Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2016

Open Access 01-12-2016 | Review

Regulation of mTORC1 by growth factors, energy status, amino acids and mechanical stimuli at a glance

Author: Peter Bond

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2016

Login to get access

Abstract

The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) plays a pivotal role in the regulation of skeletal muscle protein synthesis. Activation of the complex leads to phosphorylation of two important sets of substrates, namely eIF4E binding proteins and ribosomal S6 kinases. Phosphorylation of these substrates then leads to an increase in protein synthesis, mainly by enhancing translation initiation. mTORC1 activity is regulated by several inputs, such as growth factors, energy status, amino acids and mechanical stimuli. Research in this field is rapidly evolving and unraveling how these inputs regulate the complex. Therefore this review attempts to provide a brief and up-to-date narrative on the regulation of this marvelous protein complex. Additionally, some sports supplements which have been shown to regulate mTORC1 activity are discussed.
Literature
1.
go back to reference Adegoke OA, Abdullahi A, Tavajohi-Fini P. mtorc1 and the regulation of skeletal muscle anabolism and mass. Appl Physiol Nutr Metab. 2012; 37(3):395–406.CrossRefPubMed Adegoke OA, Abdullahi A, Tavajohi-Fini P. mtorc1 and the regulation of skeletal muscle anabolism and mass. Appl Physiol Nutr Metab. 2012; 37(3):395–406.CrossRefPubMed
2.
4.
5.
go back to reference Ma XM, Blenis J. Molecular mechanisms of mtor-mediated translational control. Nature Rev Mol Cell Biol. 2009; 10(5):307–318.CrossRef Ma XM, Blenis J. Molecular mechanisms of mtor-mediated translational control. Nature Rev Mol Cell Biol. 2009; 10(5):307–318.CrossRef
6.
go back to reference Brian M, Bilgen E, Diane CF. Regulation and function of ribosomal protein s6 kinase (s6k) within mtor signalling networks. Biochem J. 2012; 441(1):1–21.CrossRef Brian M, Bilgen E, Diane CF. Regulation and function of ribosomal protein s6 kinase (s6k) within mtor signalling networks. Biochem J. 2012; 441(1):1–21.CrossRef
7.
go back to reference Myers MG, Backer JM, Sun XJ, Shoelson S, Hu P, Schlessinger J, Yoakim M, Schaffhausen B, White MF. Irs-1 activates phosphatidylinositol 3’-kinase by associating with src homology 2 domains of p85. Proc Natl Acad Sci. 1992; 89(21):10350–10354.CrossRefPubMedPubMedCentral Myers MG, Backer JM, Sun XJ, Shoelson S, Hu P, Schlessinger J, Yoakim M, Schaffhausen B, White MF. Irs-1 activates phosphatidylinositol 3’-kinase by associating with src homology 2 domains of p85. Proc Natl Acad Sci. 1992; 89(21):10350–10354.CrossRefPubMedPubMedCentral
8.
go back to reference Bodine SC. mtor signaling and the molecular adaptation to resistance exercise. Med Sci Sports Exerc. 2006; 38(11):1950–1957.CrossRefPubMed Bodine SC. mtor signaling and the molecular adaptation to resistance exercise. Med Sci Sports Exerc. 2006; 38(11):1950–1957.CrossRefPubMed
9.
go back to reference Wu M, Falasca M, Blough ER. Akt/protein kinase b in skeletal muscle physiology and pathology. J Cell Physiol. 2011; 226(1):29–36.CrossRefPubMed Wu M, Falasca M, Blough ER. Akt/protein kinase b in skeletal muscle physiology and pathology. J Cell Physiol. 2011; 226(1):29–36.CrossRefPubMed
10.
go back to reference Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase b α. Current Biol. 1997; 7(4):261–269.CrossRef Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase b α. Current Biol. 1997; 7(4):261–269.CrossRef
11.
go back to reference Feng J, Park J, Cron P, Hess D, Hemmings BA. Identification of a pkb/akt hydrophobic motif ser-473 kinase as dna-dependent protein kinase. J Biol Chem. 2004; 279(39):41189–1196.CrossRefPubMed Feng J, Park J, Cron P, Hess D, Hemmings BA. Identification of a pkb/akt hydrophobic motif ser-473 kinase as dna-dependent protein kinase. J Biol Chem. 2004; 279(39):41189–1196.CrossRefPubMed
12.
go back to reference Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of akt/pkb by the rictor-mtor complex. Science. 2005; 307(5712):1098–1101.CrossRefPubMed Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of akt/pkb by the rictor-mtor complex. Science. 2005; 307(5712):1098–1101.CrossRefPubMed
13.
go back to reference Rodriguez J, Vernus B, Chelh I, Cassar-Malek I, Gabillard J, Sassi AH, Seiliez I, Picard B, Bonnieu A. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cell Mol Life Sci. 2014; 71(22):4361–371.CrossRefPubMed Rodriguez J, Vernus B, Chelh I, Cassar-Malek I, Gabillard J, Sassi AH, Seiliez I, Picard B, Bonnieu A. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cell Mol Life Sci. 2014; 71(22):4361–371.CrossRefPubMed
14.
go back to reference Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces akt/torc1/p70s6k signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol. 2009; 296(6):1258–1270.CrossRef Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces akt/torc1/p70s6k signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol. 2009; 296(6):1258–1270.CrossRef
18.
go back to reference Amthor H, Macharia R, Navarrete R, Schuelke M, Brown SC, Otto A, Voit T, Muntoni F, Vrbóva G, Partridge T, et al. Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci. 2007; 104(6):1835–1840.CrossRefPubMedPubMedCentral Amthor H, Macharia R, Navarrete R, Schuelke M, Brown SC, Otto A, Voit T, Muntoni F, Vrbóva G, Partridge T, et al. Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci. 2007; 104(6):1835–1840.CrossRefPubMedPubMedCentral
19.
go back to reference Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S, Hill JJ, Jalenak M, Kelley P, Knight A, et al.Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun. 2003; 300(4):965–971.CrossRefPubMed Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S, Hill JJ, Jalenak M, Kelley P, Knight A, et al.Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun. 2003; 300(4):965–971.CrossRefPubMed
20.
go back to reference Grobet L, Pirottin D, Farnir F, Poncelet D, Royo LJ, Brouwers B, Christians E, Desmecht D, Coignoul F, Kahn R, et al.Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene. Genesis. 2003; 35(4):227–238.CrossRefPubMed Grobet L, Pirottin D, Farnir F, Poncelet D, Royo LJ, Brouwers B, Christians E, Desmecht D, Coignoul F, Kahn R, et al.Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene. Genesis. 2003; 35(4):227–238.CrossRefPubMed
21.
go back to reference Hitachi K, Nakatani M, Tsuchida K. Myostatin signaling regulates akt activity via the regulation of mir-486 expression. Int J Biochem Cell Biol. 2014; 47:93–103.CrossRefPubMed Hitachi K, Nakatani M, Tsuchida K. Myostatin signaling regulates akt activity via the regulation of mir-486 expression. Int J Biochem Cell Biol. 2014; 47:93–103.CrossRefPubMed
22.
go back to reference Maehama T, Dixon JE. The tumor suppressor, pten/mmac1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. J Biol Chem. 1998; 273(22):13375–13378.CrossRefPubMed Maehama T, Dixon JE. The tumor suppressor, pten/mmac1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. J Biol Chem. 1998; 273(22):13375–13378.CrossRefPubMed
23.
go back to reference Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase b. Nature. 1995; 378(6559):785–789.CrossRefPubMed Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase b. Nature. 1995; 378(6559):785–789.CrossRefPubMed
24.
go back to reference Kovacina KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, Birnbaum MJ, Roth RA. Identification of a proline-rich akt substrate as a 14-3-3 binding partner. J Biol Chem. 2003; 278(12):10189–10194.CrossRefPubMed Kovacina KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, Birnbaum MJ, Roth RA. Identification of a proline-rich akt substrate as a 14-3-3 binding partner. J Biol Chem. 2003; 278(12):10189–10194.CrossRefPubMed
25.
go back to reference Inoki K, Li Y, Zhu T, Wu J, Guan KL. Tsc2 is phosphorylated and inhibited by akt and suppresses mtor signalling. Nature Cell Biol. 2002; 4(9):648–657.CrossRefPubMed Inoki K, Li Y, Zhu T, Wu J, Guan KL. Tsc2 is phosphorylated and inhibited by akt and suppresses mtor signalling. Nature Cell Biol. 2002; 4(9):648–657.CrossRefPubMed
26.
go back to reference Tran H, Brunet A, Griffith EC, Greenberg ME. The many forks in foxo’s road. Sci Signal. 2003; 2003(172):5.CrossRef Tran H, Brunet A, Griffith EC, Greenberg ME. The many forks in foxo’s road. Sci Signal. 2003; 2003(172):5.CrossRef
27.
go back to reference Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, Finan PM, Kwiatkowski DJ, Murphy LO, Manning BD. Tbc1d7 is a third subunit of the tsc1-tsc2 complex upstream of mtorc1. Mol Cell. 2012; 47(4):535–546.CrossRefPubMedPubMedCentral Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, Finan PM, Kwiatkowski DJ, Murphy LO, Manning BD. Tbc1d7 is a third subunit of the tsc1-tsc2 complex upstream of mtorc1. Mol Cell. 2012; 47(4):535–546.CrossRefPubMedPubMedCentral
28.
go back to reference Li Y, Corradetti MN, Inoki K, Guan KL. Tsc2: filling the gap in the mtor signaling pathway. Trends Biochem Sci. 2004; 29(1):32–8.CrossRefPubMed Li Y, Corradetti MN, Inoki K, Guan KL. Tsc2: filling the gap in the mtor signaling pathway. Trends Biochem Sci. 2004; 29(1):32–8.CrossRefPubMed
29.
go back to reference Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. Rheb binds and regulates the mtor kinase. Current Biol. 2005; 15(8):702–713.CrossRef Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. Rheb binds and regulates the mtor kinase. Current Biol. 2005; 15(8):702–713.CrossRef
30.
go back to reference Menon S, Dibble CC, Talbott G, Hoxhaj G, Valvezan AJ, Takahashi H, Cantley LC, Manning BD. Spatial control of the tsc complex integrates insulin and nutrient regulation of mtorc1 at the lysosome. Cell. 2014; 156(4):771–785.CrossRefPubMedPubMedCentral Menon S, Dibble CC, Talbott G, Hoxhaj G, Valvezan AJ, Takahashi H, Cantley LC, Manning BD. Spatial control of the tsc complex integrates insulin and nutrient regulation of mtorc1 at the lysosome. Cell. 2014; 156(4):771–785.CrossRefPubMedPubMedCentral
31.
go back to reference Wiza C, Nascimento EB, Ouwens DM. Role of pras40 in akt and mtor signaling in health and disease. Am J Physiol Endocrinol Metab. 2012; 302(12):1453–1460.CrossRef Wiza C, Nascimento EB, Ouwens DM. Role of pras40 in akt and mtor signaling in health and disease. Am J Physiol Endocrinol Metab. 2012; 302(12):1453–1460.CrossRef
32.
go back to reference Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the wnt signaling pathway, forms a complex with gsk-3 β and β-catenin and promotes gsk-3 β-dependent phosphorylation of β-catenin. EMBO J. 1998; 17(5):1371–1384.CrossRefPubMedPubMedCentral Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the wnt signaling pathway, forms a complex with gsk-3 β and β-catenin and promotes gsk-3 β-dependent phosphorylation of β-catenin. EMBO J. 1998; 17(5):1371–1384.CrossRefPubMedPubMedCentral
33.
go back to reference Armstrong DD, Esser KA. Wnt/ β-catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy. Am J Physiol Cell Physiol. 2005; 289(4):853–859.CrossRef Armstrong DD, Esser KA. Wnt/ β-catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy. Am J Physiol Cell Physiol. 2005; 289(4):853–859.CrossRef
34.
go back to reference Vyas DR, Spangenburg EE, Abraha TW, Childs TE, Booth FW. Gsk-3 β negatively regulates skeletal myotube hypertrophy. Am J Physiol Cell Physiol. 2002; 283(2):545–551.CrossRef Vyas DR, Spangenburg EE, Abraha TW, Childs TE, Booth FW. Gsk-3 β negatively regulates skeletal myotube hypertrophy. Am J Physiol Cell Physiol. 2002; 283(2):545–551.CrossRef
36.
go back to reference Gebauer F, Hentze MW. Molecular mechanisms of translational control. Nature Rev Mol Cell Biol. 2004; 5(10):827–835.CrossRef Gebauer F, Hentze MW. Molecular mechanisms of translational control. Nature Rev Mol Cell Biol. 2004; 5(10):827–835.CrossRef
37.
go back to reference Sanchez AM, Candau RB, Bernardi H. Foxo transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci. 2014; 71(9):1657–1671.CrossRefPubMed Sanchez AM, Candau RB, Bernardi H. Foxo transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci. 2014; 71(9):1657–1671.CrossRefPubMed
38.
go back to reference Bodine SC, Latres E, Baumhueter S, Lai VK-M, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, et al.Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001; 294(5547):1704–1708.CrossRefPubMed Bodine SC, Latres E, Baumhueter S, Lai VK-M, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, et al.Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001; 294(5547):1704–1708.CrossRefPubMed
39.
go back to reference Bodine SC, Baehr LM. Skeletal muscle atrophy and the e3 ubiquitin ligases murf1 and mafbx/atrogin-1. Am J Physiol Endocrinol Metab. 2014; 307(6):469–484.CrossRef Bodine SC, Baehr LM. Skeletal muscle atrophy and the e3 ubiquitin ligases murf1 and mafbx/atrogin-1. Am J Physiol Endocrinol Metab. 2014; 307(6):469–484.CrossRef
40.
go back to reference Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, foxo and regulation of apoptosis. Biochim et Biophys Acta (BBA)-Mol Cell Res. 2011; 1813(11):1978–1986.CrossRef Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, foxo and regulation of apoptosis. Biochim et Biophys Acta (BBA)-Mol Cell Res. 2011; 1813(11):1978–1986.CrossRef
41.
go back to reference White JP, Baltgalvis KA, Sato S, Wilson LB, Carson JA. Effect of nandrolone decanoate administration on recovery from bupivacaine-induced muscle injury. J Appl Physiol. 2009; 107(5):1420–1430.CrossRefPubMedPubMedCentral White JP, Baltgalvis KA, Sato S, Wilson LB, Carson JA. Effect of nandrolone decanoate administration on recovery from bupivacaine-induced muscle injury. J Appl Physiol. 2009; 107(5):1420–1430.CrossRefPubMedPubMedCentral
42.
go back to reference Yin HN, Chai JK, Yu Y-M, Wu C-AS, Yao YM, Liu H, Liang LM, Tompkins RG, Sheng ZY. Regulation of signaling pathways downstream of igf-i/insulin by androgen in skeletal muscle of glucocorticoid-treated rats. J Trauma. 2009; 66(4):1083.CrossRefPubMedPubMedCentral Yin HN, Chai JK, Yu Y-M, Wu C-AS, Yao YM, Liu H, Liang LM, Tompkins RG, Sheng ZY. Regulation of signaling pathways downstream of igf-i/insulin by androgen in skeletal muscle of glucocorticoid-treated rats. J Trauma. 2009; 66(4):1083.CrossRefPubMedPubMedCentral
43.
go back to reference Jones A, Hwang DJ, Narayanan R, Miller DD, Dalton JT. Effects of a novel selective androgen receptor modulator on dexamethasone-induced and hypogonadism-induced muscle atrophy. Endocrinol. 2010; 151(8):3706–3719.CrossRef Jones A, Hwang DJ, Narayanan R, Miller DD, Dalton JT. Effects of a novel selective androgen receptor modulator on dexamethasone-induced and hypogonadism-induced muscle atrophy. Endocrinol. 2010; 151(8):3706–3719.CrossRef
44.
go back to reference Ibebunjo C, Eash JK, Li C, Ma Q, Glass DJ. Voluntary running, skeletal muscle gene expression, and signaling inversely regulated by orchidectomy and testosterone replacement. Am J Physiol Endocrinol Metab. 2011; 300(2):327–340.CrossRef Ibebunjo C, Eash JK, Li C, Ma Q, Glass DJ. Voluntary running, skeletal muscle gene expression, and signaling inversely regulated by orchidectomy and testosterone replacement. Am J Physiol Endocrinol Metab. 2011; 300(2):327–340.CrossRef
45.
go back to reference White JP, Gao S, Puppa MJ, Sato S, Welle SL, Carson JA. Testosterone regulation of akt/mtorc1/foxo3a signaling in skeletal muscle. Mol Cell Endocrinol. 2013; 365(2):174–86.CrossRefPubMedPubMedCentral White JP, Gao S, Puppa MJ, Sato S, Welle SL, Carson JA. Testosterone regulation of akt/mtorc1/foxo3a signaling in skeletal muscle. Mol Cell Endocrinol. 2013; 365(2):174–86.CrossRefPubMedPubMedCentral
46.
go back to reference Basualto-Alarcón C, Jorquera G, Altamirano F, Jaimovich E, Estrada M. Testosterone signals through mtor and androgen receptor to induce muscle hypertrophy. Med Sci Sports Exerc. 2013; 45(9):1712–1720.CrossRefPubMed Basualto-Alarcón C, Jorquera G, Altamirano F, Jaimovich E, Estrada M. Testosterone signals through mtor and androgen receptor to induce muscle hypertrophy. Med Sci Sports Exerc. 2013; 45(9):1712–1720.CrossRefPubMed
47.
go back to reference Hourde C, Jagerschmidt C, Clément-Lacroix P, Vignaud A, Ammann P, Butler-Browne G, Ferry A. Androgen replacement therapy improves function in male rat muscles independently of hypertrophy and activation of the akt/mtor pathway. Acta Physiol. 2009; 195(4):471–482.CrossRef Hourde C, Jagerschmidt C, Clément-Lacroix P, Vignaud A, Ammann P, Butler-Browne G, Ferry A. Androgen replacement therapy improves function in male rat muscles independently of hypertrophy and activation of the akt/mtor pathway. Acta Physiol. 2009; 195(4):471–482.CrossRef
48.
go back to reference Wu Y, Bauman WA, Blitzer RD, Cardozo C. Testosterone-induced hypertrophy of l6 myoblasts is dependent upon erk and mtor. Biochem Biophys Res Commun. 2010; 400(4):679–683.CrossRefPubMed Wu Y, Bauman WA, Blitzer RD, Cardozo C. Testosterone-induced hypertrophy of l6 myoblasts is dependent upon erk and mtor. Biochem Biophys Res Commun. 2010; 400(4):679–683.CrossRefPubMed
49.
go back to reference Haren M, Siddiqui A, Armbrecht H, Kevorkian R, Kim M, Haas M, Mazza A, Kumar VB, Green M, Banks W, et al. Testosterone modulates gene expression pathways regulating nutrient accumulation, glucose metabolism and protein turnover in mouse skeletal muscle. Int J Androl. 2011; 34(1):55–68.CrossRefPubMed Haren M, Siddiqui A, Armbrecht H, Kevorkian R, Kim M, Haas M, Mazza A, Kumar VB, Green M, Banks W, et al. Testosterone modulates gene expression pathways regulating nutrient accumulation, glucose metabolism and protein turnover in mouse skeletal muscle. Int J Androl. 2011; 34(1):55–68.CrossRefPubMed
50.
go back to reference Ma L, Shen C, Chai J, Yin H, Deng H, Feng R. Extracellular signal–regulated kinase–mammalian target of rapamycin signaling and forkhead-box transcription factor 3a phosphorylation are involved in testosterone’s effect on severe burn injury in a rat model. Shock. 2015; 43(1):85–91.CrossRefPubMed Ma L, Shen C, Chai J, Yin H, Deng H, Feng R. Extracellular signal–regulated kinase–mammalian target of rapamycin signaling and forkhead-box transcription factor 3a phosphorylation are involved in testosterone’s effect on severe burn injury in a rat model. Shock. 2015; 43(1):85–91.CrossRefPubMed
53.
go back to reference Baron S, Manin M, Beaudoin C, Leotoing L, Communal Y, Veyssiere G, Morel L. Androgen receptor mediates non-genomic activation of phosphatidylinositol 3-oh kinase in androgen-sensitive epithelial cells. J Biol Chem. 2004; 279(15):14579–14586.CrossRefPubMed Baron S, Manin M, Beaudoin C, Leotoing L, Communal Y, Veyssiere G, Morel L. Androgen receptor mediates non-genomic activation of phosphatidylinositol 3-oh kinase in androgen-sensitive epithelial cells. J Biol Chem. 2004; 279(15):14579–14586.CrossRefPubMed
54.
go back to reference Gioeli D, Paschal BM. Post-translational modification of the androgen receptor. Mol Cell Endocrinol. 2012; 352(1):70–78.CrossRefPubMed Gioeli D, Paschal BM. Post-translational modification of the androgen receptor. Mol Cell Endocrinol. 2012; 352(1):70–78.CrossRefPubMed
55.
go back to reference McBride A, Ghilagaber S, Nikolaev A, Hardie DG. The glycogen-binding domain on the ampk β subunit allows the kinase to act as a glycogen sensor. Cell Metab. 2009; 9(1):23–34.CrossRefPubMedPubMedCentral McBride A, Ghilagaber S, Nikolaev A, Hardie DG. The glycogen-binding domain on the ampk β subunit allows the kinase to act as a glycogen sensor. Cell Metab. 2009; 9(1):23–34.CrossRefPubMedPubMedCentral
56.
go back to reference Hardie DG, Ross FA, Hawley SA. Ampk: a nutrient and energy sensor that maintains energy homeostasis. Nature Rev Mol Cell Biol. 2012; 13(4):251–62.CrossRef Hardie DG, Ross FA, Hawley SA. Ampk: a nutrient and energy sensor that maintains energy homeostasis. Nature Rev Mol Cell Biol. 2012; 13(4):251–62.CrossRef
58.
59.
go back to reference Mounier R, Théret M, Lantier L, Foretz M, Viollet B. Expanding roles for ampk in skeletal muscle plasticity. Trends Endocrinol Metab. 2015; 26(6):275–286.CrossRefPubMed Mounier R, Théret M, Lantier L, Foretz M, Viollet B. Expanding roles for ampk in skeletal muscle plasticity. Trends Endocrinol Metab. 2015; 26(6):275–286.CrossRefPubMed
60.
go back to reference Mounier R, Lantier L, Leclerc J, Sotiropoulos A, Foretz M, Viollet B. Antagonistic control of muscle cell size by ampk and mtorc1. Cell Cycle. 2011; 10(16):2640–2646.CrossRefPubMed Mounier R, Lantier L, Leclerc J, Sotiropoulos A, Foretz M, Viollet B. Antagonistic control of muscle cell size by ampk and mtorc1. Cell Cycle. 2011; 10(16):2640–2646.CrossRefPubMed
61.
go back to reference Inoki K, Zhu T, Guan K-L. Tsc2 mediates cellular energy response to control cell growth and survival. Cell. 2003; 115(5):577–590.CrossRefPubMed Inoki K, Zhu T, Guan K-L. Tsc2 mediates cellular energy response to control cell growth and survival. Cell. 2003; 115(5):577–590.CrossRefPubMed
62.
go back to reference Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ. Ampk phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008; 30(2):214–226.CrossRefPubMedPubMedCentral Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ. Ampk phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008; 30(2):214–226.CrossRefPubMedPubMedCentral
63.
go back to reference Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM. The rag gtpases bind raptor and mediate amino acid signaling to mtorc1. Science. 2008; 320(5882):1496–1501.CrossRefPubMedPubMedCentral Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM. The rag gtpases bind raptor and mediate amino acid signaling to mtorc1. Science. 2008; 320(5882):1496–1501.CrossRefPubMedPubMedCentral
64.
go back to reference Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-rag complex targets mtorc1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010; 141(2):290–303.CrossRefPubMedPubMedCentral Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-rag complex targets mtorc1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010; 141(2):290–303.CrossRefPubMedPubMedCentral
65.
go back to reference Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a gef for the rag gtpases that signal amino acid levels to mtorc1. Cell. 2012; 150(6):1196–1208.CrossRefPubMedPubMedCentral Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a gef for the rag gtpases that signal amino acid levels to mtorc1. Cell. 2012; 150(6):1196–1208.CrossRefPubMedPubMedCentral
66.
go back to reference Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mtorc1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar h+-atpase. Science. 2011; 334(6056):678–683.CrossRefPubMedPubMedCentral Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mtorc1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar h+-atpase. Science. 2011; 334(6056):678–683.CrossRefPubMedPubMedCentral
67.
go back to reference Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM. A tumor suppressor complex with gap activity for the rag gtpases that signal amino acid sufficiency to mtorc1. Science. 2013; 340(6136):1100–1106.CrossRefPubMedPubMedCentral Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM. A tumor suppressor complex with gap activity for the rag gtpases that signal amino acid sufficiency to mtorc1. Science. 2013; 340(6136):1100–1106.CrossRefPubMedPubMedCentral
68.
go back to reference Chantranupong L, Wolfson RL, Orozco JM, Saxton RA, Scaria SM, Bar-Peled L, Spooner E, Isasa M, Gygi SP, Sabatini DM. The sestrins interact with gator2 to negatively regulate the amino-acid-sensing pathway upstream of mtorc1. Cell Reports. 2014; 9(1):1–8.CrossRefPubMedPubMedCentral Chantranupong L, Wolfson RL, Orozco JM, Saxton RA, Scaria SM, Bar-Peled L, Spooner E, Isasa M, Gygi SP, Sabatini DM. The sestrins interact with gator2 to negatively regulate the amino-acid-sensing pathway upstream of mtorc1. Cell Reports. 2014; 9(1):1–8.CrossRefPubMedPubMedCentral
69.
go back to reference Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu SH, Kim S. Leucyl-trna synthetase is an intracellular leucine sensor for the mtorc1-signaling pathway. Cell. 2012; 149(2):410–424.CrossRefPubMed Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu SH, Kim S. Leucyl-trna synthetase is an intracellular leucine sensor for the mtorc1-signaling pathway. Cell. 2012; 149(2):410–424.CrossRefPubMed
70.
go back to reference Tsun ZY, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, Spooner E, Sabatini DM. The folliculin tumor suppressor is a gap for the ragc/d gtpases that signal amino acid levels to mtorc1. Mol Cell. 2013; 52(4):495–505.CrossRefPubMed Tsun ZY, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, Spooner E, Sabatini DM. The folliculin tumor suppressor is a gap for the ragc/d gtpases that signal amino acid levels to mtorc1. Mol Cell. 2013; 52(4):495–505.CrossRefPubMed
71.
go back to reference Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, Sabatini DM. Sestrin2 is a leucine sensor for the mtorc1 pathway. Science. 2015; 2674:43–48. Wolfson RL, Chantranupong L, Saxton RA, Shen K, Scaria SM, Cantor JR, Sabatini DM. Sestrin2 is a leucine sensor for the mtorc1 pathway. Science. 2015; 2674:43–48.
72.
go back to reference Jacobs BL, You JS, Frey JW, Goodman CA, Gundermann DM, Hornberger TA. Eccentric contractions increase the phosphorylation of tuberous sclerosis complex-2 (tsc2) and alter the targeting of tsc2 and the mechanistic target of rapamycin to the lysosome. J Physiol. 2013; 591(18):4611–4620.CrossRefPubMedPubMedCentral Jacobs BL, You JS, Frey JW, Goodman CA, Gundermann DM, Hornberger TA. Eccentric contractions increase the phosphorylation of tuberous sclerosis complex-2 (tsc2) and alter the targeting of tsc2 and the mechanistic target of rapamycin to the lysosome. J Physiol. 2013; 591(18):4611–4620.CrossRefPubMedPubMedCentral
73.
go back to reference Yoon MS, Sun Y, Arauz E, Jiang Y, Chen J. Phosphatidic acid activates mammalian target of rapamycin complex 1 (mtorc1) kinase by displacing fk506 binding protein 38 (fkbp38) and exerting an allosteric effect. J Biol Chem. 2011; 286(34):29568–9574.CrossRefPubMedPubMedCentral Yoon MS, Sun Y, Arauz E, Jiang Y, Chen J. Phosphatidic acid activates mammalian target of rapamycin complex 1 (mtorc1) kinase by displacing fk506 binding protein 38 (fkbp38) and exerting an allosteric effect. J Biol Chem. 2011; 286(34):29568–9574.CrossRefPubMedPubMedCentral
74.
go back to reference Foster DA. Phosphatidic acid and lipid-sensing by mtor. Trends Endocrinol Metabol. 2013; 24(6):272–8.CrossRef Foster DA. Phosphatidic acid and lipid-sensing by mtor. Trends Endocrinol Metabol. 2013; 24(6):272–8.CrossRef
75.
76.
go back to reference Hornberger T, Chu W, Mak Y, Hsiung J, Huang S, Chien S. The role of phospholipase d and phosphatidic acid in the mechanical activation of mtor signaling in skeletal muscle. Proc Natl Acad Sci USA. 2006; 103(12):4741–4746.CrossRefPubMedPubMedCentral Hornberger T, Chu W, Mak Y, Hsiung J, Huang S, Chien S. The role of phospholipase d and phosphatidic acid in the mechanical activation of mtor signaling in skeletal muscle. Proc Natl Acad Sci USA. 2006; 103(12):4741–4746.CrossRefPubMedPubMedCentral
77.
go back to reference You JS, Lincoln HC, Kim C-R, Frey JW, Goodman CA, Zhong XP, Hornberger TA. The role of diacylglycerol kinase ζ and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mtor) signaling and skeletal muscle hypertrophy. J Biol Chem. 2014; 289(3):1551–1563.CrossRefPubMedPubMedCentral You JS, Lincoln HC, Kim C-R, Frey JW, Goodman CA, Zhong XP, Hornberger TA. The role of diacylglycerol kinase ζ and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mtor) signaling and skeletal muscle hypertrophy. J Biol Chem. 2014; 289(3):1551–1563.CrossRefPubMedPubMedCentral
78.
go back to reference Kunkel SD, Suneja M, Ebert SM, Bongers KS, Fox DK, Malmberg SE, Alipour F, Shields RK, Adams CM. mrna expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metabol. 2011; 13(6):627–638.CrossRef Kunkel SD, Suneja M, Ebert SM, Bongers KS, Fox DK, Malmberg SE, Alipour F, Shields RK, Adams CM. mrna expression signatures of human skeletal muscle atrophy identify a natural compound that increases muscle mass. Cell Metabol. 2011; 13(6):627–638.CrossRef
79.
go back to reference Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet J-P, Subramanian A, Ross KN, et al.The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006; 313(5795):1929–1935.CrossRefPubMed Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet J-P, Subramanian A, Ross KN, et al.The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006; 313(5795):1929–1935.CrossRefPubMed
80.
go back to reference Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mtorc1 signaling after resistance exercise in rat skeletal muscle. Am J Physiol Endocrinol Metabol. 2013; 305(6):760–765.CrossRef Ogasawara R, Sato K, Higashida K, Nakazato K, Fujita S. Ursolic acid stimulates mtorc1 signaling after resistance exercise in rat skeletal muscle. Am J Physiol Endocrinol Metabol. 2013; 305(6):760–765.CrossRef
81.
go back to reference Bang HS, Seo DY, Chung YM, Oh KM, Park JJ, Arturo F, Jeong SH, Kim N, Han J. Ursolic acid-induced elevation of serum irisin augments muscle strength during resistance training in men. Korean J Physiol Pharmacol. 2014; 18(5):441–446.CrossRefPubMedPubMedCentral Bang HS, Seo DY, Chung YM, Oh KM, Park JJ, Arturo F, Jeong SH, Kim N, Han J. Ursolic acid-induced elevation of serum irisin augments muscle strength during resistance training in men. Korean J Physiol Pharmacol. 2014; 18(5):441–446.CrossRefPubMedPubMedCentral
82.
go back to reference Deldicque L, Atherton P, Patel R, Theisen D, Nielens H, Rennie MJ, Francaux M. Effects of resistance exercise with and without creatine supplementation on gene expression and cell signaling in human skeletal muscle. J Appl Physiol. 2008; 104(2):371–378.CrossRefPubMed Deldicque L, Atherton P, Patel R, Theisen D, Nielens H, Rennie MJ, Francaux M. Effects of resistance exercise with and without creatine supplementation on gene expression and cell signaling in human skeletal muscle. J Appl Physiol. 2008; 104(2):371–378.CrossRefPubMed
83.
go back to reference Deldicque L, Louis M, Theisen D, Nielens H, Dehoux M, Thissen JP, Rennie MJ, Francaux M. Increased igf mrna in human skeletal muscle after creatine supplementation. Med Sci Sports Exerc. 2005; 37(5):731–6.CrossRefPubMed Deldicque L, Louis M, Theisen D, Nielens H, Dehoux M, Thissen JP, Rennie MJ, Francaux M. Increased igf mrna in human skeletal muscle after creatine supplementation. Med Sci Sports Exerc. 2005; 37(5):731–6.CrossRefPubMed
84.
go back to reference Saremi A, Gharakhanloo R, Sharghi S, Gharaati M, Larijani B, Omidfar K. Effects of oral creatine and resistance training on serum myostatin and gasp-1. Mol Cell Endocrinol. 2010; 317(1):25–30.CrossRefPubMed Saremi A, Gharakhanloo R, Sharghi S, Gharaati M, Larijani B, Omidfar K. Effects of oral creatine and resistance training on serum myostatin and gasp-1. Mol Cell Endocrinol. 2010; 317(1):25–30.CrossRefPubMed
85.
go back to reference Wilson JM, Fitschen PJ, Campbell B, Wilson GJ, Zanchi N, Taylor L, Wilborn C, Kalman DS, Stout JR, Hoffman JR, et al.International society of sports nutrition position stand: beta-hydroxy-betamethylbutyrate (hmb). J Int Soc Sports Nutr. 2013; 10(1):6.CrossRefPubMedPubMedCentral Wilson JM, Fitschen PJ, Campbell B, Wilson GJ, Zanchi N, Taylor L, Wilborn C, Kalman DS, Stout JR, Hoffman JR, et al.International society of sports nutrition position stand: beta-hydroxy-betamethylbutyrate (hmb). J Int Soc Sports Nutr. 2013; 10(1):6.CrossRefPubMedPubMedCentral
88.
go back to reference Eley HL, Russell ST, Baxter JH, Mukerji P, Tisdale MJ. Signaling pathways initiated by β-hydroxy- β-methylbutyrate to attenuate the depression of protein synthesis in skeletal muscle in response to cachectic stimuli. Am J Physiol Endocrinol Metabol. 2007; 293(4):923–931.CrossRef Eley HL, Russell ST, Baxter JH, Mukerji P, Tisdale MJ. Signaling pathways initiated by β-hydroxy- β-methylbutyrate to attenuate the depression of protein synthesis in skeletal muscle in response to cachectic stimuli. Am J Physiol Endocrinol Metabol. 2007; 293(4):923–931.CrossRef
89.
go back to reference Kimura K, Cheng XW, Inoue A, Hu L, Koike T, Kuzuya M. β-hydroxy- β-methylbutyrate facilitates pi3k/akt-dependent mammalian target of rapamycin and foxo1/3a phosphorylations and alleviates tumor necrosis factor α/interferon γ–induced murf-1 expression in c2c12 cells. Nutrition Res. 2014; 34(4):368–374.CrossRef Kimura K, Cheng XW, Inoue A, Hu L, Koike T, Kuzuya M. β-hydroxy- β-methylbutyrate facilitates pi3k/akt-dependent mammalian target of rapamycin and foxo1/3a phosphorylations and alleviates tumor necrosis factor α/interferon γ–induced murf-1 expression in c2c12 cells. Nutrition Res. 2014; 34(4):368–374.CrossRef
90.
go back to reference Mero AA, Ojala T, Hulmi JJ, Puurtinen R, Karila T, Seppälä T, et al.Effects of alfa-hydroxy-isocaproic acid on body composition, doms and performance in athletes. J Int Soc Sports Nutr. 2010; 7(1):8.CrossRef Mero AA, Ojala T, Hulmi JJ, Puurtinen R, Karila T, Seppälä T, et al.Effects of alfa-hydroxy-isocaproic acid on body composition, doms and performance in athletes. J Int Soc Sports Nutr. 2010; 7(1):8.CrossRef
91.
go back to reference Lang CH, Pruznak A, Navaratnarajah M, Rankine KA, Deiter G, Magne H, Offord EA, Breuillé D. Chronic α-hydroxyisocaproic acid treatment improves muscle recovery after immobilization-induced atrophy. Am J Physiol Endocrinol Metabol. 2013; 305(3):416–428.CrossRef Lang CH, Pruznak A, Navaratnarajah M, Rankine KA, Deiter G, Magne H, Offord EA, Breuillé D. Chronic α-hydroxyisocaproic acid treatment improves muscle recovery after immobilization-induced atrophy. Am J Physiol Endocrinol Metabol. 2013; 305(3):416–428.CrossRef
92.
go back to reference Cholewa JM, Wyszczelska-Rokiel M, Glowacki R, Jakubowski H, Matthews T, Wood R, Craig SA, Paolone V. Effects of betaine on body composition, performance, and homocysteine thiolactone. J Int Soc Sports Nutr. 2013; 10(1):39.CrossRefPubMedPubMedCentral Cholewa JM, Wyszczelska-Rokiel M, Glowacki R, Jakubowski H, Matthews T, Wood R, Craig SA, Paolone V. Effects of betaine on body composition, performance, and homocysteine thiolactone. J Int Soc Sports Nutr. 2013; 10(1):39.CrossRefPubMedPubMedCentral
93.
go back to reference Cholewa JM, Guimarães-Ferreira L, Zanchi NE. Effects of betaine on performance and body composition: a review of recent findings and potential mechanisms. Amino Acids. 2014; 46(8):1785–1793.CrossRefPubMed Cholewa JM, Guimarães-Ferreira L, Zanchi NE. Effects of betaine on performance and body composition: a review of recent findings and potential mechanisms. Amino Acids. 2014; 46(8):1785–1793.CrossRefPubMed
94.
go back to reference Apicella JM, Lee EC, Bailey BL, Saenz C, Anderson JM, Craig SA, Kraemer WJ, Volek JS, Maresh CM. Betaine supplementation enhances anabolic endocrine and akt signaling in response to acute bouts of exercise. European J Appl Physiol. 2013; 113(3):793–802.CrossRef Apicella JM, Lee EC, Bailey BL, Saenz C, Anderson JM, Craig SA, Kraemer WJ, Volek JS, Maresh CM. Betaine supplementation enhances anabolic endocrine and akt signaling in response to acute bouts of exercise. European J Appl Physiol. 2013; 113(3):793–802.CrossRef
95.
go back to reference Velloso C. Regulation of muscle mass by growth hormone and igf-i. British J Pharmacol. 2008; 154(3):557–68.CrossRef Velloso C. Regulation of muscle mass by growth hormone and igf-i. British J Pharmacol. 2008; 154(3):557–68.CrossRef
96.
go back to reference Senesi P, Luzi L, Montesano A, Mazzocchi N, Terruzzi I. Betaine supplement enhances skeletal muscle differentiation in murine myoblasts via igf-1 signaling activation. J Transl Med. 2013; 11(1):174.CrossRefPubMedPubMedCentral Senesi P, Luzi L, Montesano A, Mazzocchi N, Terruzzi I. Betaine supplement enhances skeletal muscle differentiation in murine myoblasts via igf-1 signaling activation. J Transl Med. 2013; 11(1):174.CrossRefPubMedPubMedCentral
97.
go back to reference Joy JM, Gundermann DM, Lowery RP, Jäger R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mtor signaling and resistance exercise induced hypertrophy. Nutrition Metabol. 2014; 11(1):1–10.CrossRef Joy JM, Gundermann DM, Lowery RP, Jäger R, McCleary SA, Purpura M, Roberts MD, Wilson SM, Hornberger TA, Wilson JM. Phosphatidic acid enhances mtor signaling and resistance exercise induced hypertrophy. Nutrition Metabol. 2014; 11(1):1–10.CrossRef
98.
go back to reference Mobley CB, Hornberger TA, Fox CD, Healy JC, Ferguson BS, Lowery RP, McNally RM, Lockwood CM, Stout JR, Kavazis AN, et al.Effects of oral phosphatidic acid feeding with or without whey protein on muscle protein synthesis and anabolic signaling in rodent skeletal muscle. J Int Soc Sports Nutrition. 2015; 12(1):1–11.CrossRef Mobley CB, Hornberger TA, Fox CD, Healy JC, Ferguson BS, Lowery RP, McNally RM, Lockwood CM, Stout JR, Kavazis AN, et al.Effects of oral phosphatidic acid feeding with or without whey protein on muscle protein synthesis and anabolic signaling in rodent skeletal muscle. J Int Soc Sports Nutrition. 2015; 12(1):1–11.CrossRef
Metadata
Title
Regulation of mTORC1 by growth factors, energy status, amino acids and mechanical stimuli at a glance
Author
Peter Bond
Publication date
01-12-2016
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-016-0118-y

Other articles of this Issue 1/2016

Journal of the International Society of Sports Nutrition 1/2016 Go to the issue