Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2015

Open Access 01-12-2015 | Research

Impact of cigarette smoke extract and hyperglycemic conditions on blood–brain barrier endothelial cells

Authors: Shikha Prasad, Ravi K Sajja, Jee Hyun Park, Pooja Naik, Mohammad Abul Kaisar, Luca Cucullo

Published in: Fluids and Barriers of the CNS | Issue 1/2015

Login to get access

Abstract

Background

Diabetes and tobacco smoking are significant public health concerns which have been shown to independently impact the blood–brain barrier (BBB). Since smoking is a risk factor for diabetes and shares some of the common pathological pathways leading to metabolic abnormalities, it is hypothesized that their combination would produce additive or synergistic BBB dysfunction. Therefore, the objective of this study was to assess this hypothesis and evaluate the magnitude of these effects in vitro using hCMEC/D3 cells; a well-established human BBB endothelial cell line.

Methods

Monolayers of hCMEC/D3 cells were exposed to hyperglycemic conditions (HG; 35 mM) or 5% soluble cigarette smoke extracts (CSE, model of mainstream smoke exposure) for 12–24 h. Cells were then harvested for subsequent biochemical analyses. Transendothelial electrical resistance (TEER) and paracellular permeability to florescent dextrans were used to assess monolayer integrity. Analysis of released factors and cytokines was carried out by ELISA. Western blot (WB) analysis/immunofluorescence of relevant molecular targets was carried out. P-gp efflux activity was measured using rhodamine 123.

Results

Immunofluorescence and WB data showed a significant ZO-1 down-regulation by HG and/or CSE over 24 h exposure. CSE in presence of HG produced a synergistic increase in release of vascular endothelial growth factor that was accompanied by decreased TEER and augmented permeability to labeled dextrans in a size-dependent manner. Moreover, CSE increased the expression of GLUT-1 and SGLT-1 in isolated membrane fractions of hCMEC/D3 cells. The effect was amplified by HG. Both, HG and CSE elicited the membrane upregulation of P-glycoprotein (P-gp) expression which however, was not paralleled by a comparable efflux activity. Interestingly, concomitant exposure to HG and CSE evoked a marked upregulation of PECAM-1 and other pro-inflammatory markers including IL-6 and -8, when compared to each condition alone. Moreover, exposure to all tested conditions amplified (to a different degree) cellular oxidative stress response denoted by increased Nrf2 nuclear translocation.

Conclusion

Overall, our results have clearly shown an additive pattern in the release of angiogenic and inflammatory factors following concomitant exposure to HG and CSE. This suggests the involvement of common key modulators in BBB impairment by both CS and HG possibly through the activation of oxidative stress responses.
Literature
1.
go back to reference National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. The health consequences of smoking—50 years of progress: a report of the surgeon general. Atlanta (GA): Centers for Disease Control and Prevention (US); 2014. National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. The health consequences of smoking—50 years of progress: a report of the surgeon general. Atlanta (GA): Centers for Disease Control and Prevention (US); 2014.
2.
go back to reference Successes and opportunities for population-based prevention and control at a glance 2011. National Center for Chronic Disease Prevention and Health Promotion. 8-1-0011. Successes and opportunities for population-based prevention and control at a glance 2011. National Center for Chronic Disease Prevention and Health Promotion. 8-1-0011.
3.
go back to reference Willi C, Bodenmann P, Ghali WA, Faris PD, Cornuz J. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2007;298:2654–64.PubMedCrossRef Willi C, Bodenmann P, Ghali WA, Faris PD, Cornuz J. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2007;298:2654–64.PubMedCrossRef
4.
go back to reference Ding EL, Hu FB. Smoking and type 2 diabetes: underrecognized risks and disease burden. JAMA. 2007;298:2675–6.PubMedCrossRef Ding EL, Hu FB. Smoking and type 2 diabetes: underrecognized risks and disease burden. JAMA. 2007;298:2675–6.PubMedCrossRef
5.
go back to reference Houston TK, Person SD, Pletcher MJ, Liu K, Iribarren C, Kiefe CI. Active and passive smoking and development of glucose intolerance among young adults in a prospective cohort: CARDIA study. BMJ. 2006;332:1064–9.PubMedCentralPubMedCrossRef Houston TK, Person SD, Pletcher MJ, Liu K, Iribarren C, Kiefe CI. Active and passive smoking and development of glucose intolerance among young adults in a prospective cohort: CARDIA study. BMJ. 2006;332:1064–9.PubMedCentralPubMedCrossRef
6.
go back to reference Will JC, Galuska DA, Ford ES, Mokdad A, Calle EE. Cigarette smoking and diabetes mellitus: evidence of a positive association from a large prospective cohort study. Int J Epidemiol. 2001;30:540–6.PubMedCrossRef Will JC, Galuska DA, Ford ES, Mokdad A, Calle EE. Cigarette smoking and diabetes mellitus: evidence of a positive association from a large prospective cohort study. Int J Epidemiol. 2001;30:540–6.PubMedCrossRef
8.
go back to reference Kissela BM, Khoury J, Kleindorfer D, Woo D, Schneider A, Alwell K, et al. Epidemiology of ischemic stroke in patients with diabetes: the greater Cincinnati/Northern Kentucky Stroke Study. Diabetes Care. 2005;28:355–9.PubMedCrossRef Kissela BM, Khoury J, Kleindorfer D, Woo D, Schneider A, Alwell K, et al. Epidemiology of ischemic stroke in patients with diabetes: the greater Cincinnati/Northern Kentucky Stroke Study. Diabetes Care. 2005;28:355–9.PubMedCrossRef
9.
go back to reference Cataldo JK, Prochaska JJ, Glantz SA. Cigarette smoking is a risk factor for Alzheimer’s disease: an analysis controlling for tobacco industry affiliation. J Alzheimers Dis. 2010;19:465–80.PubMedCentralPubMed Cataldo JK, Prochaska JJ, Glantz SA. Cigarette smoking is a risk factor for Alzheimer’s disease: an analysis controlling for tobacco industry affiliation. J Alzheimers Dis. 2010;19:465–80.PubMedCentralPubMed
10.
go back to reference Holscher C. Diabetes as a risk factor for Alzheimer’s disease: insulin signalling impairment in the brain as an alternative model of Alzheimer’s disease. Biochem Soc Trans. 2011;39:891–7.PubMedCrossRef Holscher C. Diabetes as a risk factor for Alzheimer’s disease: insulin signalling impairment in the brain as an alternative model of Alzheimer’s disease. Biochem Soc Trans. 2011;39:891–7.PubMedCrossRef
11.
12.
go back to reference Maia AC, Braga AA, Brouwers A, Nardi AE, Oliveira e Silva AC. Prevalence of psychiatric disorders in patients with diabetes types 1 and 2. Compr Psychiatry. 2012;53:1169–73.PubMedCrossRef Maia AC, Braga AA, Brouwers A, Nardi AE, Oliveira e Silva AC. Prevalence of psychiatric disorders in patients with diabetes types 1 and 2. Compr Psychiatry. 2012;53:1169–73.PubMedCrossRef
13.
go back to reference Anstey KJ, von SC, Salim A, O’Kearney R. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol. 2007;166:367–78.PubMedCrossRef Anstey KJ, von SC, Salim A, O’Kearney R. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol. 2007;166:367–78.PubMedCrossRef
14.
go back to reference Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J. 2012;42:484–91.PubMedCrossRef Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J. 2012;42:484–91.PubMedCrossRef
16.
go back to reference Sobczak A, Golka D, Szoltysek-Boldys I. The effects of tobacco smoke on plasma alpha- and gamma-tocopherol levels in passive and active cigarette smokers. Toxicol Lett. 2004;151:429–37.PubMedCrossRef Sobczak A, Golka D, Szoltysek-Boldys I. The effects of tobacco smoke on plasma alpha- and gamma-tocopherol levels in passive and active cigarette smokers. Toxicol Lett. 2004;151:429–37.PubMedCrossRef
17.
go back to reference Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7:65–74.PubMedCentralPubMedCrossRef Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7:65–74.PubMedCentralPubMedCrossRef
18.
go back to reference Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun. 2010;34:J258–65.PubMedCrossRef Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun. 2010;34:J258–65.PubMedCrossRef
21.
go back to reference Starr JM, Wardlaw J, Ferguson K, MacLullich A, Deary IJ, Marshall I. Increased blood–brain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging. J Neurol Neurosurg Psychiatry. 2003;74:70–6.PubMedCentralPubMedCrossRef Starr JM, Wardlaw J, Ferguson K, MacLullich A, Deary IJ, Marshall I. Increased blood–brain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging. J Neurol Neurosurg Psychiatry. 2003;74:70–6.PubMedCentralPubMedCrossRef
22.
go back to reference Pryor WA, Stone K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann NY Acad Sci. 1993;686:12–27.PubMedCrossRef Pryor WA, Stone K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann NY Acad Sci. 1993;686:12–27.PubMedCrossRef
23.
go back to reference Valavanidis A, Vlachogianni T, Fiotakis K. Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int J Environ Res Public Health. 2009;6:445–62.PubMedCentralPubMedCrossRef Valavanidis A, Vlachogianni T, Fiotakis K. Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int J Environ Res Public Health. 2009;6:445–62.PubMedCentralPubMedCrossRef
24.
go back to reference Yamaguchi Y, Nasu F, Harada A, Kunitomo M. Oxidants in the gas phase of cigarette smoke pass through the lung alveolar wall and raise systemic oxidative stress. J Pharmacol Sci. 2007;103:275–82.PubMedCrossRef Yamaguchi Y, Nasu F, Harada A, Kunitomo M. Oxidants in the gas phase of cigarette smoke pass through the lung alveolar wall and raise systemic oxidative stress. J Pharmacol Sci. 2007;103:275–82.PubMedCrossRef
25.
go back to reference Naik P, Fofaria N, Prasad S, Sajja RK, Weksler B, Couraud PO, et al. Oxidative and pro-inflammatory impact of regular and denicotinized cigarettes on blood brain barrier endothelial cells: is smoking reduced or nicotine-free products really safe? BMC Neurosci. 2014;15:51.PubMedCentralPubMedCrossRef Naik P, Fofaria N, Prasad S, Sajja RK, Weksler B, Couraud PO, et al. Oxidative and pro-inflammatory impact of regular and denicotinized cigarettes on blood brain barrier endothelial cells: is smoking reduced or nicotine-free products really safe? BMC Neurosci. 2014;15:51.PubMedCentralPubMedCrossRef
26.
go back to reference Pun PB, Lu J, Moochhala S. Involvement of ROS in BBB dysfunction. Free Radic Res. 2009;43:348–64.PubMedCrossRef Pun PB, Lu J, Moochhala S. Involvement of ROS in BBB dysfunction. Free Radic Res. 2009;43:348–64.PubMedCrossRef
27.
go back to reference Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–25.PubMedCrossRef Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–25.PubMedCrossRef
28.
go back to reference Prasad S, Sajja RK, Naik P, Cucullo L. Diabetes mellitus and blood–brain barrier dysfunction: an overview. J Pharmacovigil. 2014;2:125.PubMedCentralPubMed Prasad S, Sajja RK, Naik P, Cucullo L. Diabetes mellitus and blood–brain barrier dysfunction: an overview. J Pharmacovigil. 2014;2:125.PubMedCentralPubMed
29.
go back to reference Hou WK, Xian YX, Zhang L, Lai H, Hou XG, Xu YX, et al. Influence of blood glucose on the expression of glucose trans-porter proteins 1 and 3 in the brain of diabetic rats. Chin Med J (Engl). 2007;120:1704–9. Hou WK, Xian YX, Zhang L, Lai H, Hou XG, Xu YX, et al. Influence of blood glucose on the expression of glucose trans-porter proteins 1 and 3 in the brain of diabetic rats. Chin Med J (Engl). 2007;120:1704–9.
30.
go back to reference Pardridge WM, Triguero D, Farrell CR. Downregulation of blood–brain barrier glucose transporter in experimental diabetes. Diabetes. 1990;39:1040–4.PubMedCrossRef Pardridge WM, Triguero D, Farrell CR. Downregulation of blood–brain barrier glucose transporter in experimental diabetes. Diabetes. 1990;39:1040–4.PubMedCrossRef
31.
go back to reference Sajja RK, Prasad S, Cucullo L. Impact of altered glycaemia on blood–brain barrier endothelium: an in vitro study using the hCMEC/D3 cell line. Fluids Barriers CNS. 2014;11:8.PubMedCentralPubMedCrossRef Sajja RK, Prasad S, Cucullo L. Impact of altered glycaemia on blood–brain barrier endothelium: an in vitro study using the hCMEC/D3 cell line. Fluids Barriers CNS. 2014;11:8.PubMedCentralPubMedCrossRef
32.
go back to reference Seaquist ER, Tkac I, Damberg G, Thomas W, Gruetter R. Brain glucose concentrations in poorly controlled diabetes mellitus as measured by high-field magnetic resonance spectroscopy. Metabolism. 2005;54:1008–13.PubMedCrossRef Seaquist ER, Tkac I, Damberg G, Thomas W, Gruetter R. Brain glucose concentrations in poorly controlled diabetes mellitus as measured by high-field magnetic resonance spectroscopy. Metabolism. 2005;54:1008–13.PubMedCrossRef
33.
go back to reference Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, et al. Blood–brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J Neurochem. 1999;72:238–47.PubMedCrossRef Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, et al. Blood–brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J Neurochem. 1999;72:238–47.PubMedCrossRef
34.
go back to reference Duelli R, Maurer MH, Staudt R, Heiland S, Duembgen L, Kuschinsky W. Increased cerebral glucose utilization and decreased glucose transporter Glut1 during chronic hyperglycemia in rat brain. Brain Res. 2000;858:338–47.PubMedCrossRef Duelli R, Maurer MH, Staudt R, Heiland S, Duembgen L, Kuschinsky W. Increased cerebral glucose utilization and decreased glucose transporter Glut1 during chronic hyperglycemia in rat brain. Brain Res. 2000;858:338–47.PubMedCrossRef
35.
go back to reference Liu H, Xu X, Yang Z, Deng Y, Liu X, Xie L. Impaired function and expression of P-glycoprotein in blood–brain barrier of streptozotocin-induced diabetic rats. Brain Res. 2006;1123:245–52.PubMedCrossRef Liu H, Xu X, Yang Z, Deng Y, Liu X, Xie L. Impaired function and expression of P-glycoprotein in blood–brain barrier of streptozotocin-induced diabetic rats. Brain Res. 2006;1123:245–52.PubMedCrossRef
36.
go back to reference Liu H, Liu X, Jia L, Liu Y, Yang H, Wang G, et al. Insulin therapy restores impaired function and expression of P-glycoprotein in blood–brain barrier of experimental diabetes. Biochem Pharmacol. 2008;75:1649–58.PubMedCrossRef Liu H, Liu X, Jia L, Liu Y, Yang H, Wang G, et al. Insulin therapy restores impaired function and expression of P-glycoprotein in blood–brain barrier of experimental diabetes. Biochem Pharmacol. 2008;75:1649–58.PubMedCrossRef
37.
go back to reference Maeng HJ, Kim MH, Jin HE, Shin SM, Tsuruo T, Kim SG, et al. Functional induction of P-glycoprotein in the blood–brain barrier of streptozotocin-induced diabetic rats: evidence for the involvement of nuclear factor-kappaB, a nitrosative stress-sensitive transcription factor, in the regulation. Drug Metab Dispos. 2007;35:1996–2005.PubMedCrossRef Maeng HJ, Kim MH, Jin HE, Shin SM, Tsuruo T, Kim SG, et al. Functional induction of P-glycoprotein in the blood–brain barrier of streptozotocin-induced diabetic rats: evidence for the involvement of nuclear factor-kappaB, a nitrosative stress-sensitive transcription factor, in the regulation. Drug Metab Dispos. 2007;35:1996–2005.PubMedCrossRef
38.
go back to reference Reichel V, Burghard S, John I, Huber O. P-glycoprotein and breast cancer resistance protein expression and function at the blood–brain barrier and blood–cerebrospinal fluid barrier (choroid plexus) in streptozotocin-induced diabetes in rats. Brain Res. 2011;1370:238–45.PubMedCrossRef Reichel V, Burghard S, John I, Huber O. P-glycoprotein and breast cancer resistance protein expression and function at the blood–brain barrier and blood–cerebrospinal fluid barrier (choroid plexus) in streptozotocin-induced diabetes in rats. Brain Res. 2011;1370:238–45.PubMedCrossRef
39.
go back to reference Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, et al. Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005;19:1872–4.PubMed Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, et al. Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005;19:1872–4.PubMed
40.
go back to reference Cucullo L, Couraud PO, Weksler B, Romero IA, Hossain M, Rapp E, et al. Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. J Cereb Blood Flow Metab. 2008;28:312–28.PubMedCrossRef Cucullo L, Couraud PO, Weksler B, Romero IA, Hossain M, Rapp E, et al. Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. J Cereb Blood Flow Metab. 2008;28:312–28.PubMedCrossRef
41.
go back to reference Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13:9–22.PubMed Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13:9–22.PubMed
42.
go back to reference Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012;9:23.PubMedCentralPubMedCrossRef Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012;9:23.PubMedCentralPubMedCrossRef
43.
go back to reference Hawkins BT, Davis TP. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57:173–85.PubMedCrossRef Hawkins BT, Davis TP. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57:173–85.PubMedCrossRef
44.
go back to reference Chehade JM, Haas MJ, Mooradian AD. Diabetes-related changes in rat cerebral occludin and zonula occludens-1 (ZO-1) expression. Neurochem Res. 2002;27:249–52.PubMedCrossRef Chehade JM, Haas MJ, Mooradian AD. Diabetes-related changes in rat cerebral occludin and zonula occludens-1 (ZO-1) expression. Neurochem Res. 2002;27:249–52.PubMedCrossRef
45.
go back to reference Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD. Increased blood–brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia. 2007;50:202–11.PubMedCrossRef Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD. Increased blood–brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia. 2007;50:202–11.PubMedCrossRef
46.
go back to reference Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR. VEGF-mediated disruption of endothelial CLN-5 promotes blood–brain barrier breakdown. Proc Natl Acad Sci USA. 2009;106:1977–82.PubMedCentralPubMedCrossRef Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR. VEGF-mediated disruption of endothelial CLN-5 promotes blood–brain barrier breakdown. Proc Natl Acad Sci USA. 2009;106:1977–82.PubMedCentralPubMedCrossRef
47.
go back to reference Yan J, Zhang Z, Shi H. HIF-1 is involved in high glucose-induced paracellular permeability of brain endothelial cells. Cell Mol Life Sci. 2012;69:115–28.PubMedCrossRef Yan J, Zhang Z, Shi H. HIF-1 is involved in high glucose-induced paracellular permeability of brain endothelial cells. Cell Mol Life Sci. 2012;69:115–28.PubMedCrossRef
48.
go back to reference Fanelli CG, Dence CS, Markham J, Videen TO, Paramore DS, Cryer PE, et al. Blood-to-brain glucose transport and cerebral glucose metabolism are not reduced in poorly controlled type 1 diabetes. Diabetes. 1998;47:1444–50.PubMedCrossRef Fanelli CG, Dence CS, Markham J, Videen TO, Paramore DS, Cryer PE, et al. Blood-to-brain glucose transport and cerebral glucose metabolism are not reduced in poorly controlled type 1 diabetes. Diabetes. 1998;47:1444–50.PubMedCrossRef
49.
go back to reference Badr GA, Tang J, Ismail-Beigi F, Kern TS. Diabetes downregulates GLUT1 expression in the retina and its microvessels but not in the cerebral cortex or its microvessels. Diabetes. 2000;49:1016–21.PubMedCrossRef Badr GA, Tang J, Ismail-Beigi F, Kern TS. Diabetes downregulates GLUT1 expression in the retina and its microvessels but not in the cerebral cortex or its microvessels. Diabetes. 2000;49:1016–21.PubMedCrossRef
50.
go back to reference Vemula S, Roder KE, Yang T, Bhat GJ, Thekkumkara TJ, Abbruscato TJ. A functional role for sodium-dependent glucose transport across the blood–brain barrier during oxygen glucose deprivation. J Pharmacol Exp Ther. 2009;328:487–95.PubMedCentralPubMedCrossRef Vemula S, Roder KE, Yang T, Bhat GJ, Thekkumkara TJ, Abbruscato TJ. A functional role for sodium-dependent glucose transport across the blood–brain barrier during oxygen glucose deprivation. J Pharmacol Exp Ther. 2009;328:487–95.PubMedCentralPubMedCrossRef
51.
go back to reference Kamei J, Hirano S, Miyata S, Saitoh A, Onodera K. Effects of first- and second-generation histamine-H1-receptor antagonists on the pentobarbital-induced loss of the righting reflex in streptozotocin-induced diabetic mice. J Pharmacol Sci. 2005;97:266–72.PubMedCrossRef Kamei J, Hirano S, Miyata S, Saitoh A, Onodera K. Effects of first- and second-generation histamine-H1-receptor antagonists on the pentobarbital-induced loss of the righting reflex in streptozotocin-induced diabetic mice. J Pharmacol Sci. 2005;97:266–72.PubMedCrossRef
52.
go back to reference Liu H, Zhang D, Xu X, Liu X, Wang G, Xie L, et al. Attenuated function and expression of P-glycoprotein at blood–brain barrier and increased brain distribution of phenobarbital in streptozotocin-induced diabetic mice. Eur J Pharmacol. 2007;561:226–32.PubMedCrossRef Liu H, Zhang D, Xu X, Liu X, Wang G, Xie L, et al. Attenuated function and expression of P-glycoprotein at blood–brain barrier and increased brain distribution of phenobarbital in streptozotocin-induced diabetic mice. Eur J Pharmacol. 2007;561:226–32.PubMedCrossRef
53.
go back to reference Liu L, Liu XD. Alterations in function and expression of ABC transporters at blood–brain barrier under diabetes and the clinical significances. Front Pharmacol. 2014;5:273.PubMedCentralPubMedCrossRef Liu L, Liu XD. Alterations in function and expression of ABC transporters at blood–brain barrier under diabetes and the clinical significances. Front Pharmacol. 2014;5:273.PubMedCentralPubMedCrossRef
54.
go back to reference Sajja RK, Cucullo L. Altered glycaemia differentially modulates efflux transporter expression and activity in hCMEC/D3 cell line. Neurosci Lett. 2015;598:59–65.PubMedCrossRef Sajja RK, Cucullo L. Altered glycaemia differentially modulates efflux transporter expression and activity in hCMEC/D3 cell line. Neurosci Lett. 2015;598:59–65.PubMedCrossRef
55.
go back to reference Poller B, Gutmann H, Krahenbuhl S, Weksler B, Romero I, Couraud PO, et al. The human brain endothelial cell line hCMEC/D3 as a human blood–brain barrier model for drug transport studies. J Neurochem. 2008;107:1358–68.PubMedCrossRef Poller B, Gutmann H, Krahenbuhl S, Weksler B, Romero I, Couraud PO, et al. The human brain endothelial cell line hCMEC/D3 as a human blood–brain barrier model for drug transport studies. J Neurochem. 2008;107:1358–68.PubMedCrossRef
56.
go back to reference Ohtsuki S, Ikeda C, Uchida Y, Sakamoto Y, Miller F, Glacial F, et al. Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood–brain barrier model. Mol Pharm. 2013;10:289–96.PubMedCrossRef Ohtsuki S, Ikeda C, Uchida Y, Sakamoto Y, Miller F, Glacial F, et al. Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood–brain barrier model. Mol Pharm. 2013;10:289–96.PubMedCrossRef
57.
go back to reference Fasler-Kan E, Suenderhauf C, Barteneva N, Poller B, Gygax D, Huwyler J. Cytokine signaling in the human brain capillary endothelial cell line hCMEC/D3. Brain Res. 2010;1354:15–22.PubMedCrossRef Fasler-Kan E, Suenderhauf C, Barteneva N, Poller B, Gygax D, Huwyler J. Cytokine signaling in the human brain capillary endothelial cell line hCMEC/D3. Brain Res. 2010;1354:15–22.PubMedCrossRef
58.
go back to reference Hoffman WH, Stamatovic SM, Andjelkovic AV. Inflammatory mediators and blood brain barrier disruption in fatal brain edema of diabetic ketoacidosis. Brain Res. 2009;1254:138–48.PubMedCrossRef Hoffman WH, Stamatovic SM, Andjelkovic AV. Inflammatory mediators and blood brain barrier disruption in fatal brain edema of diabetic ketoacidosis. Brain Res. 2009;1254:138–48.PubMedCrossRef
59.
go back to reference Sandberg M, Patil J, D’Angelo B, Weber SG, Mallard C. NRF2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacology. 2014;79:298–306.PubMedCrossRef Sandberg M, Patil J, D’Angelo B, Weber SG, Mallard C. NRF2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacology. 2014;79:298–306.PubMedCrossRef
60.
go back to reference Sajja RK, Green KN, Cucullo L. Altered nrf2 signaling mediates hypoglycemia-induced blood–brain barrier endothelial dysfunction in vitro. PLoS One. 2015;10:e0122358.PubMedCentralPubMedCrossRef Sajja RK, Green KN, Cucullo L. Altered nrf2 signaling mediates hypoglycemia-induced blood–brain barrier endothelial dysfunction in vitro. PLoS One. 2015;10:e0122358.PubMedCentralPubMedCrossRef
Metadata
Title
Impact of cigarette smoke extract and hyperglycemic conditions on blood–brain barrier endothelial cells
Authors
Shikha Prasad
Ravi K Sajja
Jee Hyun Park
Pooja Naik
Mohammad Abul Kaisar
Luca Cucullo
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2015
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-015-0014-x

Other articles of this Issue 1/2015

Fluids and Barriers of the CNS 1/2015 Go to the issue