Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2016

Open Access 01-12-2016 | Research article

The effects of a fat loss supplement on resting metabolic rate and hemodynamic variables in resistance trained males: a randomized, double-blind, placebo-controlled, cross-over trial

Authors: Bill I. Campbell, Ryan J. Colquhoun, Gina Zito, Nic Martinez, Kristina Kendall, Laura Buchanan, Matt Lehn, Mallory Johnson, Courtney St. Louis, Yasmin Smith, Brad Cloer

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2016

Login to get access

Abstract

Background

While it is known that dietary supplements containing a combination of thermogenic ingredients can increase resting metabolic rate (RMR), the magnitude can vary based on the active ingredient and/or combination of active ingredients. The purpose of this study was to examine the effects of a commercially available thermogenic fat loss supplement on RMR and hemodynamic variables in healthy, resistance trained males.

Methods

Ten resistance-trained male participants (29 ± 9 years; 178 ± 4 cm; 85.7 ± 11 kg, and BMI = 26.8 ± 3.7) volunteered to participate in this randomized, double-blind, placebo controlled cross-over study. Participants underwent two testing sessions separated by at least 24 h. On their first visit, participants arrived to the laboratory after an overnight fast and a 24-h avoidance of exercise, and underwent a baseline RMR, HR, and BP assessment. Next, each participant ingested a thermogenic fat loss supplement (TFLS) or a placebo (PLA) and repeated the RMR, HR, and BP assessments at 60, 120, and 180 min post-ingestion. During the second visit the alternative supplement was ingested and the assessments were repeated in the exact same manner. Data were analyzed via a 2-factor [2x4] within-subjects repeated measures analysis of variance (ANOVA). Post-hoc tests were analyzed via paired samples t-tests. The criterion for significance was set at p ≤ 0.05.

Results

A significant main effect for time relative to raw RMR data (p = 0.014) was observed. Post-hoc analysis revealed that the TFLS significantly increased RMR at 60-min, 120-min, and 180-min post ingestion (p < 0.05) as compared to baseline RMR values. No significant changes in RMR were observed for the PLA treatment (p > 0.05). Specifically, RMR was increased by 7.8 % (from 1,906 to 2,057 kcal), 6.9 % (from 1,906 to 2,037 kcal), and 9.1 % (from 1,906 to 2,081 kcal) in the TFLS, while the PLA treatment increased RMR by 3.3 % (from 1,919 to 1,981 kcal), 3.1 % (from 1,919 to 1,978 kcal), and 2.1 % (from 1,919 to 1,959 kcal) above baseline at 60, 120, and 180-min post ingestion, respectively. Additionally, the TFLS significantly elevated RMR at the 3-h time point as compared to the PLA treatment (2,081 vs 1,959 kcal, p = 0.034). A main effect for groups was observed for systolic blood pressure, and a significant interaction and main effect for time were observed for diastolic blood pressure. It should be noted that although changes in diastolic blood pressure were significant, all values stayed within normal clinical ranges (<80 mmHg).

Conclusions

The TFLS led to significant elevations in RMR as compared to baseline. These elevations came with no adverse effect relative to resting heart rate, but a slight increase in blood pressure values. Taken on a daily basis, this TFLS may increase an individual’s overall energy expenditure, however; future studies should investigate if this leads to a reduction in fat mass loss over time.
Literature
1.
go back to reference Hoffman JR, Kang J, Ratamess NA, Rashti SL, Tranchina CP, Faigenbaum AD. Thermogenic effect of an acute ingestion of a weight loss supplement. J Int Soc Sports Nutr. 2009;6:1.CrossRefPubMedPubMedCentral Hoffman JR, Kang J, Ratamess NA, Rashti SL, Tranchina CP, Faigenbaum AD. Thermogenic effect of an acute ingestion of a weight loss supplement. J Int Soc Sports Nutr. 2009;6:1.CrossRefPubMedPubMedCentral
2.
go back to reference Outlaw J, Wilborn C, Smith A, Urbina S, Hayward S, Foster C, et al. Effects of ingestion of a commercially available thermogenic dietary supplement on resting energy expenditure, mood state and cardiovascular measures. J Int Soc Sports Nutr. 2013;10(1):25.CrossRefPubMedPubMedCentral Outlaw J, Wilborn C, Smith A, Urbina S, Hayward S, Foster C, et al. Effects of ingestion of a commercially available thermogenic dietary supplement on resting energy expenditure, mood state and cardiovascular measures. J Int Soc Sports Nutr. 2013;10(1):25.CrossRefPubMedPubMedCentral
3.
go back to reference Ryan ED, Beck TW, Herda TJ, Smith AE, Walter AA, Stout JR, et al. Acute effects of a thermogenic nutritional supplement on energy expenditure and cardiovascular function at rest, during low-intensity exercise, and recovery from exercise. J Strength Cond Res. 2009;23(3):807–17.CrossRefPubMed Ryan ED, Beck TW, Herda TJ, Smith AE, Walter AA, Stout JR, et al. Acute effects of a thermogenic nutritional supplement on energy expenditure and cardiovascular function at rest, during low-intensity exercise, and recovery from exercise. J Strength Cond Res. 2009;23(3):807–17.CrossRefPubMed
4.
go back to reference Nagao T, Hase T, Tokimitsu I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity (Silver Spring). 2007;15(6):1473–83.CrossRef Nagao T, Hase T, Tokimitsu I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity (Silver Spring). 2007;15(6):1473–83.CrossRef
5.
go back to reference Nagao T, Komine Y, Soga S, Meguro S, Hase T, Tanaka Y, et al. Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am J Clin Nutr. 2005;81(1):122–9.PubMed Nagao T, Komine Y, Soga S, Meguro S, Hase T, Tanaka Y, et al. Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am J Clin Nutr. 2005;81(1):122–9.PubMed
6.
go back to reference Acheson KJ, Zahorska-Markiewicz B, Pittet P, Anantharaman K, Jequier E. Caffeine and coffee: their influence on metabolic rate and substrate utilization in normal weight and obese individuals. Am J Clin Nutr. 1980;33(5):989–97.PubMed Acheson KJ, Zahorska-Markiewicz B, Pittet P, Anantharaman K, Jequier E. Caffeine and coffee: their influence on metabolic rate and substrate utilization in normal weight and obese individuals. Am J Clin Nutr. 1980;33(5):989–97.PubMed
7.
go back to reference Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, et al. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr. 1999;70(6):1040–5.PubMed Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, et al. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr. 1999;70(6):1040–5.PubMed
8.
go back to reference Dulloo AG, Geissler CA, Horton T, Collins A, Miller DS. Normal caffeine consumption: influence on thermogenesis and daily energy expenditure in lean and postobese human volunteers. Am J Clin Nutr. 1989;49(1):44–50.PubMed Dulloo AG, Geissler CA, Horton T, Collins A, Miller DS. Normal caffeine consumption: influence on thermogenesis and daily energy expenditure in lean and postobese human volunteers. Am J Clin Nutr. 1989;49(1):44–50.PubMed
9.
go back to reference Taylor LW, Wilborn CD, Harvey T, Wismann J, Willoughby DS. Acute effects of ingesting Java Fittrade mark energy extreme functional coffee on resting energy expenditure and hemodynamic responses in male and female coffee drinkers. J Int Soc Sports Nutr. 2007;4:10.CrossRefPubMedPubMedCentral Taylor LW, Wilborn CD, Harvey T, Wismann J, Willoughby DS. Acute effects of ingesting Java Fittrade mark energy extreme functional coffee on resting energy expenditure and hemodynamic responses in male and female coffee drinkers. J Int Soc Sports Nutr. 2007;4:10.CrossRefPubMedPubMedCentral
10.
go back to reference Graham TE, Rush JW, van Soeren MH. Caffeine and exercise: metabolism and performance. Can J Appl Physiol. 1994;19(2):111–38.CrossRefPubMed Graham TE, Rush JW, van Soeren MH. Caffeine and exercise: metabolism and performance. Can J Appl Physiol. 1994;19(2):111–38.CrossRefPubMed
11.
go back to reference Powers SK, Byrd RJ, Tulley R, Callender T. Effects of caffeine ingestion on metabolism and performance during graded exercise. Eur J Appl Physiol Occup Physiol. 1983;50(3):301–7.CrossRefPubMed Powers SK, Byrd RJ, Tulley R, Callender T. Effects of caffeine ingestion on metabolism and performance during graded exercise. Eur J Appl Physiol Occup Physiol. 1983;50(3):301–7.CrossRefPubMed
12.
go back to reference Dulloo AG. The search for compounds that stimulate thermogenesis in obesity management: from pharmaceuticals to functional food ingredients. Obes Rev. 2011;12(10):866–83.CrossRefPubMed Dulloo AG. The search for compounds that stimulate thermogenesis in obesity management: from pharmaceuticals to functional food ingredients. Obes Rev. 2011;12(10):866–83.CrossRefPubMed
13.
go back to reference Bangsbo J, Jacobsen K, Nordberg N, Christensen NJ, Graham T. Acute and habitual caffeine ingestion and metabolic responses to steady-state exercise. J Appl Physiol (1985). 1992;72(4):1297–303. Bangsbo J, Jacobsen K, Nordberg N, Christensen NJ, Graham T. Acute and habitual caffeine ingestion and metabolic responses to steady-state exercise. J Appl Physiol (1985). 1992;72(4):1297–303.
14.
go back to reference Graham TE, Hibbert E, Sathasivam P. Metabolic and exercise endurance effects of coffee and caffeine ingestion. J Appl Physiol (1985). 1998;85(3):883–9. Graham TE, Hibbert E, Sathasivam P. Metabolic and exercise endurance effects of coffee and caffeine ingestion. J Appl Physiol (1985). 1998;85(3):883–9.
15.
go back to reference Belza A, Toubro S, Astrup A. The effect of caffeine, green tea and tyrosine on thermogenesis and energy intake. Eur J Clin Nutr. 2009;63(1):57–64.CrossRefPubMed Belza A, Toubro S, Astrup A. The effect of caffeine, green tea and tyrosine on thermogenesis and energy intake. Eur J Clin Nutr. 2009;63(1):57–64.CrossRefPubMed
16.
go back to reference Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J. Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord. 2000;24(2):252–8.CrossRefPubMed Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J. Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord. 2000;24(2):252–8.CrossRefPubMed
17.
go back to reference Hursel R, Viechtbauer W, Westerterp-Plantenga MS. The effects of green tea on weight loss and weight maintenance: a meta-analysis. Int J Obes (Lond). 2009;33(9):956–61.CrossRef Hursel R, Viechtbauer W, Westerterp-Plantenga MS. The effects of green tea on weight loss and weight maintenance: a meta-analysis. Int J Obes (Lond). 2009;33(9):956–61.CrossRef
18.
go back to reference Lonac MC, Richards JC, Schweder MM, Johnson TK, Bell C. Influence of short-term consumption of the caffeine-free, epigallocatechin-3-gallate supplement, Teavigo, on resting metabolism and the thermic effect of feeding. Obesity (Silver Spring). 2011;19(2):298–304.CrossRef Lonac MC, Richards JC, Schweder MM, Johnson TK, Bell C. Influence of short-term consumption of the caffeine-free, epigallocatechin-3-gallate supplement, Teavigo, on resting metabolism and the thermic effect of feeding. Obesity (Silver Spring). 2011;19(2):298–304.CrossRef
19.
go back to reference Borchardt RT, Huber JA. Catechol O-methyltransferase. 5. Structure-activity relationships for inhibition by flavonoids. J Med Chem. 1975;18(1):120–2.CrossRefPubMed Borchardt RT, Huber JA. Catechol O-methyltransferase. 5. Structure-activity relationships for inhibition by flavonoids. J Med Chem. 1975;18(1):120–2.CrossRefPubMed
20.
go back to reference Bremer J. Carnitine--metabolism and functions. Physiol Rev. 1983;63(4):1420–80.PubMed Bremer J. Carnitine--metabolism and functions. Physiol Rev. 1983;63(4):1420–80.PubMed
21.
go back to reference Karlic H, Lohninger A. Supplementation of L-carnitine in athletes: does it make sense? Nutrition. 2004;20(7-8):709–15.CrossRefPubMed Karlic H, Lohninger A. Supplementation of L-carnitine in athletes: does it make sense? Nutrition. 2004;20(7-8):709–15.CrossRefPubMed
22.
go back to reference Haller CA, Jacob P, Benowitz NL. Short-term metabolic and hemodynamic effects of ephedra and guarana combinations. Clin Pharmacol Ther. 2005;77(6):560–71.CrossRefPubMed Haller CA, Jacob P, Benowitz NL. Short-term metabolic and hemodynamic effects of ephedra and guarana combinations. Clin Pharmacol Ther. 2005;77(6):560–71.CrossRefPubMed
23.
go back to reference Vukovich MD, Schoorman R, Heilman C, Jacob 3rd P, Benowitz NL. Caffeine-herbal ephedra combination increases resting energy expenditure, heart rate and blood pressure. Clin Exp Pharmacol Physiol. 2005;32(1-2):47–53.CrossRefPubMed Vukovich MD, Schoorman R, Heilman C, Jacob 3rd P, Benowitz NL. Caffeine-herbal ephedra combination increases resting energy expenditure, heart rate and blood pressure. Clin Exp Pharmacol Physiol. 2005;32(1-2):47–53.CrossRefPubMed
24.
go back to reference Priyadarshi S, Valentine B, Han C, Fedorova OV, Bagrov AY, Liu J, et al. Effect of green tea extract on cardiac hypertrophy following 5/6 nephrectomy in the rat. Kidney Int. 2003;63(5):1785–90.CrossRefPubMed Priyadarshi S, Valentine B, Han C, Fedorova OV, Bagrov AY, Liu J, et al. Effect of green tea extract on cardiac hypertrophy following 5/6 nephrectomy in the rat. Kidney Int. 2003;63(5):1785–90.CrossRefPubMed
25.
go back to reference Wilborn C, Taylor L, Poole C, Bushey B, Williams L, Foster C, et al. Effects of ingesting a commercial thermogenic product on hemodynamic function and energy expenditure at rest in males and females. Appl Physiol Nutr Metab. 2009;34(6):1073–8.CrossRefPubMed Wilborn C, Taylor L, Poole C, Bushey B, Williams L, Foster C, et al. Effects of ingesting a commercial thermogenic product on hemodynamic function and energy expenditure at rest in males and females. Appl Physiol Nutr Metab. 2009;34(6):1073–8.CrossRefPubMed
26.
go back to reference Medicine ACoS. ACSM’s Guidelines for Exercise Testing and Prescription. 9th ed. Philadelphia: Lippincott Williams & Wilkins; 2010. Medicine ACoS. ACSM’s Guidelines for Exercise Testing and Prescription. 9th ed. Philadelphia: Lippincott Williams & Wilkins; 2010.
27.
go back to reference Coleman A, Freeman P, Steel S, Shennan A. Validation of the Omron MX3 Plus oscillometric blood pressure monitoring device according to the European Society of Hypertension international protocol. Blood Press Monit. 2005;10(3):165–8.CrossRefPubMed Coleman A, Freeman P, Steel S, Shennan A. Validation of the Omron MX3 Plus oscillometric blood pressure monitoring device according to the European Society of Hypertension international protocol. Blood Press Monit. 2005;10(3):165–8.CrossRefPubMed
28.
go back to reference Nieman DC, Austin MD, Benezra L, Pearce S, McInnis T, Unick J, et al. Validation of Cosmed's FitMate in measuring oxygen consumption and estimating resting metabolic rate. Res Sports Med. 2006;14(2):89–96.CrossRefPubMed Nieman DC, Austin MD, Benezra L, Pearce S, McInnis T, Unick J, et al. Validation of Cosmed's FitMate in measuring oxygen consumption and estimating resting metabolic rate. Res Sports Med. 2006;14(2):89–96.CrossRefPubMed
29.
go back to reference Horner NK, Lampe JW, Patterson RE, Neuhouser ML, Beresford SA, Prentice RL. Indirect calorimetry protocol development for measuring resting metabolic rate as a component of total energy expenditure in free-living postmenopausal women. J Nutr. 2001;131(8):2215–8.PubMed Horner NK, Lampe JW, Patterson RE, Neuhouser ML, Beresford SA, Prentice RL. Indirect calorimetry protocol development for measuring resting metabolic rate as a component of total energy expenditure in free-living postmenopausal women. J Nutr. 2001;131(8):2215–8.PubMed
30.
go back to reference Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G, et al. Glycaemic index methodology. Nutr Res Rev. 2005;18(1):145–71.CrossRefPubMed Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G, et al. Glycaemic index methodology. Nutr Res Rev. 2005;18(1):145–71.CrossRefPubMed
31.
go back to reference Razali NM, Wah YB. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J Stat Model Analyt. 2011;2(1):21–33. Razali NM, Wah YB. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J Stat Model Analyt. 2011;2(1):21–33.
32.
go back to reference Doane DP, Seward LE. Measuring Skewness. J Stat Educ. 2011;19(2):1–18. Doane DP, Seward LE. Measuring Skewness. J Stat Educ. 2011;19(2):1–18.
33.
go back to reference Vincent WJ, Weir JP. Statistics in Kinesiology. 4th ed. Champaign: Human Kinetics; 2012. Vincent WJ, Weir JP. Statistics in Kinesiology. 4th ed. Champaign: Human Kinetics; 2012.
34.
go back to reference Rumpler W, Seale J, Clevidence B, Judd J, Wiley E, Yamamoto S, et al. Oolong tea increases metabolic rate and fat oxidation in men. J Nutr. 2001;131(11):2848–52.PubMed Rumpler W, Seale J, Clevidence B, Judd J, Wiley E, Yamamoto S, et al. Oolong tea increases metabolic rate and fat oxidation in men. J Nutr. 2001;131(11):2848–52.PubMed
35.
go back to reference Rudelle S, Ferruzzi MG, Cristiani I, Moulin J, Mace K, Acheson KJ, et al. Effect of a thermogenic beverage on 24-hour energy metabolism in humans. Obesity (Silver Spring). 2007;15(2):349–55.CrossRef Rudelle S, Ferruzzi MG, Cristiani I, Moulin J, Mace K, Acheson KJ, et al. Effect of a thermogenic beverage on 24-hour energy metabolism in humans. Obesity (Silver Spring). 2007;15(2):349–55.CrossRef
36.
go back to reference Dalbo VJ, Roberts MD, Stout JR, Kerksick CM. Acute effects of ingesting a commercial thermogenic drink on changes in energy expenditure and markers of lipolysis. J Int Soc Sports Nutr. 2008;5:6.CrossRefPubMedPubMedCentral Dalbo VJ, Roberts MD, Stout JR, Kerksick CM. Acute effects of ingesting a commercial thermogenic drink on changes in energy expenditure and markers of lipolysis. J Int Soc Sports Nutr. 2008;5:6.CrossRefPubMedPubMedCentral
37.
go back to reference Roberts MD, Dalbo VJ, Hassell SE, Stout JR, Kerksick CM. Efficacy and safety of a popular thermogenic drink after 28 days of ingestion. J Int Soc Sports Nutr. 2008;5:19.CrossRefPubMedPubMedCentral Roberts MD, Dalbo VJ, Hassell SE, Stout JR, Kerksick CM. Efficacy and safety of a popular thermogenic drink after 28 days of ingestion. J Int Soc Sports Nutr. 2008;5:19.CrossRefPubMedPubMedCentral
38.
go back to reference Acheson KJ, Gremaud G, Meirim I, Montigon F, Krebs Y, Fay LB, et al. Metabolic effects of caffeine in humans: lipid oxidation or futile cycling? Am J Clin Nutr. 2004;79(1):40–6.PubMed Acheson KJ, Gremaud G, Meirim I, Montigon F, Krebs Y, Fay LB, et al. Metabolic effects of caffeine in humans: lipid oxidation or futile cycling? Am J Clin Nutr. 2004;79(1):40–6.PubMed
Metadata
Title
The effects of a fat loss supplement on resting metabolic rate and hemodynamic variables in resistance trained males: a randomized, double-blind, placebo-controlled, cross-over trial
Authors
Bill I. Campbell
Ryan J. Colquhoun
Gina Zito
Nic Martinez
Kristina Kendall
Laura Buchanan
Matt Lehn
Mallory Johnson
Courtney St. Louis
Yasmin Smith
Brad Cloer
Publication date
01-12-2016
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12970-016-0125-z

Other articles of this Issue 1/2016

Journal of the International Society of Sports Nutrition 1/2016 Go to the issue