Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2024

Open Access 01-12-2024 | Research

Cryopreservation of cerebrospinal fluid cells preserves the transcriptional landscape for single-cell analysis

Authors: Mahesh Chandra Kodali, Jerry Antone, Eric Alsop, Rojashree Jayakumar, Khushi Parikh, Aude Chiot, Paula Sanchez-Molina, Bahareh Ajami, Steven E. Arnold, Kendall Jensen, Sudeshna Das, Marc S. Weinberg

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Cerebrospinal fluid (CSF) matrix biomarkers have become increasingly valuable surrogate markers of neuropsychiatric diseases in research and clinical practice. In contrast, CSF cells have been rarely investigated due to their relative scarcity and fragility, and lack of common collection and cryopreservation protocols, with limited exceptions for neurooncology and primary immune-based diseases like multiple sclerosis. The advent of a microfluidics-based multi-omics approach to studying individual cells has allowed for the study of cellular phenotyping, intracellular dynamics, and intercellular relationships that provide multidimensionality unable to be obtained through acellular fluid-phase analyses. Challenges to cell-based research include site-to-site differences in handling, storage, and thawing methods, which can lead to inaccuracy and inter-assay variability. In the present study, we performed single-cell RNA sequencing (10x Genomics) on fresh or previously cryopreserved human CSF samples from three alternative cryopreservation methods: Fetal Bovine Serum with Dimethyl sulfoxide (FBS/DMSO), FBS/DMSO after a DNase step (a step often included in epigenetic studies), and cryopreservation using commercially available Recovery© media. In comparing relative differences between fresh and cryopreserved samples, we found little effect of the cryopreservation method on being able to resolve donor-linked cell type proportions, markers of cellular stress, and overall gene expression at the single-cell level, whereas donor-specific differences were readily discernable. We further demonstrate the compatibility of fresh and cryopreserved CSF immune cell sequencing using biologically relevant sexually dimorphic gene expression differences by donor. Our findings support the utility and interchangeability of FBS/DMSO and Recovery cryopreservation with fresh sample analysis, providing a methodological grounding that will enable researchers to further expand our understanding of the CSF immune cell contributions to neurological and psychiatric disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Engelborghs S, Niemantsverdriet E, Struyfs H, Blennow K, Brouns R, Comabella M, et al. Consensus guidelines for lumbar puncture in patients with neurological diseases. Alzheimer’s Dement Diagn Assess Dis Monit. 2017;1(8):111–26. Engelborghs S, Niemantsverdriet E, Struyfs H, Blennow K, Brouns R, Comabella M, et al. Consensus guidelines for lumbar puncture in patients with neurological diseases. Alzheimer’s Dement Diagn Assess Dis Monit. 2017;1(8):111–26.
2.
go back to reference Deisenhammer F, Bartos A, Egg R, Gilhus NE, Giovannoni G, Rauer S, et al. Guidelines on routine cerebrospinal fluid analysis. Report from an EFNS task force. Eur J Neurol. 2006;13(9):913–22.CrossRefPubMed Deisenhammer F, Bartos A, Egg R, Gilhus NE, Giovannoni G, Rauer S, et al. Guidelines on routine cerebrospinal fluid analysis. Report from an EFNS task force. Eur J Neurol. 2006;13(9):913–22.CrossRefPubMed
3.
go back to reference Costerus JM, Brouwer MC, van de Beek D. Technological advances and changing indications for lumbar puncture in neurological disorders. Lancet Neurol. 2018;17(3):268–78.CrossRefPubMed Costerus JM, Brouwer MC, van de Beek D. Technological advances and changing indications for lumbar puncture in neurological disorders. Lancet Neurol. 2018;17(3):268–78.CrossRefPubMed
5.
go back to reference Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15(7):673–84.CrossRefPubMed Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15(7):673–84.CrossRefPubMed
6.
go back to reference Horie K, Salvadó G, Barthélemy NR, Janelidze S, Li Y, He Y, et al. CSF MTBR-tau243 is a specific biomarker of tau tangle pathology in Alzheimer’s disease. Nat Med. 2023;29(8):1954–63.CrossRefPubMedPubMedCentral Horie K, Salvadó G, Barthélemy NR, Janelidze S, Li Y, He Y, et al. CSF MTBR-tau243 is a specific biomarker of tau tangle pathology in Alzheimer’s disease. Nat Med. 2023;29(8):1954–63.CrossRefPubMedPubMedCentral
8.
go back to reference Satoh K. CSF biomarkers for prion diseases. Neurochem Int. 2022;1(155): 105306.CrossRef Satoh K. CSF biomarkers for prion diseases. Neurochem Int. 2022;1(155): 105306.CrossRef
9.
go back to reference Cummings J, Apostolova L, Rabinovici GD, Atri A, Aisen P, Greenberg S, et al. Lecanemab: appropriate use recommendations. J Prev Alzheimer’s Dis. 2023;10(3):362–77. Cummings J, Apostolova L, Rabinovici GD, Atri A, Aisen P, Greenberg S, et al. Lecanemab: appropriate use recommendations. J Prev Alzheimer’s Dis. 2023;10(3):362–77.
10.
go back to reference Wright EM. Transport processes in the formation of the cerebrospinal fluid. Rev Physiol Biochem Pharmacol. 1978;83:3–34.PubMed Wright EM. Transport processes in the formation of the cerebrospinal fluid. Rev Physiol Biochem Pharmacol. 1978;83:3–34.PubMed
12.
go back to reference Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 2012;12(9):623–35.CrossRefPubMed Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 2012;12(9):623–35.CrossRefPubMed
16.
go back to reference Gate D, Saligrama N, Leventhal O, Yang AC, Unger MS, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature. 2020;577(7790):399–404.CrossRefPubMedPubMedCentral Gate D, Saligrama N, Leventhal O, Yang AC, Unger MS, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature. 2020;577(7790):399–404.CrossRefPubMedPubMedCentral
17.
go back to reference Piehl N, van Olst L, Ramakrishnan A, Teregulova V, Simonton B, Zhang Z, et al. Cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment. Cell. 2022;185(26):5028-5039.e13.CrossRefPubMedPubMedCentral Piehl N, van Olst L, Ramakrishnan A, Teregulova V, Simonton B, Zhang Z, et al. Cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment. Cell. 2022;185(26):5028-5039.e13.CrossRefPubMedPubMedCentral
23.
go back to reference Lee JS, Yi K, Ju YS, Shin EC. Effects of cryopreservation and thawing on single-cell transcriptomes of human T cells. Immune Netw. 2020;20(4):1–8.CrossRef Lee JS, Yi K, Ju YS, Shin EC. Effects of cryopreservation and thawing on single-cell transcriptomes of human T cells. Immune Netw. 2020;20(4):1–8.CrossRef
25.
go back to reference Wu SZ, Roden DL, Al-Eryani G, Bartonicek N, Harvey K, Cazet AS, Chan CL, Junankar S, Hui MN, Millar EA, Beretov J, Horvath L, Joshua AM, Stricker P, Wilmott JS, Quek C, Long GV, Scolyer RA, Yeung BZ, Segara D, Mak C, Warrier S, Powell JE, O'Toole S, Lim E, Swarbrick A. Cryopreservation of human cancers conserves tumour heterogeneity for single-cell multi-omics analysis. Genome Med. 2021;13(1):81. https://doi.org/10.1186/s13073-021-00885-z.CrossRefPubMedPubMedCentral Wu SZ, Roden DL, Al-Eryani G, Bartonicek N, Harvey K, Cazet AS, Chan CL, Junankar S, Hui MN, Millar EA, Beretov J, Horvath L, Joshua AM, Stricker P, Wilmott JS, Quek C, Long GV, Scolyer RA, Yeung BZ, Segara D, Mak C, Warrier S, Powell JE, O'Toole S, Lim E, Swarbrick A. Cryopreservation of human cancers conserves tumour heterogeneity for single-cell multi-omics analysis. Genome Med. 2021;13(1):81. https://​doi.​org/​10.​1186/​s13073-021-00885-z.CrossRefPubMedPubMedCentral
26.
go back to reference Chen D, Abu Zaid MI, Reiter JL, Czader M, Wang L, McGuire P, et al. Cryopreservation preserves cell-type composition and gene expression profiles in bone marrow aspirates from multiple myeloma patients. Front Genet. 2021;21:12. Chen D, Abu Zaid MI, Reiter JL, Czader M, Wang L, McGuire P, et al. Cryopreservation preserves cell-type composition and gene expression profiles in bone marrow aspirates from multiple myeloma patients. Front Genet. 2021;21:12.
28.
go back to reference Touil H, Roostaei T, Calini D, Diaconu C, Epstein S, Raposo C, et al. A structured evaluation of cryopreservation in generating single-cell transcriptomes from cerebrospinal fluid. Cell Rep Methods. 2023;3(7): 100533.CrossRefPubMedPubMedCentral Touil H, Roostaei T, Calini D, Diaconu C, Epstein S, Raposo C, et al. A structured evaluation of cryopreservation in generating single-cell transcriptomes from cerebrospinal fluid. Cell Rep Methods. 2023;3(7): 100533.CrossRefPubMedPubMedCentral
31.
go back to reference Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573-3587.e29.CrossRefPubMedPubMedCentral Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184(13):3573-3587.e29.CrossRefPubMedPubMedCentral
32.
go back to reference Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888-1902.e21.CrossRefPubMedPubMedCentral Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888-1902.e21.CrossRefPubMedPubMedCentral
33.
go back to reference Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–20.CrossRefPubMedPubMedCentral Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–20.CrossRefPubMedPubMedCentral
34.
35.
go back to reference Williams G. Data mining with rattle and R: the art of excavating data for knowledge discovery. New York: Springer-Verlag; 2011. p. 374.CrossRef Williams G. Data mining with rattle and R: the art of excavating data for knowledge discovery. New York: Springer-Verlag; 2011. p. 374.CrossRef
36.
go back to reference Heming M, Li X, Räuber S, Mausberg AK, Börsch AL, Hartlehnert M, et al. Neurological manifestations of COVID-19 feature T cell exhaustion and dedifferentiated monocytes in cerebrospinal fluid. Immunity. 2021;54(1):164-175.e6.CrossRefPubMed Heming M, Li X, Räuber S, Mausberg AK, Börsch AL, Hartlehnert M, et al. Neurological manifestations of COVID-19 feature T cell exhaustion and dedifferentiated monocytes in cerebrospinal fluid. Immunity. 2021;54(1):164-175.e6.CrossRefPubMed
37.
go back to reference Vawter MP, Evans S, Choudary P, Tomita H, Meador-Woodruff J, Molnar M, et al. Gender-specific gene expression in post-mortem human brain: localization to sex chromosomes. Neuropsychopharmacology. 2004;29(2):373–84.CrossRefPubMed Vawter MP, Evans S, Choudary P, Tomita H, Meador-Woodruff J, Molnar M, et al. Gender-specific gene expression in post-mortem human brain: localization to sex chromosomes. Neuropsychopharmacology. 2004;29(2):373–84.CrossRefPubMed
Metadata
Title
Cryopreservation of cerebrospinal fluid cells preserves the transcriptional landscape for single-cell analysis
Authors
Mahesh Chandra Kodali
Jerry Antone
Eric Alsop
Rojashree Jayakumar
Khushi Parikh
Aude Chiot
Paula Sanchez-Molina
Bahareh Ajami
Steven E. Arnold
Kendall Jensen
Sudeshna Das
Marc S. Weinberg
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-024-03047-1

Other articles of this Issue 1/2024

Journal of Neuroinflammation 1/2024 Go to the issue