Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2019

Open Access 01-12-2019 | Motor Evoked Potential | Research

Cervical trans-spinal direct current stimulation: a modelling-experimental approach

Authors: Sofia Rita Fernandes, Mariana Pereira, Ricardo Salvador, Pedro Cavaleiro Miranda, Mamede de Carvalho

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2019

Login to get access

Abstract

Background

Trans-spinal direct current stimulation (tsDCS) is a non-invasive technique with promising neuromodulatory effects on spinal cord (SC) circuitry. Computational studies are essential to guide effective tsDCS protocols for specific clinical applications. This study aims to combine modelling and experimental studies to determine the electrode montage that maximizes electric field (E-field) delivery during cervical tsDCS.

Methods

Current and E-field distributions in the cervical SC were predicted for four electrode montages in a human realistic model using computational methods. A double-blind crossover and randomized exploratory study was conducted using the montage that maximized E-field delivery. tsDCS was applied for 15 min in 10 healthy subjects (anodal, cathodal, sham, with polarity assigned to the cervical electrode), with a current intensity of 2.5 mA, resulting in a total current charge density delivery of 90 mC/cm2. Upper limb motor (transcranial magnetic stimulation) and sensory evoked potentials (MEP, SEP), M-waves, H-reflex and F-wave responses were analysed. Central and peripheral conduction times were determined using MEP. Repeated measures ANOVA and Friedman test were used for statistical analysis (significance level α = 0.05).

Results

All montages presented higher current density and E-field magnitudes in the cervical SC region between the electrodes. However, electrodes at C3 and T3 spinous processes (C3-T3) originated the highest E-field magnitude (0.50 V/m). Using C3-T3 montage we observed significant changes in N9 SEP latency (p = 0.006), but significance did not persist in pairwise comparisons (sham-anodal: p = 0.022; sham-cathodal: p = 0.619; anodal-cathodal: p = 0.018; α = 0.017, Bonferroni corrected). MEP latency and central motor conduction time (CMCT) modified significantly on stimulation (p = 0.007 and p = 0.015, respectively). In addition, pairwise comparisons confirmed significant differences between sham and cathodal conditions after Bonferroni correction for MEP latency (sham-anodal: p = 0.868; sham-cathodal: p = 0.011; anodal-cathodal: p = 0.023) and CMCT (sham-anodal: p = 0.929; sham-cathodal: p = 0.010; anodal-cathodal: p = 0.034).

Conclusions

Computational models predicted higher E-field delivery in the cervical SC for the C3-T3 montage. Polarity-dependent effects in motor responses were reported using this montage consistent with spinal motor modulation. tsDCS experimental protocol designs should be guided by modelling studies to improve effectiveness.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ahmed Z. Trans-spinal direct current stimulation alters muscle tone in mice with and without spinal cord injury with spasticity. J Neurosci. 2014;34(5):1701–9.PubMedCrossRefPubMedCentral Ahmed Z. Trans-spinal direct current stimulation alters muscle tone in mice with and without spinal cord injury with spasticity. J Neurosci. 2014;34(5):1701–9.PubMedCrossRefPubMedCentral
2.
go back to reference American Clinical Neurophysiology Society (ACNS). Guideline 9D: guidelines on short-latency somatosensory evoked potentials. J Clin Neurophysiol. 2006;23(2):168–79.CrossRef American Clinical Neurophysiology Society (ACNS). Guideline 9D: guidelines on short-latency somatosensory evoked potentials. J Clin Neurophysiol. 2006;23(2):168–79.CrossRef
3.
go back to reference Baumann SB, Wozny D, Kelly S, Meno F. The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng. 1997;44(3):220–3.PubMedCrossRef Baumann SB, Wozny D, Kelly S, Meno F. The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng. 1997;44(3):220–3.PubMedCrossRef
4.
go back to reference Bocci T, Vanninia B, Torzini A, Mazzatenta A, Vergari M, Cogiamanian F, et al. Cathodal transcutaneous spinal direct current stimulation (tsDCS) improves motor unit recruitment in healthy subjects. Neurosci Lett. 2014;578:75–9.PubMedCrossRef Bocci T, Vanninia B, Torzini A, Mazzatenta A, Vergari M, Cogiamanian F, et al. Cathodal transcutaneous spinal direct current stimulation (tsDCS) improves motor unit recruitment in healthy subjects. Neurosci Lett. 2014;578:75–9.PubMedCrossRef
5.
go back to reference Cerqueira V, De Mendonça A, Minez A, Dias AR, De Carvalho M. Does caffeine modify corticomotor excitability? Neurophysiol Clin. 2006;36(4):219–26.PubMedCrossRef Cerqueira V, De Mendonça A, Minez A, Dias AR, De Carvalho M. Does caffeine modify corticomotor excitability? Neurophysiol Clin. 2006;36(4):219–26.PubMedCrossRef
6.
go back to reference Chiappa K. Evoked potentials in clinical medicine. 3rd ed. Philadelphia: Lippincott-Raven Publishers; 1997. Chiappa K. Evoked potentials in clinical medicine. 3rd ed. Philadelphia: Lippincott-Raven Publishers; 1997.
7.
go back to reference Cogiamanian F, Vergari M, Pulecchi F, Marceglia S, Priori A. Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol. 2008;119:2636–40.CrossRefPubMed Cogiamanian F, Vergari M, Pulecchi F, Marceglia S, Priori A. Effect of spinal transcutaneous direct current stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol. 2008;119:2636–40.CrossRefPubMed
8.
go back to reference Cogiamanian F, Ardolino G, Vergari M, Ferrucci R, Ciocca M, Scelzo E, et al. Transcutaneous spinal direct current stimulation. Front Psychiatry. 2012;3:63.PubMedPubMedCentralCrossRef Cogiamanian F, Ardolino G, Vergari M, Ferrucci R, Ciocca M, Scelzo E, et al. Transcutaneous spinal direct current stimulation. Front Psychiatry. 2012;3:63.PubMedPubMedCentralCrossRef
9.
go back to reference Christ A, Kainz W, Hahn EG, Honegger K, Zefferer M, Neufeld E, et al. The virtual family-development of surface based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol. 2010;55:N23–38.PubMedCrossRef Christ A, Kainz W, Hahn EG, Honegger K, Zefferer M, Neufeld E, et al. The virtual family-development of surface based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol. 2010;55:N23–38.PubMedCrossRef
10.
11.
go back to reference Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2(4):201–7.PubMedPubMedCentralCrossRef Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2(4):201–7.PubMedPubMedCentralCrossRef
12.
go back to reference Dongés SC, Bai S, Taylor JL. Concurrent electrical cervicomedullary stimulation and cervical transcutaneous spinal direct current stimulation result in a stimulus interaction. Exp Physiol. 2017a;102(10):1309–20.PubMedCrossRef Dongés SC, Bai S, Taylor JL. Concurrent electrical cervicomedullary stimulation and cervical transcutaneous spinal direct current stimulation result in a stimulus interaction. Exp Physiol. 2017a;102(10):1309–20.PubMedCrossRef
13.
go back to reference Dongés SC, D'Amico JM, Butler JE, Taylor JL. The effects of cervical transcutaneous spinal direct current stimulation on motor pathways supplying the upper limb in humans. PLoS One. 2017b;12(2):e0172333.PubMedPubMedCentralCrossRef Dongés SC, D'Amico JM, Butler JE, Taylor JL. The effects of cervical transcutaneous spinal direct current stimulation on motor pathways supplying the upper limb in humans. PLoS One. 2017b;12(2):e0172333.PubMedPubMedCentralCrossRef
14.
go back to reference Fernandes SR, Salvador R, Wenger C, de Carvalho MA, Miranda PC. Influence of electrode configuration on the electric field distribution during transcutaneous spinal direct current stimulation of the cervical spine. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:3121–4. https://doi.org/10.1109/EMBC.2016.7591390. Fernandes SR, Salvador R, Wenger C, de Carvalho MA, Miranda PC. Influence of electrode configuration on the electric field distribution during transcutaneous spinal direct current stimulation of the cervical spine. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:3121–4. https://​doi.​org/​10.​1109/​EMBC.​2016.​7591390.
15.
go back to reference Fernandes SR, Salvador R, Wenger C, de Carvalho M, Miranda PC. Transcutaneous spinal direct current stimulation of the lumbar and sacral spinal cord: a modelling study. J Neural Eng. 2018;15(3):036008.PubMedCrossRef Fernandes SR, Salvador R, Wenger C, de Carvalho M, Miranda PC. Transcutaneous spinal direct current stimulation of the lumbar and sacral spinal cord: a modelling study. J Neural Eng. 2018;15(3):036008.PubMedCrossRef
16.
go back to reference Fiocchi S, Ravazzani P, Priori A, Parazzini M. Cerebellar and spinal direct current stimulation in children: computational modeling of the induced electric field. Front Hum Neurosci. 2016;10:522.PubMedPubMedCentralCrossRef Fiocchi S, Ravazzani P, Priori A, Parazzini M. Cerebellar and spinal direct current stimulation in children: computational modeling of the induced electric field. Front Hum Neurosci. 2016;10:522.PubMedPubMedCentralCrossRef
17.
go back to reference Geddes LA, Baker LE. The specific resistance of biological materials – a compendium of data for the biomedical engineer and physiologist. Med Bio Eng. 1967;5(3):271–93.CrossRef Geddes LA, Baker LE. The specific resistance of biological materials – a compendium of data for the biomedical engineer and physiologist. Med Bio Eng. 1967;5(3):271–93.CrossRef
18.
go back to reference Haueisen J, Ramon C, Eiselt M, Brauer H, Nowak H. Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. IEEE Trans Biomed Eng. 1997;44(8):727–35.PubMedCrossRef Haueisen J, Ramon C, Eiselt M, Brauer H, Nowak H. Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. IEEE Trans Biomed Eng. 1997;44(8):727–35.PubMedCrossRef
19.
go back to reference Kimura J. Electrodiagnosis in diseases of nerve and muscle: principles and practise. 3d ed. New York: Oxford University Press; 2001. Kimura J. Electrodiagnosis in diseases of nerve and muscle: principles and practise. 3d ed. New York: Oxford University Press; 2001.
20.
go back to reference Kuck A, Stegeman D, van Asseldonk E. Modeling trans-spinal direct current stimulation for the modulation of the lumbar spinal motor pathways. J Neural Eng. 2017;14(5):056014.PubMedCrossRef Kuck A, Stegeman D, van Asseldonk E. Modeling trans-spinal direct current stimulation for the modulation of the lumbar spinal motor pathways. J Neural Eng. 2017;14(5):056014.PubMedCrossRef
21.
go back to reference Liebetanz D, Koch R, Mayenfels S, Konig F, Paulus W, Nitsche MA. Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol. 2009;120:1161–7.PubMedCrossRef Liebetanz D, Koch R, Mayenfels S, Konig F, Paulus W, Nitsche MA. Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol. 2009;120:1161–7.PubMedCrossRef
22.
go back to reference Lim CY, Shin HI. Noninvasive DC stimulation on neck changes MEP. Neuroreport. 2011;22(16):819–23.PubMed Lim CY, Shin HI. Noninvasive DC stimulation on neck changes MEP. Neuroreport. 2011;22(16):819–23.PubMed
23.
go back to reference Minhas P, Bansal V, Patel J, Ho JS, Diaz J, Datta A, Bikson M. Electrodes for high-definition transcutaneous DC stimulation for applications in drug-delivery and electrotherapy, including tDCS. J Neurosci Methods. 2010;190(2):188–97.PubMedPubMedCentralCrossRef Minhas P, Bansal V, Patel J, Ho JS, Diaz J, Datta A, Bikson M. Electrodes for high-definition transcutaneous DC stimulation for applications in drug-delivery and electrotherapy, including tDCS. J Neurosci Methods. 2010;190(2):188–97.PubMedPubMedCentralCrossRef
24.
go back to reference Miranda PC, Mekonnen A, Salvador R, Ruffini G. The electric field in the cortex during transcranial current stimulation. Neuroimage. 2013;70:48–58.PubMedCrossRef Miranda PC, Mekonnen A, Salvador R, Ruffini G. The electric field in the cortex during transcranial current stimulation. Neuroimage. 2013;70:48–58.PubMedCrossRef
25.
go back to reference Niérat M, Similowski T, Lamy J. Does trans-spinal direct current stimulation Alter phrenic Motoneurons and respiratory Neuromechanical outputs in humans? A double-blind, sham-controlled, randomized, crossover study. J Neurosci. 2014;34(43):14420–9.PubMedPubMedCentralCrossRef Niérat M, Similowski T, Lamy J. Does trans-spinal direct current stimulation Alter phrenic Motoneurons and respiratory Neuromechanical outputs in humans? A double-blind, sham-controlled, randomized, crossover study. J Neurosci. 2014;34(43):14420–9.PubMedPubMedCentralCrossRef
26.
go back to reference Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.PubMedPubMedCentralCrossRef Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.PubMedPubMedCentralCrossRef
27.
go back to reference Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W, Priori A. Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol. 2003;114(11):2220–3.CrossRefPubMed Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W, Priori A. Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol. 2003;114(11):2220–3.CrossRefPubMed
28.
go back to reference Nitsche MA, Cohen LG, Wasserman EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.PubMedCrossRef Nitsche MA, Cohen LG, Wasserman EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.PubMedCrossRef
29.
go back to reference Osswald K. Measurement of the conductivity and dielectric constants of biological tissues and liquids by microwave. Hochfrequentz Tech. Elektroakustik. 1937;49:40–9. Osswald K. Measurement of the conductivity and dielectric constants of biological tissues and liquids by microwave. Hochfrequentz Tech. Elektroakustik. 1937;49:40–9.
31.
go back to reference Parazzini M, Fiocchi S, Liorni I, Rossi E, Cogiamanian F, Vergari M, et al. Modelling the current density generated by transcutaneous spinal direct current stimulation (tsDCS). Clin Neurophysiol. 2014;125(11):2260–70.CrossRefPubMed Parazzini M, Fiocchi S, Liorni I, Rossi E, Cogiamanian F, Vergari M, et al. Modelling the current density generated by transcutaneous spinal direct current stimulation (tsDCS). Clin Neurophysiol. 2014;125(11):2260–70.CrossRefPubMed
32.
go back to reference Peterchev AV, Wagner TA, Miranda PC, Nitsche MA, Paulus W, Lisanby SH, Pascual-Leone A, Bikson M. Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul. 2012;5(4):435–53.PubMedCrossRef Peterchev AV, Wagner TA, Miranda PC, Nitsche MA, Paulus W, Lisanby SH, Pascual-Leone A, Bikson M. Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul. 2012;5(4):435–53.PubMedCrossRef
33.
go back to reference Pierrot-Deseilligny E, Burke D. The circuitry of the human spinal cord - spinal and corticospinal mechanisms of movement. New York: Cambridge University Press; 2012.CrossRef Pierrot-Deseilligny E, Burke D. The circuitry of the human spinal cord - spinal and corticospinal mechanisms of movement. New York: Cambridge University Press; 2012.CrossRef
34.
go back to reference Ranck JB Jr. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975;98(3):417–40.PubMedCrossRef Ranck JB Jr. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975;98(3):417–40.PubMedCrossRef
35.
go back to reference Rossini P, Barker A, Berardelli A, Caramia M, Caruso G, Cracco R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91(2):79–92.PubMedCrossRef Rossini P, Barker A, Berardelli A, Caramia M, Caruso G, Cracco R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol. 1994;91(2):79–92.PubMedCrossRef
36.
go back to reference Rossini P, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. committee. Clin Neurophysiol. 2015;126(6):1071–107.PubMedPubMedCentralCrossRef Rossini P, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. committee. Clin Neurophysiol. 2015;126(6):1071–107.PubMedPubMedCentralCrossRef
37.
go back to reference Roth BJ. Mechanisms for electrical stimulation of excitable tissue. Crit Rev Biomed Eng. 1994;22(3–4):253–305.PubMed Roth BJ. Mechanisms for electrical stimulation of excitable tissue. Crit Rev Biomed Eng. 1994;22(3–4):253–305.PubMed
38.
go back to reference Ruffini G, Wendling F, Merlet I, Molaee-Ardekani B, Mekonnen A, Salvador R, et al. Transcranial current brain stimulation (tCS): models and technologies. IEEE Trans Neural Syst Rehabil Eng. 2013;21(3):333–45.PubMedCrossRef Ruffini G, Wendling F, Merlet I, Molaee-Ardekani B, Mekonnen A, Salvador R, et al. Transcranial current brain stimulation (tCS): models and technologies. IEEE Trans Neural Syst Rehabil Eng. 2013;21(3):333–45.PubMedCrossRef
39.
go back to reference Rush S, Abildskov JA, McFee R. Resistivity of body tissues at low frequencies. Circ Res. 1963;12:40–50.PubMedCrossRef Rush S, Abildskov JA, McFee R. Resistivity of body tissues at low frequencies. Circ Res. 1963;12:40–50.PubMedCrossRef
40.
go back to reference Salvador R, Silva S, Basser PJ, Miranda PC. Determining which mechanisms lead to activation in the motor cortex: a modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry. Clin Neurophysiol. 2011;122(4):748–58.PubMedCrossRef Salvador R, Silva S, Basser PJ, Miranda PC. Determining which mechanisms lead to activation in the motor cortex: a modeling study of transcranial magnetic stimulation using realistic stimulus waveforms and sulcal geometry. Clin Neurophysiol. 2011;122(4):748–58.PubMedCrossRef
41.
go back to reference Salvador R, Wenger C, Nitsche MA, Miranda PC. How electrode montage affects transcranial direct current stimulation of the human motor cortex. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:6924–7. Salvador R, Wenger C, Nitsche MA, Miranda PC. How electrode montage affects transcranial direct current stimulation of the human motor cortex. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:6924–7.
42.
go back to reference Song W, Truong DQ, Bikson M, Martin JH. Transspinal direct current stimulation immediately modifies motor cortex sensorimotor maps. J Neurophysiol. 2015;113(7):2801–11.PubMedPubMedCentralCrossRef Song W, Truong DQ, Bikson M, Martin JH. Transspinal direct current stimulation immediately modifies motor cortex sensorimotor maps. J Neurophysiol. 2015;113(7):2801–11.PubMedPubMedCentralCrossRef
43.
go back to reference Standring S, et al. Grey’s anatomy: the anatomical basis of clinical practice. 40th ed. London: Churchill Livingston Elsevier; 2008. Standring S, et al. Grey’s anatomy: the anatomical basis of clinical practice. 40th ed. London: Churchill Livingston Elsevier; 2008.
44.
go back to reference Struijk JJ, Holsheimer J, van Veen BK, Bomm HB. Epidural spinal cord stimulation: calculation of field potentials with special reference to dorsal column nerve fibers. IEEE Trans Biomed Eng. 1991;38(1):104–10.PubMedCrossRef Struijk JJ, Holsheimer J, van Veen BK, Bomm HB. Epidural spinal cord stimulation: calculation of field potentials with special reference to dorsal column nerve fibers. IEEE Trans Biomed Eng. 1991;38(1):104–10.PubMedCrossRef
45.
go back to reference Struijk JJ, Holsheimer J, van der Heide GG, Boom HB. Recruitment of dorsal column fibers in spinal cord stimulation: influence of collateral branching. IEEE Trans Biomed Eng. 1992;39(9):903–12.PubMedCrossRef Struijk JJ, Holsheimer J, van der Heide GG, Boom HB. Recruitment of dorsal column fibers in spinal cord stimulation: influence of collateral branching. IEEE Trans Biomed Eng. 1992;39(9):903–12.PubMedCrossRef
46.
go back to reference Struijk JJ, Holsheimer J, Boom HB. Excitation of dorsal root fibers in spinal cord stimulation: a theoretical study. IEEE Trans Biomed Eng. 1993; 40:632–9.PubMedCrossRef Struijk JJ, Holsheimer J, Boom HB. Excitation of dorsal root fibers in spinal cord stimulation: a theoretical study. IEEE Trans Biomed Eng. 1993; 40:632–9.PubMedCrossRef
47.
go back to reference Surowiec A, Stuchly SS, Eidus L, Swarup A. In vitro dielectric properties of human tissues at radiofrequency. Phys Med Biol. 1987;32(5):615–21.PubMedCrossRef Surowiec A, Stuchly SS, Eidus L, Swarup A. In vitro dielectric properties of human tissues at radiofrequency. Phys Med Biol. 1987;32(5):615–21.PubMedCrossRef
48.
go back to reference Wolters C. Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based Source Localization in the 6 Human Brain. No. 39 in MPI Series in Cognitive Neuroscience. Leipzig: MPI of Cognitive Neuroscience. 2003. ISBN 3-7 936816-11-5. Wolters C. Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based Source Localization in the 6 Human Brain. No. 39 in MPI Series in Cognitive Neuroscience. Leipzig: MPI of Cognitive Neuroscience. 2003. ISBN 3-7 936816-11-5.
Metadata
Title
Cervical trans-spinal direct current stimulation: a modelling-experimental approach
Authors
Sofia Rita Fernandes
Mariana Pereira
Ricardo Salvador
Pedro Cavaleiro Miranda
Mamede de Carvalho
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2019
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-019-0589-6

Other articles of this Issue 1/2019

Journal of NeuroEngineering and Rehabilitation 1/2019 Go to the issue