Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2015

Open Access 01-12-2015 | Research

Nicotine pre-exposure reduces stroke-induced glucose transporter-1 activity at the blood–brain barrier in mice

Authors: Kaushik K Shah, Purushotham Reddy Boreddy, Thomas J Abbruscato

Published in: Fluids and Barriers of the CNS | Issue 1/2015

Login to get access

Abstract

Background

With growing electronic cigarette usage in both the smoking and nonsmoking population, rigorous studies are needed to investigate the effects of nicotine on biological systems to determine long-term health consequences. We have previously shown that nicotine exerts specific neurovascular effects that influence blood brain barrier (BBB) function in response to stroke. In this study, we investigated the effects of nicotine on carrier-mediated glucose transport into ischemic brain. Specifically, the present study investigates glucose transporter-1 (GLUT1) function and expression at the BBB in a focal brain ischemia model of mice pre-exposed to nicotine.

Methods

Nicotine was administrated subcutaneously by osmotic pump at the dose of 4.5 mg/kg/day for 1, 7, or 14 days to reflect the plasma levels seen in smokers. Ischemic-reperfusion (IR) injury was induced by 1 h transient middle cerebral artery occlusion (tMCAO) and 24 h reperfusion. Glucose transport was estimated using an in situ brain perfusion technique with radiolabeled glucose and brain vascular GLUT1 expression was detected with immunofluorescence.

Results

The nicotine pre-exposure (1, 7 & 14 day) resulted in significant reduction in D-glucose influx rate (K in ) across the BBB, with a 49% reduction in 14 day nicotine-infused animals. We observed a 41% increase in carrier-mediated glucose transport across the BBB in saline-infused tMCAO animals compared to saline-infused sham animals. Interestingly, in the tMCAO group of animals pre-exposed to nicotine for 14 days had significantly attenuated increased glucose transport by 80% and 38% compared to saline-infused tMCAO and sham animals respectively. Furthermore, immunofluorescence studies of GLUT1 protein expression in the brain microvascular endothelium confirmed that GLUT1 was also induced in saline-infused tMCAO animals and this protein expression induction was reduced significantly (P < 0.01) with 14 day nicotine pre-exposure in tMCAO animals.

Conclusions

Nicotine pre-exposure reduced the IR-enhanced GLUT1 transporter function and expression at the BBB in a focal brain ischemia mouse model. These studies suggest that nicotine exposure prior to stroke could create an enhanced glucose deprived state at the neurovascular unit (NVU) and could provide an additional vulnerability to enhanced stroke injury.
Literature
1.
go back to reference Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–292. doi:10.1161/01.cir.0000441139.02102.80.PubMedCrossRef Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–292. doi:10.1161/01.cir.0000441139.02102.80.PubMedCrossRef
2.
go back to reference Etter JF, Bullen C. Electronic cigarette: users profile, utilization, satisfaction and perceived efficacy. Addiction. 2011;106(11):2017–28. doi:10.1111/j.1360-0443.2011.03505.x.PubMedCrossRef Etter JF, Bullen C. Electronic cigarette: users profile, utilization, satisfaction and perceived efficacy. Addiction. 2011;106(11):2017–28. doi:10.1111/j.1360-0443.2011.03505.x.PubMedCrossRef
3.
go back to reference Shah K, Desilva S, Abbruscato T. The role of glucose transporters in brain disease: diabetes and Alzheimer’s Disease. Int J Mol Sci. 2012;13(10):12629–55. doi:10.3390/ijms131012629.PubMedCentralPubMedCrossRef Shah K, Desilva S, Abbruscato T. The role of glucose transporters in brain disease: diabetes and Alzheimer’s Disease. Int J Mol Sci. 2012;13(10):12629–55. doi:10.3390/ijms131012629.PubMedCentralPubMedCrossRef
4.
go back to reference Hasselbalch SG, Knudsen GM, Jakobsen J, Hageman LP, Holm S, Paulson OB. Brain metabolism during short-term starvation in humans. J Cerebr Blood Flow Metabol. 1994;14(1):125–31. doi:10.1038/jcbfm.1994.17.CrossRef Hasselbalch SG, Knudsen GM, Jakobsen J, Hageman LP, Holm S, Paulson OB. Brain metabolism during short-term starvation in humans. J Cerebr Blood Flow Metabol. 1994;14(1):125–31. doi:10.1038/jcbfm.1994.17.CrossRef
5.
go back to reference Jueptner M, Weiller C. Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. NeuroImage. 1995;2(2):148–56.PubMedCrossRef Jueptner M, Weiller C. Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. NeuroImage. 1995;2(2):148–56.PubMedCrossRef
6.
go back to reference Shah K, Abbruscato T. The role of blood–brain barrier transporters in pathophysiology and pharmacotherapy of stroke. Curr Pharm Des. 2014;20(10):1510–22.PubMedCrossRef Shah K, Abbruscato T. The role of blood–brain barrier transporters in pathophysiology and pharmacotherapy of stroke. Curr Pharm Des. 2014;20(10):1510–22.PubMedCrossRef
7.
go back to reference Urabe T, Hattori N, Nagamatsu S, Sawa H, Mizuno Y. Expression of glucose transporters in rat brain following transient focal ischemic injury. J Neurochem. 1996;67(1):265–71.PubMedCrossRef Urabe T, Hattori N, Nagamatsu S, Sawa H, Mizuno Y. Expression of glucose transporters in rat brain following transient focal ischemic injury. J Neurochem. 1996;67(1):265–71.PubMedCrossRef
8.
go back to reference Abate MG, Trivedi M, Fryer TD, Smielewski P, Chatfield DA, Williams GB, et al. Early derangements in oxygen and glucose metabolism following head injury: the ischemic penumbra and pathophysiological heterogeneity. Neurocrit Care. 2008;9(3):319–25. doi:10.1007/s12028-008-9119-2.PubMedCrossRef Abate MG, Trivedi M, Fryer TD, Smielewski P, Chatfield DA, Williams GB, et al. Early derangements in oxygen and glucose metabolism following head injury: the ischemic penumbra and pathophysiological heterogeneity. Neurocrit Care. 2008;9(3):319–25. doi:10.1007/s12028-008-9119-2.PubMedCrossRef
9.
go back to reference McCall AL, Van Bueren AM, Nipper V, Moholt-Siebert M, Downes H, Lessov N. Forebrain ischemia increases GLUT1 protein in brain microvessels and parenchyma. J Cereb Blood Flow Metab. 1996;16(1):69–76. doi:10.1097/00004647-199601000-00008.PubMedCrossRef McCall AL, Van Bueren AM, Nipper V, Moholt-Siebert M, Downes H, Lessov N. Forebrain ischemia increases GLUT1 protein in brain microvessels and parenchyma. J Cereb Blood Flow Metab. 1996;16(1):69–76. doi:10.1097/00004647-199601000-00008.PubMedCrossRef
10.
go back to reference Vannucci SJ, Seaman LB, Vannucci RC. Effects of hypoxia-ischemia on GLUT1 and GLUT3 glucose transporters in immature rat brain. J Cereb Blood Flow Metab. 1996;16(1):77–81. doi:10.1097/00004647-199601000-00009.PubMedCrossRef Vannucci SJ, Seaman LB, Vannucci RC. Effects of hypoxia-ischemia on GLUT1 and GLUT3 glucose transporters in immature rat brain. J Cereb Blood Flow Metab. 1996;16(1):77–81. doi:10.1097/00004647-199601000-00009.PubMedCrossRef
11.
go back to reference Yeh WL, Lin CJ, Fu WM. Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Mol Pharmacol. 2008;73(1):170–7. doi:10.1124/mol.107.038851.PubMedCrossRef Yeh WL, Lin CJ, Fu WM. Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Mol Pharmacol. 2008;73(1):170–7. doi:10.1124/mol.107.038851.PubMedCrossRef
12.
go back to reference Sharp FR, Bergeron M, Bernaudin M. Hypoxia-inducible factor in brain. Adv Exp Med Biol. 2001;502:273–91.PubMedCrossRef Sharp FR, Bergeron M, Bernaudin M. Hypoxia-inducible factor in brain. Adv Exp Med Biol. 2001;502:273–91.PubMedCrossRef
13.
go back to reference Abbruscato TJ, Lopez SP, Mark KS, Hawkins BT, Davis TP. Nicotine and cotinine modulate cerebral microvascular permeability and protein expression of ZO-1 through nicotinic acetylcholine receptors expressed on brain endothelial cells. J Pharm Sci. 2002;91(12):2525–38. doi:10.1002/jps.10256.PubMedCrossRef Abbruscato TJ, Lopez SP, Mark KS, Hawkins BT, Davis TP. Nicotine and cotinine modulate cerebral microvascular permeability and protein expression of ZO-1 through nicotinic acetylcholine receptors expressed on brain endothelial cells. J Pharm Sci. 2002;91(12):2525–38. doi:10.1002/jps.10256.PubMedCrossRef
14.
go back to reference Abbruscato TJ, Lopez SP, Roder K, Paulson JR. Regulation of blood–brain barrier Na,K,2Cl-cotransporter through phosphorylation during in vitro stroke conditions and nicotine exposure. J Pharmacol Exp Ther. 2004;310(2):459–68. doi:10.1124/jpet.104.066274, jpet.104.066274 [pii].PubMedCrossRef Abbruscato TJ, Lopez SP, Roder K, Paulson JR. Regulation of blood–brain barrier Na,K,2Cl-cotransporter through phosphorylation during in vitro stroke conditions and nicotine exposure. J Pharmacol Exp Ther. 2004;310(2):459–68. doi:10.1124/jpet.104.066274, jpet.104.066274 [pii].PubMedCrossRef
15.
go back to reference Bradford ST, Stamatovic SM, Dondeti RS, Keep RF, Andjelkovic AV. Nicotine aggravates the brain postischemic inflammatory response. Am J Physiol Heart Circ Physiol. 2011;300(4):H1518–29. doi:10.1152/ajpheart.00928.2010.PubMedCentralPubMedCrossRef Bradford ST, Stamatovic SM, Dondeti RS, Keep RF, Andjelkovic AV. Nicotine aggravates the brain postischemic inflammatory response. Am J Physiol Heart Circ Physiol. 2011;300(4):H1518–29. doi:10.1152/ajpheart.00928.2010.PubMedCentralPubMedCrossRef
16.
go back to reference Paulson JR, Yang T, Selvaraj PK, Mdzinarishvili A, Van der Schyf CJ, Klein J, et al. Nicotine exacerbates brain edema during in vitro and in vivo focal ischemic conditions. J Pharmacol Exp Ther. 2010;332(2):371–9. doi:10.1124/jpet.109.157776.PubMedCentralPubMedCrossRef Paulson JR, Yang T, Selvaraj PK, Mdzinarishvili A, Van der Schyf CJ, Klein J, et al. Nicotine exacerbates brain edema during in vitro and in vivo focal ischemic conditions. J Pharmacol Exp Ther. 2010;332(2):371–9. doi:10.1124/jpet.109.157776.PubMedCentralPubMedCrossRef
17.
go back to reference Wang L, McComb JG, Weiss MH, McDonough AA, Zlokovic BV. Nicotine downregulates alpha 2 isoform of Na, K-ATPase at the blood–brain barrier and brain in rats. Biochem Biophys Res Commun. 1994;199(3):1422–7. doi:10.1006/bbrc.1994.1389.PubMedCrossRef Wang L, McComb JG, Weiss MH, McDonough AA, Zlokovic BV. Nicotine downregulates alpha 2 isoform of Na, K-ATPase at the blood–brain barrier and brain in rats. Biochem Biophys Res Commun. 1994;199(3):1422–7. doi:10.1006/bbrc.1994.1389.PubMedCrossRef
18.
go back to reference Hans FJ, Wei L, Bereczki D, Acuff V, Demaro J, Chen JL, et al. Nicotine increases microvascular blood flow and flow velocity in three groups of brain areas. Am J Physiol. 1993;265(6 Pt 2):H2142–50.PubMed Hans FJ, Wei L, Bereczki D, Acuff V, Demaro J, Chen JL, et al. Nicotine increases microvascular blood flow and flow velocity in three groups of brain areas. Am J Physiol. 1993;265(6 Pt 2):H2142–50.PubMed
19.
go back to reference Hawkins BT, Abbruscato TJ, Egleton RD, Brown RC, Huber JD, Campos CR, et al. Nicotine increases in vivo blood–brain barrier permeability and alters cerebral microvascular tight junction protein distribution. Brain Res. 2004;1027(1–2):48–58. doi:10.1016/j.brainres.2004.08.043.PubMedCrossRef Hawkins BT, Abbruscato TJ, Egleton RD, Brown RC, Huber JD, Campos CR, et al. Nicotine increases in vivo blood–brain barrier permeability and alters cerebral microvascular tight junction protein distribution. Brain Res. 2004;1027(1–2):48–58. doi:10.1016/j.brainres.2004.08.043.PubMedCrossRef
20.
go back to reference Fahim MA, Nemmar A, Al-Salam S, Dhanasekaran S, Shafiullah M, Yasin J, et al. Thromboembolic injury and systemic toxicity induced by nicotine in mice. Gen Physiol Biophys. 2014;33(3):345–55. doi:10.4149/gpb_2014012.PubMedCrossRef Fahim MA, Nemmar A, Al-Salam S, Dhanasekaran S, Shafiullah M, Yasin J, et al. Thromboembolic injury and systemic toxicity induced by nicotine in mice. Gen Physiol Biophys. 2014;33(3):345–55. doi:10.4149/gpb_2014012.PubMedCrossRef
21.
go back to reference Grunwald F, Schrock H, Kuschinsky W. The effect of an acute nicotine infusion on the local cerebral glucose utilization of the awake rat. Klin Wochenschr. 1988;66 Suppl 11:37–41.PubMed Grunwald F, Schrock H, Kuschinsky W. The effect of an acute nicotine infusion on the local cerebral glucose utilization of the awake rat. Klin Wochenschr. 1988;66 Suppl 11:37–41.PubMed
22.
go back to reference Duelli R, Staudt R, Grunwald F, Kuschinsky W. Increase of glucose transporter densities (Glut1 and Glut3) during chronic administration of nicotine in rat brain. Brain Res. 1998;782(1–2):36–42.PubMedCrossRef Duelli R, Staudt R, Grunwald F, Kuschinsky W. Increase of glucose transporter densities (Glut1 and Glut3) during chronic administration of nicotine in rat brain. Brain Res. 1998;782(1–2):36–42.PubMedCrossRef
23.
go back to reference Duelli R, Staudt R, Maurer MH, Kuschinsky W. Local transport kinetics of glucose during acute and chronic nicotine infusion in rat brains. J Neural Transm. 1998;105(8–9):1017–28.PubMedCrossRef Duelli R, Staudt R, Maurer MH, Kuschinsky W. Local transport kinetics of glucose during acute and chronic nicotine infusion in rat brains. J Neural Transm. 1998;105(8–9):1017–28.PubMedCrossRef
24.
go back to reference Grunwald F, Schrock H, Kuschinsky W. The effect of an acute nicotine infusion on the local cerebral glucose utilization of the awake rat. Brain Res. 1987;400(2):232–8.PubMedCrossRef Grunwald F, Schrock H, Kuschinsky W. The effect of an acute nicotine infusion on the local cerebral glucose utilization of the awake rat. Brain Res. 1987;400(2):232–8.PubMedCrossRef
25.
go back to reference Domino EF, Minoshima S, Guthrie SK, Ohl L, Ni L, Koeppe RA, et al. Effects of nicotine on regional cerebral glucose metabolism in awake resting tobacco smokers. Neuroscience. 2000;101(2):277–82.PubMedCrossRef Domino EF, Minoshima S, Guthrie SK, Ohl L, Ni L, Koeppe RA, et al. Effects of nicotine on regional cerebral glucose metabolism in awake resting tobacco smokers. Neuroscience. 2000;101(2):277–82.PubMedCrossRef
26.
go back to reference Stapleton JM, Gilson SF, Wong DF, Villemagne VL, Dannals RF, Grayson RF, et al. Intravenous nicotine reduces cerebral glucose metabolism: a preliminary study. Neuropsychopharmacology. 2003;28(4):765–72. doi:10.1038/sj.npp.1300106.PubMedCrossRef Stapleton JM, Gilson SF, Wong DF, Villemagne VL, Dannals RF, Grayson RF, et al. Intravenous nicotine reduces cerebral glucose metabolism: a preliminary study. Neuropsychopharmacology. 2003;28(4):765–72. doi:10.1038/sj.npp.1300106.PubMedCrossRef
27.
go back to reference Shah KK. Role of Sodium Dependent Glucose Transporter at the BBB and in Diabetic Brain. Amarillo, Texas: Texas Tech University Health Sciences Center; 2013. Shah KK. Role of Sodium Dependent Glucose Transporter at the BBB and in Diabetic Brain. Amarillo, Texas: Texas Tech University Health Sciences Center; 2013.
28.
go back to reference Rashid M, Wangler NJ, Yang L, Shah K, Arumugam TV, Abbruscato TJ, et al. Functional up-regulation of endopeptidase neurolysin during post-acute and early recovery phases of experimental stroke in mouse brain. J Neurochem. 2014;129(1):179–89. doi:10.1111/jnc.12513.PubMedCrossRef Rashid M, Wangler NJ, Yang L, Shah K, Arumugam TV, Abbruscato TJ, et al. Functional up-regulation of endopeptidase neurolysin during post-acute and early recovery phases of experimental stroke in mouse brain. J Neurochem. 2014;129(1):179–89. doi:10.1111/jnc.12513.PubMedCrossRef
29.
go back to reference Yang L, Shah K, Wang H, Karamyan VT, Abbruscato TJ. Characterization of neuroprotective effects of biphalin, an opioid receptor agonist, in a model of focal brain ischemia. J Pharmacol Exp Ther. 2011;339(2):499–508. doi:10.1124/jpet.111.184127.PubMedCentralPubMedCrossRef Yang L, Shah K, Wang H, Karamyan VT, Abbruscato TJ. Characterization of neuroprotective effects of biphalin, an opioid receptor agonist, in a model of focal brain ischemia. J Pharmacol Exp Ther. 2011;339(2):499–508. doi:10.1124/jpet.111.184127.PubMedCentralPubMedCrossRef
30.
go back to reference Cattelotte J, Andre P, Ouellet M, Bourasset F, Scherrmann JM, Cisternino S. In situ mouse carotid perfusion model: glucose and cholesterol transport in the eye and brain. J Cereb Blood Flow Metab. 2008;28(8):1449–59. doi:10.1038/jcbfm.2008.34.PubMedCrossRef Cattelotte J, Andre P, Ouellet M, Bourasset F, Scherrmann JM, Cisternino S. In situ mouse carotid perfusion model: glucose and cholesterol transport in the eye and brain. J Cereb Blood Flow Metab. 2008;28(8):1449–59. doi:10.1038/jcbfm.2008.34.PubMedCrossRef
31.
go back to reference Smith QR, Allen DD. In situ brain perfusion technique. Methods Mol Med. 2003;89:209–18. doi:10.1385/1-59259-419-0:209.PubMed Smith QR, Allen DD. In situ brain perfusion technique. Methods Mol Med. 2003;89:209–18. doi:10.1385/1-59259-419-0:209.PubMed
32.
go back to reference Namba H, Lucignani G, Nehlig A, Patlak C, Pettigrew K, Kennedy C, et al. Effects of insulin on hexose transport across blood–brain barrier in normoglycemia. Am J Physiol. 1987;252(3 Pt 1):E299–303.PubMed Namba H, Lucignani G, Nehlig A, Patlak C, Pettigrew K, Kennedy C, et al. Effects of insulin on hexose transport across blood–brain barrier in normoglycemia. Am J Physiol. 1987;252(3 Pt 1):E299–303.PubMed
33.
go back to reference Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, et al. Blood–brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J Neurochem. 1999;72(1):238–47.PubMedCrossRef Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, et al. Blood–brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J Neurochem. 1999;72(1):238–47.PubMedCrossRef
34.
go back to reference Harik SI, Behmand RA, LaManna JC. Hypoxia increases glucose transport at blood–brain barrier in rats. J Appl Physiol. 1994;77(2):896–901.PubMed Harik SI, Behmand RA, LaManna JC. Hypoxia increases glucose transport at blood–brain barrier in rats. J Appl Physiol. 1994;77(2):896–901.PubMed
35.
go back to reference Browning RG, Olson DW, Stueven HA, Mateer JR. 50% dextrose: antidote or toxin? J Emerg Nurs. 1990;16(5):342–9.PubMed Browning RG, Olson DW, Stueven HA, Mateer JR. 50% dextrose: antidote or toxin? J Emerg Nurs. 1990;16(5):342–9.PubMed
36.
go back to reference Brennan-Minnella AM, Won SJ, Swanson RA. NADPH oxidase-2: linking glucose, acidosis, and excitotoxicity in stroke. Antioxid Redox Signal. 2015;22(2):161–74. doi:10.1089/ars.2013.5767.PubMedCrossRef Brennan-Minnella AM, Won SJ, Swanson RA. NADPH oxidase-2: linking glucose, acidosis, and excitotoxicity in stroke. Antioxid Redox Signal. 2015;22(2):161–74. doi:10.1089/ars.2013.5767.PubMedCrossRef
37.
go back to reference Wu F, Wu J, Nicholson AD, Echeverry R, Haile WB, Catano M, et al. Tissue-Type Plasminogen Activator Regulates the Neuronal Uptake of Glucose in the Ischemic Brain. J Neurosci. 2012;32(29):9848–58. doi:10.1523/JNEUROSCI.1241-12.2012.PubMedCentralPubMedCrossRef Wu F, Wu J, Nicholson AD, Echeverry R, Haile WB, Catano M, et al. Tissue-Type Plasminogen Activator Regulates the Neuronal Uptake of Glucose in the Ischemic Brain. J Neurosci. 2012;32(29):9848–58. doi:10.1523/JNEUROSCI.1241-12.2012.PubMedCentralPubMedCrossRef
38.
go back to reference Fuentes B, Castillo J, San Jose B, Leira R, Serena J, Vivancos J, et al. The prognostic value of capillary glucose levels in acute stroke: the GLycemia in Acute Stroke (GLIAS) study. Stroke. 2009;40(2):562–8. doi:10.1161/STROKEAHA.108.519926.PubMedCrossRef Fuentes B, Castillo J, San Jose B, Leira R, Serena J, Vivancos J, et al. The prognostic value of capillary glucose levels in acute stroke: the GLycemia in Acute Stroke (GLIAS) study. Stroke. 2009;40(2):562–8. doi:10.1161/STROKEAHA.108.519926.PubMedCrossRef
39.
go back to reference Kruyt ND, Biessels GJ, Devries JH, Roos YB. Hyperglycemia in acute ischemic stroke: pathophysiology and clinical management. Nat Rev Neurol. 2010;6(3):145–55. doi:10.1038/nrneurol.2009.231.PubMedCrossRef Kruyt ND, Biessels GJ, Devries JH, Roos YB. Hyperglycemia in acute ischemic stroke: pathophysiology and clinical management. Nat Rev Neurol. 2010;6(3):145–55. doi:10.1038/nrneurol.2009.231.PubMedCrossRef
40.
go back to reference Scott JF, Robinson GM, French JM, O’Connell JE, Alberti KG, Gray CS. Glucose potassium insulin infusions in the treatment of acute stroke patients with mild to moderate hyperglycemia: the Glucose Insulin in Stroke Trial (GIST). Stroke. 1999;30(4):793–9.PubMedCrossRef Scott JF, Robinson GM, French JM, O’Connell JE, Alberti KG, Gray CS. Glucose potassium insulin infusions in the treatment of acute stroke patients with mild to moderate hyperglycemia: the Glucose Insulin in Stroke Trial (GIST). Stroke. 1999;30(4):793–9.PubMedCrossRef
41.
go back to reference Johnston KC, Hall CE, Kissela BM, Bleck TP, Conaway MR, Investigators G. Glucose Regulation in Acute Stroke Patients (GRASP) trial: a randomized pilot trial. Stroke. 2009;40(12):3804–9. doi:10.1161/STROKEAHA.109.561498.PubMedCentralPubMedCrossRef Johnston KC, Hall CE, Kissela BM, Bleck TP, Conaway MR, Investigators G. Glucose Regulation in Acute Stroke Patients (GRASP) trial: a randomized pilot trial. Stroke. 2009;40(12):3804–9. doi:10.1161/STROKEAHA.109.561498.PubMedCentralPubMedCrossRef
42.
go back to reference Bruno A, Kent TA, Coull BM, Shankar RR, Saha C, Becker KJ, et al. Treatment of hyperglycemia in ischemic stroke (THIS): a randomized pilot trial. Stroke. 2008;39(2):384–9. doi:10.1161/STROKEAHA.107.493544.PubMedCrossRef Bruno A, Kent TA, Coull BM, Shankar RR, Saha C, Becker KJ, et al. Treatment of hyperglycemia in ischemic stroke (THIS): a randomized pilot trial. Stroke. 2008;39(2):384–9. doi:10.1161/STROKEAHA.107.493544.PubMedCrossRef
43.
go back to reference McCormick M, Hadley D, McLean JR, Macfarlane JA, Condon B, Muir KW. Randomized, controlled trial of insulin for acute poststroke hyperglycemia. Ann Neurol. 2010;67(5):570–8. doi:10.1002/ana.21983.PubMed McCormick M, Hadley D, McLean JR, Macfarlane JA, Condon B, Muir KW. Randomized, controlled trial of insulin for acute poststroke hyperglycemia. Ann Neurol. 2010;67(5):570–8. doi:10.1002/ana.21983.PubMed
44.
go back to reference Staszewski J, Brodacki B, Kotowicz J, Stepien A. Intravenous insulin therapy in the maintenance of strict glycemic control in nondiabetic acute stroke patients with mild hyperglycemia. J Stroke Cerebrovasc Dis. 2011;20(2):150–4. doi:10.1016/j.jstrokecerebrovasdis.2009.11.013.PubMedCrossRef Staszewski J, Brodacki B, Kotowicz J, Stepien A. Intravenous insulin therapy in the maintenance of strict glycemic control in nondiabetic acute stroke patients with mild hyperglycemia. J Stroke Cerebrovasc Dis. 2011;20(2):150–4. doi:10.1016/j.jstrokecerebrovasdis.2009.11.013.PubMedCrossRef
45.
go back to reference Bellolio MF, Gilmore RM, Stead LG. Insulin for glycaemic control in acute ischaemic stroke. Cochrane Database Syst Rev. 2011;9:CD005346. doi:10.1002/14651858.CD005346.pub3.PubMed Bellolio MF, Gilmore RM, Stead LG. Insulin for glycaemic control in acute ischaemic stroke. Cochrane Database Syst Rev. 2011;9:CD005346. doi:10.1002/14651858.CD005346.pub3.PubMed
46.
go back to reference Yang T, Roder KE, Bhat GJ, Thekkumkara TJ, Abbruscato TJ. Protein kinase C family members as a target for regulation of blood–brain barrier Na, K,2Cl-cotransporter during in vitro stroke conditions and nicotine exposure. Pharm Res. 2006;23(2):291–302. doi:10.1007/s11095-005-9143-2.PubMedCrossRef Yang T, Roder KE, Bhat GJ, Thekkumkara TJ, Abbruscato TJ. Protein kinase C family members as a target for regulation of blood–brain barrier Na, K,2Cl-cotransporter during in vitro stroke conditions and nicotine exposure. Pharm Res. 2006;23(2):291–302. doi:10.1007/s11095-005-9143-2.PubMedCrossRef
47.
go back to reference Farese RV, Sajan MP, Yang H, Li P, Mastorides S, Gower Jr WR, et al. Muscle-specific knockout of PKC-lambda impairs glucose transport and induces metabolic and diabetic syndromes. J Clin Invest. 2007;117(8):2289–301. doi:10.1172/JCI31408.PubMedCentralPubMedCrossRef Farese RV, Sajan MP, Yang H, Li P, Mastorides S, Gower Jr WR, et al. Muscle-specific knockout of PKC-lambda impairs glucose transport and induces metabolic and diabetic syndromes. J Clin Invest. 2007;117(8):2289–301. doi:10.1172/JCI31408.PubMedCentralPubMedCrossRef
48.
go back to reference DeBosch BJ, Baur E, Deo BK, Hiraoka M, Kumagai AK. Effects of insulin-like growth factor-1 on retinal endothelial cell glucose transport and proliferation. J Neurochem. 2001;77(4):1157–67.PubMedCrossRef DeBosch BJ, Baur E, Deo BK, Hiraoka M, Kumagai AK. Effects of insulin-like growth factor-1 on retinal endothelial cell glucose transport and proliferation. J Neurochem. 2001;77(4):1157–67.PubMedCrossRef
49.
go back to reference Farrell CL, Yang J, Pardridge WM. GLUT-1 glucose transporter is present within apical and basolateral membranes of brain epithelial interfaces and in microvascular endothelia with and without tight junctions. J Histochem Cytochem. 1992;40(2):193–9.PubMedCrossRef Farrell CL, Yang J, Pardridge WM. GLUT-1 glucose transporter is present within apical and basolateral membranes of brain epithelial interfaces and in microvascular endothelia with and without tight junctions. J Histochem Cytochem. 1992;40(2):193–9.PubMedCrossRef
50.
go back to reference Sone H, Deo BK, Kumagai AK. Enhancement of glucose transport by vascular endothelial growth factor in retinal endothelial cells. Invest Ophthalmol Vis Sci. 2000;41(7):1876–84.PubMed Sone H, Deo BK, Kumagai AK. Enhancement of glucose transport by vascular endothelial growth factor in retinal endothelial cells. Invest Ophthalmol Vis Sci. 2000;41(7):1876–84.PubMed
51.
go back to reference Cornford EM, Hyman S. Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy. NeuroRx. 2005;2(1):27–43. doi:10.1602/neurorx.2.1.27.PubMedCentralPubMedCrossRef Cornford EM, Hyman S. Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy. NeuroRx. 2005;2(1):27–43. doi:10.1602/neurorx.2.1.27.PubMedCentralPubMedCrossRef
52.
go back to reference Lin SJ, Hong CY, Chang MS, Chiang BN, Chien S. Long-term nicotine exposure increases aortic endothelial cell death and enhances transendothelial macromolecular transport in rats. Arterioscler Thromb. 1992;12(11):1305–12.PubMedCrossRef Lin SJ, Hong CY, Chang MS, Chiang BN, Chien S. Long-term nicotine exposure increases aortic endothelial cell death and enhances transendothelial macromolecular transport in rats. Arterioscler Thromb. 1992;12(11):1305–12.PubMedCrossRef
53.
go back to reference Lockman PR, Van der Schyf CJ, Abbruscato TJ, Allen DD. Chronic nicotine exposure alters blood–brain barrier permeability and diminishes brain uptake of methyllycaconitine. J Neurochem. 2005;94(1):37–44. doi:10.1111/j.1471-4159.2005.03162.x.PubMedCrossRef Lockman PR, Van der Schyf CJ, Abbruscato TJ, Allen DD. Chronic nicotine exposure alters blood–brain barrier permeability and diminishes brain uptake of methyllycaconitine. J Neurochem. 2005;94(1):37–44. doi:10.1111/j.1471-4159.2005.03162.x.PubMedCrossRef
54.
go back to reference Lockman PR, McAfee G, Geldenhuys WJ, Van der Schyf CJ, Abbruscato TJ, Allen DD. Brain uptake kinetics of nicotine and cotinine after chronic nicotine exposure. J Pharmacol Exp Ther. 2005;314(2):636–42. doi:10.1124/jpet.105.085381.PubMedCrossRef Lockman PR, McAfee G, Geldenhuys WJ, Van der Schyf CJ, Abbruscato TJ, Allen DD. Brain uptake kinetics of nicotine and cotinine after chronic nicotine exposure. J Pharmacol Exp Ther. 2005;314(2):636–42. doi:10.1124/jpet.105.085381.PubMedCrossRef
Metadata
Title
Nicotine pre-exposure reduces stroke-induced glucose transporter-1 activity at the blood–brain barrier in mice
Authors
Kaushik K Shah
Purushotham Reddy Boreddy
Thomas J Abbruscato
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2015
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-015-0005-y

Other articles of this Issue 1/2015

Fluids and Barriers of the CNS 1/2015 Go to the issue