Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2024

Open Access 01-12-2024 | Interferon | Research

Post-exposure intranasal IFNα suppresses replication and neuroinvasion of Venezuelan Equine Encephalitis virus within olfactory sensory neurons

Authors: Matthew D. Cain, N. Rubin Klein, Xiaoping Jiang, Hamid Salimi, Qingping Wu, Mark J. Miller, William B. Klimstra, Robyn S. Klein

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Background

Venezuelan Equine Encephalitis virus (VEEV) may enter the central nervous system (CNS) within olfactory sensory neurons (OSN) that originate in the nasal cavity after intranasal exposure. While it is known that VEEV has evolved several mechanisms to inhibit type I interferon (IFN) signaling within infected cells, whether this inhibits virologic control during neuroinvasion along OSN has not been studied.

Methods

We utilized an established murine model of intranasal infection with VEEV and a repository of scRNAseq data from IFN-treated OSN to assess the cellular targets and IFN signaling responses after VEEV exposure.

Results

We found that immature OSN, which express higher levels of the VEEV receptor LDLRAD3 than mature OSN, are the first cells infected by VEEV. Despite rapid VEEV neuroinvasion after intranasal exposure, olfactory neuroepithelium (ONE) and olfactory bulb (OB) IFN responses, as assessed by evaluation of expression of interferon signaling genes (ISG), are delayed for up to 48 h during VEEV neuroinvasion, representing a potential therapeutic window. Indeed, a single intranasal dose of recombinant IFNα triggers early ISG expression in both the nasal cavity and OB. When administered at the time of or early after infection, IFNα treatment delayed onset of sequelae associated with encephalitis and extended survival by several days. VEEV replication after IFN treatment was also transiently suppressed in the ONE, which inhibited subsequent invasion into the CNS.

Conclusions

Our results demonstrate a critical and promising first evaluation of intranasal IFNα for the treatment of human encephalitic alphavirus exposures.
Appendix
Available only for authorised users
Literature
1.
go back to reference Salimi H, Cain MD, Klein RS. Encephalitic arboviruses: emergence, clinical presentation, and neuropathogenesis. Neurotherapeutics. 2016;13(3):514–34.PubMedPubMedCentralCrossRef Salimi H, Cain MD, Klein RS. Encephalitic arboviruses: emergence, clinical presentation, and neuropathogenesis. Neurotherapeutics. 2016;13(3):514–34.PubMedPubMedCentralCrossRef
2.
go back to reference Cain MD, Salimi H, Gong Y, Yang L, Hamilton SL, Heffernan JR, et al. Virus entry and replication in the brain precedes blood-brain barrier disruption during intranasal alphavirus infection. J Neuroimmunol. 2017;15(308):118–30.CrossRef Cain MD, Salimi H, Gong Y, Yang L, Hamilton SL, Heffernan JR, et al. Virus entry and replication in the brain precedes blood-brain barrier disruption during intranasal alphavirus infection. J Neuroimmunol. 2017;15(308):118–30.CrossRef
3.
go back to reference Salimi H, Cain MD, Jiang X, Roth RA, Beatty WL, Sun C, et al. Encephalitic alphaviruses exploit caveola-mediated transcytosis at the blood-brain barrier for central nervous system entry. MBio. 2020;11(1):e02731-e2819.PubMedPubMedCentralCrossRef Salimi H, Cain MD, Jiang X, Roth RA, Beatty WL, Sun C, et al. Encephalitic alphaviruses exploit caveola-mediated transcytosis at the blood-brain barrier for central nervous system entry. MBio. 2020;11(1):e02731-e2819.PubMedPubMedCentralCrossRef
4.
go back to reference Ma H, Kim AS, Kafai NM, Earnest JT, Shah AP, Case JB, et al. LDLRAD3 is a receptor for Venezuelan equine encephalitis virus. Nature. 2020;588(7837):308–14.PubMedPubMedCentralCrossRef Ma H, Kim AS, Kafai NM, Earnest JT, Shah AP, Case JB, et al. LDLRAD3 is a receptor for Venezuelan equine encephalitis virus. Nature. 2020;588(7837):308–14.PubMedPubMedCentralCrossRef
5.
go back to reference Basore K, Ma H, Kafai NM, Mackin S, Kim AS, Nelson CA, et al. Structure of Venezuelan equine encephalitis virus in complex with the LDLRAD3 receptor. Nature. 2021;598(7882):672–6.PubMedPubMedCentralCrossRef Basore K, Ma H, Kafai NM, Mackin S, Kim AS, Nelson CA, et al. Structure of Venezuelan equine encephalitis virus in complex with the LDLRAD3 receptor. Nature. 2021;598(7882):672–6.PubMedPubMedCentralCrossRef
6.
go back to reference Ma B, Huang C, Ma J, Xiang Y, Zhang X. Structure of Venezuelan equine encephalitis virus with its receptor LDLRAD3. Nature. 2021;598(7882):677–81.PubMedCrossRef Ma B, Huang C, Ma J, Xiang Y, Zhang X. Structure of Venezuelan equine encephalitis virus with its receptor LDLRAD3. Nature. 2021;598(7882):677–81.PubMedCrossRef
7.
go back to reference Schoneboom BA, Lee JS, Grieder FB. Early expression of IFN-alpha/beta and iNOS in the brains of Venezuelan equine encephalitis virus-infected mice. J Interferon Cytokine Res. 2000;20(2):205–15.PubMedCrossRef Schoneboom BA, Lee JS, Grieder FB. Early expression of IFN-alpha/beta and iNOS in the brains of Venezuelan equine encephalitis virus-infected mice. J Interferon Cytokine Res. 2000;20(2):205–15.PubMedCrossRef
8.
go back to reference Bhalla N, Sun C, Lam LKM, Gardner CL, Ryman KD, Klimstra WB. Host translation shutoff mediated by non-structural protein 2 is a critical factor in the antiviral state resistance of Venezuelan Equine Encephalitis Virus. Virology. 2016;496:147–65.PubMedCrossRef Bhalla N, Sun C, Lam LKM, Gardner CL, Ryman KD, Klimstra WB. Host translation shutoff mediated by non-structural protein 2 is a critical factor in the antiviral state resistance of Venezuelan Equine Encephalitis Virus. Virology. 2016;496:147–65.PubMedCrossRef
9.
go back to reference Garmashova N, Atasheva S, Kang W, Weaver SC, Frolova E, Frolov I. Analysis of Venezuelan equine encephalitis virus capsid protein function in the inhibition of cellular transcription. J Virol. 2007;81(24):13552–65.PubMedPubMedCentralCrossRef Garmashova N, Atasheva S, Kang W, Weaver SC, Frolova E, Frolov I. Analysis of Venezuelan equine encephalitis virus capsid protein function in the inhibition of cellular transcription. J Virol. 2007;81(24):13552–65.PubMedPubMedCentralCrossRef
10.
go back to reference Garmashova N, Gorchakov R, Volkova E, Paessler S, Frolova E, Frolov I. The old world and new world alphaviruses use different virus-specific proteins for induction of transcriptional shutoff. J Virol. 2007;81(5):2472–84.PubMedCrossRef Garmashova N, Gorchakov R, Volkova E, Paessler S, Frolova E, Frolov I. The old world and new world alphaviruses use different virus-specific proteins for induction of transcriptional shutoff. J Virol. 2007;81(5):2472–84.PubMedCrossRef
11.
go back to reference Atasheva S, Fish A, Fornerod M, Frolova EI. Venezuelan equine encephalitis virus capsid protein forms a tetrameric complex with CRM1 and importin α/β that obstructs nuclear pore complex function. J Virol. 2010;84(9):4158–71.PubMedPubMedCentralCrossRef Atasheva S, Fish A, Fornerod M, Frolova EI. Venezuelan equine encephalitis virus capsid protein forms a tetrameric complex with CRM1 and importin α/β that obstructs nuclear pore complex function. J Virol. 2010;84(9):4158–71.PubMedPubMedCentralCrossRef
12.
go back to reference Simmons JD, White LJ, Morrison TE, Montgomery SA, Whitmore AC, Johnston RE, et al. Venezuelan equine encephalitis virus disrupts STAT1 signaling by distinct mechanisms independent of host shutoff. J Virol. 2009;83(20):10571–81.PubMedPubMedCentralCrossRef Simmons JD, White LJ, Morrison TE, Montgomery SA, Whitmore AC, Johnston RE, et al. Venezuelan equine encephalitis virus disrupts STAT1 signaling by distinct mechanisms independent of host shutoff. J Virol. 2009;83(20):10571–81.PubMedPubMedCentralCrossRef
13.
go back to reference Lukaszewski RA, Brooks TJ. Pegylated alpha interferon is an effective treatment for virulent Venezuelan equine encephalitis virus and has profound effects on the host immune response to infection. J Virol. 2000;74(11):5006–15.PubMedPubMedCentralCrossRef Lukaszewski RA, Brooks TJ. Pegylated alpha interferon is an effective treatment for virulent Venezuelan equine encephalitis virus and has profound effects on the host immune response to infection. J Virol. 2000;74(11):5006–15.PubMedPubMedCentralCrossRef
14.
go back to reference Ross TM, Martinez PM, Renner JC, Thorne RG, Hanson LR, Frey WH. Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol. 2004;151(1–2):66–77.PubMedCrossRef Ross TM, Martinez PM, Renner JC, Thorne RG, Hanson LR, Frey WH. Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol. 2004;151(1–2):66–77.PubMedCrossRef
15.
go back to reference Thorne RG, Hanson LR, Ross TM, Tung D, Frey WH. Delivery of interferon-beta to the monkey nervous system following intranasal administration. Neuroscience. 2008;152(3):785–97.PubMedCrossRef Thorne RG, Hanson LR, Ross TM, Tung D, Frey WH. Delivery of interferon-beta to the monkey nervous system following intranasal administration. Neuroscience. 2008;152(3):785–97.PubMedCrossRef
16.
go back to reference Farr BM, Gwaltney JM, Adams KF, Hayden FG. Intranasal interferon-alpha 2 for prevention of natural rhinovirus colds. Antimicrob Agents Chemother. 1984;26(1):31–4.PubMedPubMedCentralCrossRef Farr BM, Gwaltney JM, Adams KF, Hayden FG. Intranasal interferon-alpha 2 for prevention of natural rhinovirus colds. Antimicrob Agents Chemother. 1984;26(1):31–4.PubMedPubMedCentralCrossRef
17.
go back to reference Sun C, Gardner CL, Watson AM, Ryman KD, Klimstra WB. Stable, high-level expression of reporter proteins from improved alphavirus expression vectors to track replication and dissemination during encephalitic and arthritogenic disease. J Virol. 2014;88(4):2035–46.PubMedPubMedCentralCrossRef Sun C, Gardner CL, Watson AM, Ryman KD, Klimstra WB. Stable, high-level expression of reporter proteins from improved alphavirus expression vectors to track replication and dissemination during encephalitic and arthritogenic disease. J Virol. 2014;88(4):2035–46.PubMedPubMedCentralCrossRef
18.
go back to reference Brien JD, Lazear HM, Diamond MS. Propagation, Quantification, Detection, and Storage of West Nile Virus. Curr Protocols Microbiol. 2013;31(1):15D.3.1-15D.3.18.CrossRef Brien JD, Lazear HM, Diamond MS. Propagation, Quantification, Detection, and Storage of West Nile Virus. Curr Protocols Microbiol. 2013;31(1):15D.3.1-15D.3.18.CrossRef
20.
go back to reference Steele KE, Twenhafel NA. REVIEW PAPER: pathology of animal models of alphavirus encephalitis. Vet Pathol. 2010;47(5):790–805.PubMedCrossRef Steele KE, Twenhafel NA. REVIEW PAPER: pathology of animal models of alphavirus encephalitis. Vet Pathol. 2010;47(5):790–805.PubMedCrossRef
21.
go back to reference Yang D, Li XJ, Tu DZ, Li XL, Wei B. Advances in viral encephalitis: viral transmission, host immunity, and experimental animal models. Zool Res. 2023;44(3):525–42.PubMedPubMedCentralCrossRef Yang D, Li XJ, Tu DZ, Li XL, Wei B. Advances in viral encephalitis: viral transmission, host immunity, and experimental animal models. Zool Res. 2023;44(3):525–42.PubMedPubMedCentralCrossRef
22.
go back to reference Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016-1035.e19.PubMedPubMedCentralCrossRef Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016-1035.e19.PubMedPubMedCentralCrossRef
25.
go back to reference Boccaccio A, Menini A, Pifferi S. The cyclic AMP signaling pathway in the rodent main olfactory system. Cell Tissue Res. 2021;383(1):429–43.PubMedCrossRef Boccaccio A, Menini A, Pifferi S. The cyclic AMP signaling pathway in the rodent main olfactory system. Cell Tissue Res. 2021;383(1):429–43.PubMedCrossRef
26.
go back to reference Bhalla N, Gardner CL, Downs SN, Dunn M, Sun C, Klimstra WB. Macromolecular synthesis shutoff resistance by myeloid cells is critical to IRF7-dependent systemic interferon alpha/beta induction after alphavirus infection. J Virol. 2019;93(24):e00872-e919.PubMedPubMedCentralCrossRef Bhalla N, Gardner CL, Downs SN, Dunn M, Sun C, Klimstra WB. Macromolecular synthesis shutoff resistance by myeloid cells is critical to IRF7-dependent systemic interferon alpha/beta induction after alphavirus infection. J Virol. 2019;93(24):e00872-e919.PubMedPubMedCentralCrossRef
27.
go back to reference Hyde JL, Gardner CL, Kimura T, White JP, Liu G, Trobaugh DW, et al. A viral RNA structural element alters host recognition of nonself RNA. Science. 2014;343(6172):783–7.PubMedPubMedCentralCrossRef Hyde JL, Gardner CL, Kimura T, White JP, Liu G, Trobaugh DW, et al. A viral RNA structural element alters host recognition of nonself RNA. Science. 2014;343(6172):783–7.PubMedPubMedCentralCrossRef
28.
go back to reference Weiss CM, Trobaugh DW, Sun C, Lucas TM, Diamond MS, Ryman KD, et al. The interferon-induced exonuclease ISG20 exerts antiviral activity through upregulation of type I interferon response proteins. mSphere. 2018;3(5):e00209-e218.PubMedPubMedCentralCrossRef Weiss CM, Trobaugh DW, Sun C, Lucas TM, Diamond MS, Ryman KD, et al. The interferon-induced exonuclease ISG20 exerts antiviral activity through upregulation of type I interferon response proteins. mSphere. 2018;3(5):e00209-e218.PubMedPubMedCentralCrossRef
29.
go back to reference Poddar S, Hyde JL, Gorman MJ, Farzan M, Diamond MS. The interferon-stimulated gene IFITM3 restricts infection and pathogenesis of arthritogenic and encephalitic alphaviruses. J Virol. 2016;90(19):8780–94.PubMedPubMedCentralCrossRef Poddar S, Hyde JL, Gorman MJ, Farzan M, Diamond MS. The interferon-stimulated gene IFITM3 restricts infection and pathogenesis of arthritogenic and encephalitic alphaviruses. J Virol. 2016;90(19):8780–94.PubMedPubMedCentralCrossRef
30.
go back to reference Atasheva S, Frolova EI, Frolov I. Interferon-stimulated Poly(ADP-Ribose) polymerases are potent inhibitors of cellular translation and virus replication. J Virol. 2014;88(4):2116–30.PubMedPubMedCentralCrossRef Atasheva S, Frolova EI, Frolov I. Interferon-stimulated Poly(ADP-Ribose) polymerases are potent inhibitors of cellular translation and virus replication. J Virol. 2014;88(4):2116–30.PubMedPubMedCentralCrossRef
31.
go back to reference Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, et al. A diverse array of gene products are effectors of the type I interferon antiviral response. Nature. 2011;472(7344):481–5.PubMedPubMedCentralCrossRef Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, et al. A diverse array of gene products are effectors of the type I interferon antiviral response. Nature. 2011;472(7344):481–5.PubMedPubMedCentralCrossRef
32.
go back to reference Charles PC, Walters E, Margolis F, Johnston RE. Mechanism of neuroinvasion of Venezuelan equine encephalitis virus in the mouse. Virology. 1995;208(2):662–71.PubMedCrossRef Charles PC, Walters E, Margolis F, Johnston RE. Mechanism of neuroinvasion of Venezuelan equine encephalitis virus in the mouse. Virology. 1995;208(2):662–71.PubMedCrossRef
33.
go back to reference Steele KE, Davis KJ, Stephan K, Kell W, Vogel P, Hart MK. Comparative neurovirulence and tissue tropism of wild-type and attenuated strains of Venezuelan equine encephalitis virus administered by aerosol in C3H/HeN and BALB/c mice. Vet Pathol. 1998;35(5):386–97.PubMedCrossRef Steele KE, Davis KJ, Stephan K, Kell W, Vogel P, Hart MK. Comparative neurovirulence and tissue tropism of wild-type and attenuated strains of Venezuelan equine encephalitis virus administered by aerosol in C3H/HeN and BALB/c mice. Vet Pathol. 1998;35(5):386–97.PubMedCrossRef
34.
go back to reference Cheetham CEJ, Park U, Belluscio L. Rapid and continuous activity-dependent plasticity of olfactory sensory input. Nat Commun. 2016;22(7):10729.CrossRef Cheetham CEJ, Park U, Belluscio L. Rapid and continuous activity-dependent plasticity of olfactory sensory input. Nat Commun. 2016;22(7):10729.CrossRef
35.
go back to reference Liberia T, Martin-Lopez E, Meller SJ, Greer CA. Sequential maturation of olfactory sensory neurons in the mature olfactory epithelium. eNeuro. 2019;6(5):ENEURO.0266-19.2019.PubMedPubMedCentralCrossRef Liberia T, Martin-Lopez E, Meller SJ, Greer CA. Sequential maturation of olfactory sensory neurons in the mature olfactory epithelium. eNeuro. 2019;6(5):ENEURO.0266-19.2019.PubMedPubMedCentralCrossRef
36.
go back to reference Huang JS, Kunkhyen T, Rangel AN, Brechbill TR, Gregory JD, Winson-Bushby ED, et al. Immature olfactory sensory neurons provide behaviourally relevant sensory input to the olfactory bulb. Nat Commun. 2022;13(1):6194.PubMedPubMedCentralCrossRef Huang JS, Kunkhyen T, Rangel AN, Brechbill TR, Gregory JD, Winson-Bushby ED, et al. Immature olfactory sensory neurons provide behaviourally relevant sensory input to the olfactory bulb. Nat Commun. 2022;13(1):6194.PubMedPubMedCentralCrossRef
37.
go back to reference John SP, Sun J, Carlson RJ, Cao B, Bradfield CJ, Song J, et al. IFIT1 exerts opposing regulatory effects on the inflammatory and interferon gene programs in LPS-activated human macrophages. Cell Rep. 2018;25(1):95-106.e6.PubMedPubMedCentralCrossRef John SP, Sun J, Carlson RJ, Cao B, Bradfield CJ, Song J, et al. IFIT1 exerts opposing regulatory effects on the inflammatory and interferon gene programs in LPS-activated human macrophages. Cell Rep. 2018;25(1):95-106.e6.PubMedPubMedCentralCrossRef
38.
go back to reference Schultz KLW, Vernon PS, Griffin DE. Differentiation of neurons restricts Arbovirus replication and increases expression of the alpha isoform of IRF-7. J Virol. 2015;89(1):48–60.PubMedCrossRef Schultz KLW, Vernon PS, Griffin DE. Differentiation of neurons restricts Arbovirus replication and increases expression of the alpha isoform of IRF-7. J Virol. 2015;89(1):48–60.PubMedCrossRef
39.
go back to reference Ranganathan S, Noyes NC, Migliorini M, Winkles JA, Battey FD, Hyman BT, et al. LRAD3, a novel low-density lipoprotein receptor family member that modulates amyloid precursor protein trafficking. J Neurosci. 2011;31(30):10836–46.PubMedPubMedCentralCrossRef Ranganathan S, Noyes NC, Migliorini M, Winkles JA, Battey FD, Hyman BT, et al. LRAD3, a novel low-density lipoprotein receptor family member that modulates amyloid precursor protein trafficking. J Neurosci. 2011;31(30):10836–46.PubMedPubMedCentralCrossRef
40.
go back to reference Noyes NC, Hampton B, Migliorini M, Strickland DK. Regulation of itch and Nedd4 E3 ligase activity and degradation by LRAD3. Biochemistry. 2016;55(8):1204–13.PubMedCrossRef Noyes NC, Hampton B, Migliorini M, Strickland DK. Regulation of itch and Nedd4 E3 ligase activity and degradation by LRAD3. Biochemistry. 2016;55(8):1204–13.PubMedCrossRef
41.
go back to reference Wang S, Bolós M, Clark R, Cullen CL, Southam KA, Foa L, et al. Amyloid β precursor protein regulates neuron survival and maturation in the adult mouse brain. Mol Cell Neurosci. 2016;77:21–33.PubMedCrossRef Wang S, Bolós M, Clark R, Cullen CL, Southam KA, Foa L, et al. Amyloid β precursor protein regulates neuron survival and maturation in the adult mouse brain. Mol Cell Neurosci. 2016;77:21–33.PubMedCrossRef
42.
go back to reference Haouari S, Vourc’h P, Jeanne M, Marouillat S, Veyrat-Durebex C, Lanznaster D, et al. The roles of NEDD4 subfamily of HECT E3 ubiquitin ligases in neurodevelopment and neurodegeneration. Int J Mol Sci. 2022;23(7):3882.PubMedPubMedCentralCrossRef Haouari S, Vourc’h P, Jeanne M, Marouillat S, Veyrat-Durebex C, Lanznaster D, et al. The roles of NEDD4 subfamily of HECT E3 ubiquitin ligases in neurodevelopment and neurodegeneration. Int J Mol Sci. 2022;23(7):3882.PubMedPubMedCentralCrossRef
43.
go back to reference Padayachee Y, Flicker S, Linton S, Cafferkey J, Kon OM, Johnston SL, et al. Review: the nose as a route for therapy. Part 2 immunotherapy. Front Allergy. 2021;2:668781.PubMedPubMedCentralCrossRef Padayachee Y, Flicker S, Linton S, Cafferkey J, Kon OM, Johnston SL, et al. Review: the nose as a route for therapy. Part 2 immunotherapy. Front Allergy. 2021;2:668781.PubMedPubMedCentralCrossRef
44.
go back to reference Wu JQH, Barabé ND, Huang YM, Rayner GA, Christopher ME, Schmaltz FL. Pre- and post-exposure protection against Western equine encephalitis virus after single inoculation with adenovirus vector expressing interferon alpha. Virology. 2007;369(1):206–13.PubMedCrossRef Wu JQH, Barabé ND, Huang YM, Rayner GA, Christopher ME, Schmaltz FL. Pre- and post-exposure protection against Western equine encephalitis virus after single inoculation with adenovirus vector expressing interferon alpha. Virology. 2007;369(1):206–13.PubMedCrossRef
45.
go back to reference Julander JG, Siddharthan V, Blatt LM, Schafer K, Sidwell RW, Morrey JD. Effect of exogenous interferon and an interferon inducer on western equine encephalitis virus disease in a hamster model. Virology. 2007;360(2):454–60.PubMedCrossRef Julander JG, Siddharthan V, Blatt LM, Schafer K, Sidwell RW, Morrey JD. Effect of exogenous interferon and an interferon inducer on western equine encephalitis virus disease in a hamster model. Virology. 2007;360(2):454–60.PubMedCrossRef
46.
go back to reference O’Brien L, Perkins S, Williams A, Eastaugh L, Phelps A, Wu J, et al. Alpha interferon as an adenovirus-vectored vaccine adjuvant and antiviral in Venezuelan equine encephalitis virus infection. J Gen Virol. 2009;90(4):874–82.PubMedCrossRef O’Brien L, Perkins S, Williams A, Eastaugh L, Phelps A, Wu J, et al. Alpha interferon as an adenovirus-vectored vaccine adjuvant and antiviral in Venezuelan equine encephalitis virus infection. J Gen Virol. 2009;90(4):874–82.PubMedCrossRef
47.
go back to reference Jahrling PB, Geisbert TW, Geisbert JB, Swearengen JR, Bray M, Jaax NK, et al. Evaluation of immune globulin and recombinant interferon-α2b for treatment of experimental ebola virus infections. J Infect Dis. 1999;179:S224–34.PubMedCrossRef Jahrling PB, Geisbert TW, Geisbert JB, Swearengen JR, Bray M, Jaax NK, et al. Evaluation of immune globulin and recombinant interferon-α2b for treatment of experimental ebola virus infections. J Infect Dis. 1999;179:S224–34.PubMedCrossRef
48.
go back to reference Smith LM, Hensley LE, Geisbert TW, Johnson J, Stossel A, Honko A, et al. Interferon-β therapy prolongs survival in rhesus macaque models of ebola and marburg hemorrhagic fever. J Infect Dis. 2013;208(2):310–8.PubMedCrossRef Smith LM, Hensley LE, Geisbert TW, Johnson J, Stossel A, Honko A, et al. Interferon-β therapy prolongs survival in rhesus macaque models of ebola and marburg hemorrhagic fever. J Infect Dis. 2013;208(2):310–8.PubMedCrossRef
49.
go back to reference Senthilkumaran C, Kroeker AL, Smith G, Embury-Hyatt C, Collignon B, Ramirez-Medina E, et al. Treatment with Ad5-porcine interferon-α attenuates ebolavirus disease in pigs. Pathogens. 2022;11(4):449.PubMedPubMedCentralCrossRef Senthilkumaran C, Kroeker AL, Smith G, Embury-Hyatt C, Collignon B, Ramirez-Medina E, et al. Treatment with Ad5-porcine interferon-α attenuates ebolavirus disease in pigs. Pathogens. 2022;11(4):449.PubMedPubMedCentralCrossRef
50.
go back to reference Gowen BB, Barnard DL, Smee DF, Wong MH, Pace AM, Jung KH, et al. Interferon alfacon-1 protects hamsters from lethal pichinde virus infection. Antimicrob Agents Chemother. 2005;49(6):2378–86.PubMedPubMedCentralCrossRef Gowen BB, Barnard DL, Smee DF, Wong MH, Pace AM, Jung KH, et al. Interferon alfacon-1 protects hamsters from lethal pichinde virus infection. Antimicrob Agents Chemother. 2005;49(6):2378–86.PubMedPubMedCentralCrossRef
51.
go back to reference Gowen B, Ennis J, Bailey K, Vest Z, Scharton D, Sefing E, et al. Single-dose intranasal treatment with DEF201 (adenovirus vectored consensus interferon) prevents lethal disease due to rift valley fever virus challenge. Viruses. 2014;1(6):1410–23.CrossRef Gowen B, Ennis J, Bailey K, Vest Z, Scharton D, Sefing E, et al. Single-dose intranasal treatment with DEF201 (adenovirus vectored consensus interferon) prevents lethal disease due to rift valley fever virus challenge. Viruses. 2014;1(6):1410–23.CrossRef
52.
go back to reference Kumaki Y, Ennis J, Rahbar R, Turner JD, Wandersee MK, Smith AJ, et al. Single-dose intranasal administration with mDEF201 (adenovirus vectored mouse interferon-alpha) confers protection from mortality in a lethal SARS-CoV BALB/c mouse model. Antiviral Res. 2011;89(1):75–82.PubMedCrossRef Kumaki Y, Ennis J, Rahbar R, Turner JD, Wandersee MK, Smith AJ, et al. Single-dose intranasal administration with mDEF201 (adenovirus vectored mouse interferon-alpha) confers protection from mortality in a lethal SARS-CoV BALB/c mouse model. Antiviral Res. 2011;89(1):75–82.PubMedCrossRef
53.
go back to reference Smee D, Wong MH, Hurst B, Ennis J, Turner J. Effects of nasal or pulmonary delivered treatments with an adenovirus vectored interferon (mDEF201) on respiratory and systemic infections in mice caused by cowpox and vaccinia viruses. PLoS ONE. 2013;9(8): e68685.CrossRef Smee D, Wong MH, Hurst B, Ennis J, Turner J. Effects of nasal or pulmonary delivered treatments with an adenovirus vectored interferon (mDEF201) on respiratory and systemic infections in mice caused by cowpox and vaccinia viruses. PLoS ONE. 2013;9(8): e68685.CrossRef
54.
go back to reference Kehn-Hall K, Bradfute SB. Understanding host responses to equine encephalitis virus infection: implications for therapeutic development. Expert Rev Anti Infect Ther. 2022;20(12):1551–66.PubMedCrossRef Kehn-Hall K, Bradfute SB. Understanding host responses to equine encephalitis virus infection: implications for therapeutic development. Expert Rev Anti Infect Ther. 2022;20(12):1551–66.PubMedCrossRef
55.
go back to reference Sleijfer S, Bannink M, Van Gool AR, Kruit WHJ, Stoter G. Side effects of interferon-alpha therapy. Pharm World Sci. 2005;27(6):423–31.PubMedCrossRef Sleijfer S, Bannink M, Van Gool AR, Kruit WHJ, Stoter G. Side effects of interferon-alpha therapy. Pharm World Sci. 2005;27(6):423–31.PubMedCrossRef
56.
go back to reference Reyes-Vázquez C, Prieto-Gómez B, Dafny N. Alpha-interferon suppresses food intake and neuronal activity of the lateral hypothalamus. Neuropharmacology. 1994;33(12):1545–52.PubMedCrossRef Reyes-Vázquez C, Prieto-Gómez B, Dafny N. Alpha-interferon suppresses food intake and neuronal activity of the lateral hypothalamus. Neuropharmacology. 1994;33(12):1545–52.PubMedCrossRef
57.
go back to reference Blank T, Detje CN, Spieß A, Hagemeyer N, Brendecke SM, Wolfart J, et al. Brain endothelial- and epithelial-specific interferon receptor chain 1 drives virus-induced sickness behavior and cognitive impairment. Immunity. 2016;44(4):901–12.PubMedCrossRef Blank T, Detje CN, Spieß A, Hagemeyer N, Brendecke SM, Wolfart J, et al. Brain endothelial- and epithelial-specific interferon receptor chain 1 drives virus-induced sickness behavior and cognitive impairment. Immunity. 2016;44(4):901–12.PubMedCrossRef
58.
go back to reference Stutte S, Ruf J, Kugler I, Ishikawa-Ankerhold H, Parzefall A, Marconi P, et al. Type I interferon mediated induction of somatostatin leads to suppression of ghrelin and appetite thereby promoting viral immunity in mice. Brain Behav Immun. 2021;1(95):429–43.CrossRef Stutte S, Ruf J, Kugler I, Ishikawa-Ankerhold H, Parzefall A, Marconi P, et al. Type I interferon mediated induction of somatostatin leads to suppression of ghrelin and appetite thereby promoting viral immunity in mice. Brain Behav Immun. 2021;1(95):429–43.CrossRef
59.
go back to reference Hauptstein N, Meinel L, Lühmann T. Bioconjugation strategies and clinical implications of Interferon-bioconjugates. Eur J Pharm Biopharm. 2022;172:157–67.PubMedCrossRef Hauptstein N, Meinel L, Lühmann T. Bioconjugation strategies and clinical implications of Interferon-bioconjugates. Eur J Pharm Biopharm. 2022;172:157–67.PubMedCrossRef
60.
go back to reference Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Gupta U, et al. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J Control Release. 2020;10(327):235–65.CrossRef Agrawal M, Saraf S, Saraf S, Dubey SK, Puri A, Gupta U, et al. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J Control Release. 2020;10(327):235–65.CrossRef
Metadata
Title
Post-exposure intranasal IFNα suppresses replication and neuroinvasion of Venezuelan Equine Encephalitis virus within olfactory sensory neurons
Authors
Matthew D. Cain
N. Rubin Klein
Xiaoping Jiang
Hamid Salimi
Qingping Wu
Mark J. Miller
William B. Klimstra
Robyn S. Klein
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-023-02960-1

Other articles of this Issue 1/2024

Journal of Neuroinflammation 1/2024 Go to the issue