 2001;2(2):127–37.CrossRef
Metadata
Title
LRG-1 promotes pancreatic cancer growth and metastasis via modulation of the EGFR/p38 signaling
Authors
Zhi-Bo Xie
Yi-Fan Zhang
Chen Jin
Yi-Shen Mao
De-Liang Fu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2019
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-019-1088-0

Other articles of this Issue 1/2019

Journal of Experimental & Clinical Cancer Research 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine