Skip to main content
Top
Published in: Molecular Cancer 1/2022

Open Access 01-12-2022 | Breast Cancer | Research

Ceritinib is a novel triple negative breast cancer therapeutic agent

Authors: Shengli Dong, Hassan Yousefi, Isabella Van Savage, Samuel C. Okpechi, Maryl K. Wright, Margarite D. Matossian, Bridgette M. Collins-Burow, Matthew E. Burow, Suresh K. Alahari

Published in: Molecular Cancer | Issue 1/2022

Login to get access

Abstract

Background

Triple-negative breast cancers (TNBCs) are clinically aggressive subtypes of breast cancer. TNBC is difficult to treat with targeted agents due to the lack of commonly targeted therapies within this subtype. Androgen receptor (AR) has been detected in 12–55% of TNBCs. AR stimulates breast tumor growth in the absence of estrogen receptor (ER), and it has become an emerging molecular target in TNBC treatment.

Methods

Ceritinib is a small molecule inhibitor of tyrosine kinase and it is used in the therapy of non-small lung cancer patients. Enzalutamide is a small molecule compound targeting the androgen receptor and it is used to treat prostate cancer. Combination therapy of these drugs were investigated using AR positive breast cancer mouse xenograft models. Also, combination treatment of ceritinib and paclitaxel investigated using AR and AR low mouse xenograft and patient derived xenograft models.

Results

We screened 133 FDA approved drugs that have a therapeutic effect of AR+ TNBC cells. From the screen, we identified two drugs, ceritinib and crizotinib. Since ceritinib has a well- defined role in androgen independent AR signaling pathways, we further investigated the effect of ceritinib. Ceritinib treatment inhibited RTK/ACK/AR pathway and other downstream pathways in AR+ TNBC cells. The combination of ceritinib and enzalutamide showed a robust inhibitory effect on cell growth of AR+ TNBC cells in vitro and in vivo. Interestingly Ceritinib inhibits FAK-YB-1 signaling pathway that leads to paclitaxel resistance in all types of TNBC cells. The combination of paclitaxel and ceritinib showed drastic inhibition of tumor growth compared to a single drug alone.

Conclusions

To improve the response of AR antagonist in AR positive TNBC, we designed a novel combinational strategy comprised of enzalutamide and ceritinib to treat AR+ TNBC tumors through the dual blockade of androgen-dependent and androgen-independent AR signaling pathways. Furthermore, we introduced a novel therapeutic combination of ceritinib and paclitaxel for AR negative or AR-low TNBCs and this combination inhibited tumor growth to a great extent. All agents used in our study are FDA-approved, and thus the proposed combination therapy will likely be useful in the clinic.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cho B, Han Y, Lian M, Colditz GA, Weber JD, Ma C, et al. Evaluation of racial/ethnic differences in treatment and mortality among women with triple-negative breast Cancer. JAMA Oncol. 2021. Cho B, Han Y, Lian M, Colditz GA, Weber JD, Ma C, et al. Evaluation of racial/ethnic differences in treatment and mortality among women with triple-negative breast Cancer. JAMA Oncol. 2021.
2.
go back to reference Boyle P. Triple-negative breast cancer: epidemiological considerations and recommendations. Ann Oncol. 2012;23 Suppl 6:vi7-12. Boyle P. Triple-negative breast cancer: epidemiological considerations and recommendations. Ann Oncol. 2012;23 Suppl 6:vi7-12.
3.
go back to reference Mahtani R, Kittaneh M, Kalinsky K, Mamounas E, Badve S, Vogel C, et al. Breast Cancer therapy expert G: advances in therapeutic approaches for triple-negative breast Cancer. Clin Breast Cancer. 2020. Mahtani R, Kittaneh M, Kalinsky K, Mamounas E, Badve S, Vogel C, et al. Breast Cancer therapy expert G: advances in therapeutic approaches for triple-negative breast Cancer. Clin Breast Cancer. 2020.
4.
go back to reference Mi H, Gong C, Sulam J, Fertig EJ, Szalay AS, Jaffee EM, et al. Digital pathology analysis quantifies spatial heterogeneity of CD3, CD4, CD8, CD20, and FoxP3 immune markers in triple-negative breast Cancer. Front Physiol. 2020;11:583333.PubMedPubMedCentralCrossRef Mi H, Gong C, Sulam J, Fertig EJ, Szalay AS, Jaffee EM, et al. Digital pathology analysis quantifies spatial heterogeneity of CD3, CD4, CD8, CD20, and FoxP3 immune markers in triple-negative breast Cancer. Front Physiol. 2020;11:583333.PubMedPubMedCentralCrossRef
5.
go back to reference Lehmann BD, Jovanovic B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast Cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS One. 2016;11(6):e0157368.PubMedPubMedCentralCrossRef Lehmann BD, Jovanovic B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast Cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS One. 2016;11(6):e0157368.PubMedPubMedCentralCrossRef
6.
go back to reference Gucalp A, Tolaney S, Isakoff SJ, Ingle JN, Liu MC, Carey LA, et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast Cancer. Clin Cancer Res. 2013;19(19):5505–12.PubMedPubMedCentralCrossRef Gucalp A, Tolaney S, Isakoff SJ, Ingle JN, Liu MC, Carey LA, et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast Cancer. Clin Cancer Res. 2013;19(19):5505–12.PubMedPubMedCentralCrossRef
7.
go back to reference Traina TA, Miller K, Yardley DA, Eakle J, Schwartzberg LS, O'Shaughnessy J, et al. Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast Cancer. J Clin Oncol. 2018;36(9):884–90.PubMedPubMedCentralCrossRef Traina TA, Miller K, Yardley DA, Eakle J, Schwartzberg LS, O'Shaughnessy J, et al. Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast Cancer. J Clin Oncol. 2018;36(9):884–90.PubMedPubMedCentralCrossRef
8.
go back to reference Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene. 2005;24(29):4660–71.PubMedCrossRef Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene. 2005;24(29):4660–71.PubMedCrossRef
9.
go back to reference Lehmann BD, Pietenpol JA. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J Pathol. 2014;232(2):142–50.PubMedPubMedCentralCrossRef Lehmann BD, Pietenpol JA. Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J Pathol. 2014;232(2):142–50.PubMedPubMedCentralCrossRef
10.
go back to reference Cochrane DR, Bernales S, Jacobsen BM, Cittelly DM, Howe EN, D'Amato NC, et al. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res. 2014;16(1):R7.PubMedPubMedCentralCrossRef Cochrane DR, Bernales S, Jacobsen BM, Cittelly DM, Howe EN, D'Amato NC, et al. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res. 2014;16(1):R7.PubMedPubMedCentralCrossRef
11.
go back to reference Barton VN, D'Amato NC, Gordon MA, Lind HT, Spoelstra NS, Babbs BL, et al. Multiple molecular subtypes of triple-negative breast cancer critically rely on androgen receptor and respond to enzalutamide in vivo. Mol Cancer Ther. 2015;14(3):769–78.PubMedPubMedCentralCrossRef Barton VN, D'Amato NC, Gordon MA, Lind HT, Spoelstra NS, Babbs BL, et al. Multiple molecular subtypes of triple-negative breast cancer critically rely on androgen receptor and respond to enzalutamide in vivo. Mol Cancer Ther. 2015;14(3):769–78.PubMedPubMedCentralCrossRef
12.
go back to reference Peters AA, Buchanan G, Ricciardelli C, Bianco-Miotto T, Centenera MM, Harris JM, et al. Androgen receptor inhibits estrogen receptor-alpha activity and is prognostic in breast cancer. Cancer Res. 2009;69(15):6131–40.PubMedCrossRef Peters AA, Buchanan G, Ricciardelli C, Bianco-Miotto T, Centenera MM, Harris JM, et al. Androgen receptor inhibits estrogen receptor-alpha activity and is prognostic in breast cancer. Cancer Res. 2009;69(15):6131–40.PubMedCrossRef
13.
go back to reference Robinson JL, Macarthur S, Ross-Innes CS, Tilley WD, Neal DE, Mills IG, et al. Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO J. 2011;30(15):3019–27.PubMedPubMedCentralCrossRef Robinson JL, Macarthur S, Ross-Innes CS, Tilley WD, Neal DE, Mills IG, et al. Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO J. 2011;30(15):3019–27.PubMedPubMedCentralCrossRef
14.
go back to reference Gerratana L, Basile D, Buono G, De Placido S, Giuliano M, Minichillo S, et al. Androgen receptor in triple negative breast cancer: a potential target for the targetless subtype. Cancer Treat Rev. 2018;68:102–10.PubMedCrossRef Gerratana L, Basile D, Buono G, De Placido S, Giuliano M, Minichillo S, et al. Androgen receptor in triple negative breast cancer: a potential target for the targetless subtype. Cancer Treat Rev. 2018;68:102–10.PubMedCrossRef
15.
go back to reference Morozzi C, Sedlakova J, Serpi M, Avigliano M, Carbajo R, Sandoval L, et al. Targeting GNE myopathy: a dual prodrug approach for the delivery of N-Acetylmannosamine 6-phosphate. J Med Chem. 2019;62(17):8178–93.PubMedCrossRef Morozzi C, Sedlakova J, Serpi M, Avigliano M, Carbajo R, Sandoval L, et al. Targeting GNE myopathy: a dual prodrug approach for the delivery of N-Acetylmannosamine 6-phosphate. J Med Chem. 2019;62(17):8178–93.PubMedCrossRef
16.
go back to reference Barton VN, D'Amato NC, Gordon MA, Christenson JL, Elias A, Richer JK. Androgen receptor biology in triple negative breast Cancer: a case for classification as AR+ or quadruple negative disease. Horm Cancer. 2015;6(5-6):206–13.PubMedPubMedCentralCrossRef Barton VN, D'Amato NC, Gordon MA, Christenson JL, Elias A, Richer JK. Androgen receptor biology in triple negative breast Cancer: a case for classification as AR+ or quadruple negative disease. Horm Cancer. 2015;6(5-6):206–13.PubMedPubMedCentralCrossRef
17.
go back to reference Gristina V, La Mantia M, Iacono F, Galvano A, Russo A, Bazan V. The emerging therapeutic landscape of ALK inhibitors in non-small cell lung Cancer. Pharmaceuticals (Basel). 2020;13(12). Gristina V, La Mantia M, Iacono F, Galvano A, Russo A, Bazan V. The emerging therapeutic landscape of ALK inhibitors in non-small cell lung Cancer. Pharmaceuticals (Basel). 2020;13(12).
18.
go back to reference Doane AS, Danso M, Lal P, Donaton M, Zhang L, Hudis C, et al. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene. 2006;25(28):3994–4008.PubMedCrossRef Doane AS, Danso M, Lal P, Donaton M, Zhang L, Hudis C, et al. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene. 2006;25(28):3994–4008.PubMedCrossRef
19.
go back to reference Kikuchi K, McNamara KM, Miki Y, Moon JY, Choi MH, Omata F, et al. Effects of cytokines derived from cancer-associated fibroblasts on androgen synthetic enzymes in estrogen receptor-negative breast carcinoma. Breast Cancer Res Treat. 2017;166(3):709–23.PubMedCrossRef Kikuchi K, McNamara KM, Miki Y, Moon JY, Choi MH, Omata F, et al. Effects of cytokines derived from cancer-associated fibroblasts on androgen synthetic enzymes in estrogen receptor-negative breast carcinoma. Breast Cancer Res Treat. 2017;166(3):709–23.PubMedCrossRef
20.
go back to reference Verduzco D, Kuenzi BM, Kinose F, Sondak VK, Eroglu Z, Rix U, et al. Ceritinib enhances the efficacy of Trametinib in BRAF/NRAS-wild-type melanoma cell lines. Mol Cancer Ther. 2018;17(1):73–83.PubMedCrossRef Verduzco D, Kuenzi BM, Kinose F, Sondak VK, Eroglu Z, Rix U, et al. Ceritinib enhances the efficacy of Trametinib in BRAF/NRAS-wild-type melanoma cell lines. Mol Cancer Ther. 2018;17(1):73–83.PubMedCrossRef
21.
go back to reference Kuenzi BM, Remsing Rix LL, Stewart PA, Fang B, Kinose F, Bryant AT, et al. Polypharmacology-based ceritinib repurposing using integrated functional proteomics. Nat Chem Biol. 2017;13(12):1222–31.PubMedPubMedCentralCrossRef Kuenzi BM, Remsing Rix LL, Stewart PA, Fang B, Kinose F, Bryant AT, et al. Polypharmacology-based ceritinib repurposing using integrated functional proteomics. Nat Chem Biol. 2017;13(12):1222–31.PubMedPubMedCentralCrossRef
22.
go back to reference Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370(13):1189–97.PubMedPubMedCentralCrossRef Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370(13):1189–97.PubMedPubMedCentralCrossRef
23.
go back to reference Ekyalongo RC, Yee D. Revisiting the IGF-1R as a breast cancer target. NPJ precis Oncol. 2017;1. Ekyalongo RC, Yee D. Revisiting the IGF-1R as a breast cancer target. NPJ precis Oncol. 2017;1.
24.
go back to reference Wu X, Zahari MS, Renuse S, Kelkar DS, Barbhuiya MA, Rojas PL, et al. The non-receptor tyrosine kinase TNK2/ACK1 is a novel therapeutic target in triple negative breast cancer. Oncotarget. 2017;8(2):2971–83.PubMedCrossRef Wu X, Zahari MS, Renuse S, Kelkar DS, Barbhuiya MA, Rojas PL, et al. The non-receptor tyrosine kinase TNK2/ACK1 is a novel therapeutic target in triple negative breast cancer. Oncotarget. 2017;8(2):2971–83.PubMedCrossRef
25.
go back to reference Luo M, Guan JL. Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis. Cancer Lett. 2010;289(2):127–39.PubMedCrossRef Luo M, Guan JL. Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis. Cancer Lett. 2010;289(2):127–39.PubMedCrossRef
26.
go back to reference Al-Aidaroos AQ, Yuen HF, Guo K, Zhang SD, Chung TH, Chng WJ, et al. Metastasis-associated PRL-3 induces EGFR activation and addiction in cancer cells. J Clin Invest. 2013;123(8):3459–71.PubMedPubMedCentralCrossRef Al-Aidaroos AQ, Yuen HF, Guo K, Zhang SD, Chung TH, Chng WJ, et al. Metastasis-associated PRL-3 induces EGFR activation and addiction in cancer cells. J Clin Invest. 2013;123(8):3459–71.PubMedPubMedCentralCrossRef
27.
go back to reference Wu X, Zahari MS, Ma B, Liu R, Renuse S, Sahasrabuddhe NA, et al. Global phosphotyrosine survey in triple-negative breast cancer reveals activation of multiple tyrosine kinase signaling pathways. Oncotarget. 2015;6(30):29143–60.PubMedPubMedCentralCrossRef Wu X, Zahari MS, Ma B, Liu R, Renuse S, Sahasrabuddhe NA, et al. Global phosphotyrosine survey in triple-negative breast cancer reveals activation of multiple tyrosine kinase signaling pathways. Oncotarget. 2015;6(30):29143–60.PubMedPubMedCentralCrossRef
28.
go back to reference Mahajan NP, Liu Y, Majumder S, Warren MR, Parker CE, Mohler JL, et al. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci U S A. 2007;104(20):8438–43.PubMedPubMedCentralCrossRef Mahajan NP, Liu Y, Majumder S, Warren MR, Parker CE, Mohler JL, et al. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci U S A. 2007;104(20):8438–43.PubMedPubMedCentralCrossRef
29.
go back to reference Butti R, Das S, Gunasekaran VP, Yadav AS, Kumar D, Kundu GC. Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Mol Cancer. 2018;17(1):34.PubMedPubMedCentralCrossRef Butti R, Das S, Gunasekaran VP, Yadav AS, Kumar D, Kundu GC. Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Mol Cancer. 2018;17(1):34.PubMedPubMedCentralCrossRef
30.
go back to reference Mahajan K, Malla P, Lawrence HR, Chen Z, Kumar-Sinha C, Malik R, et al. ACK1/TNK2 regulates histone H4 Tyr88-phosphorylation and AR gene expression in castration-resistant prostate Cancer. Cancer Cell. 2017;31(6):790–803 e798.PubMedPubMedCentralCrossRef Mahajan K, Malla P, Lawrence HR, Chen Z, Kumar-Sinha C, Malik R, et al. ACK1/TNK2 regulates histone H4 Tyr88-phosphorylation and AR gene expression in castration-resistant prostate Cancer. Cancer Cell. 2017;31(6):790–803 e798.PubMedPubMedCentralCrossRef
31.
go back to reference Yang L, Li Y, Shen E, Cao F, Li L, Li X, et al. NRG1-dependent activation of HER3 induces primary resistance to trastuzumab in HER2-overexpressing breast cancer cells. Int J Oncol. 2017;51(5):1553–62.PubMedCrossRef Yang L, Li Y, Shen E, Cao F, Li L, Li X, et al. NRG1-dependent activation of HER3 induces primary resistance to trastuzumab in HER2-overexpressing breast cancer cells. Int J Oncol. 2017;51(5):1553–62.PubMedCrossRef
32.
go back to reference Sak MM, Breen K, Ronning SB, Pedersen NM, Bertelsen V, Stang E, et al. The oncoprotein ErbB3 is endocytosed in the absence of added ligand in a clathrin-dependent manner. Carcinogenesis. 2012;33(5):1031–9.PubMedCrossRef Sak MM, Breen K, Ronning SB, Pedersen NM, Bertelsen V, Stang E, et al. The oncoprotein ErbB3 is endocytosed in the absence of added ligand in a clathrin-dependent manner. Carcinogenesis. 2012;33(5):1031–9.PubMedCrossRef
33.
go back to reference Ni M, Chen Y, Lim E, Wimberly H, Bailey ST, Imai Y, et al. Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell. 2011;20(1):119–31.PubMedPubMedCentralCrossRef Ni M, Chen Y, Lim E, Wimberly H, Bailey ST, Imai Y, et al. Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell. 2011;20(1):119–31.PubMedPubMedCentralCrossRef
34.
go back to reference Barton VN, Christenson JL, Gordon MA, Greene LI, Rogers TJ, Butterfield K, et al. Androgen receptor supports an Anchorage-independent, Cancer stem cell-like population in triple-negative breast Cancer. Cancer Res. 2017;77(13):3455–66.PubMedPubMedCentralCrossRef Barton VN, Christenson JL, Gordon MA, Greene LI, Rogers TJ, Butterfield K, et al. Androgen receptor supports an Anchorage-independent, Cancer stem cell-like population in triple-negative breast Cancer. Cancer Res. 2017;77(13):3455–66.PubMedPubMedCentralCrossRef
35.
go back to reference Baranwal S, Wang Y, Rathinam R, Lee J, Jin L, McGoey R, et al. Molecular characterization of the tumor-suppressive function of nischarin in breast cancer. J Natl Cancer Inst. 2011;103(20):1513–28.PubMedPubMedCentralCrossRef Baranwal S, Wang Y, Rathinam R, Lee J, Jin L, McGoey R, et al. Molecular characterization of the tumor-suppressive function of nischarin in breast cancer. J Natl Cancer Inst. 2011;103(20):1513–28.PubMedPubMedCentralCrossRef
36.
go back to reference Liu Z, Adams HC 3rd, Whitehead IP. The rho-specific guanine nucleotide exchange factor Dbs regulates breast cancer cell migration. J Biol Chem. 2009;284(23):15771–80.PubMedPubMedCentralCrossRef Liu Z, Adams HC 3rd, Whitehead IP. The rho-specific guanine nucleotide exchange factor Dbs regulates breast cancer cell migration. J Biol Chem. 2009;284(23):15771–80.PubMedPubMedCentralCrossRef
37.
go back to reference Narayan P, Wahby S, Gao JJ, Amiri-Kordestani L, Ibrahim A, Bloomquist E, et al. FDA approval summary: Atezolizumab plus paclitaxel protein-bound for the treatment of patients with advanced or metastatic TNBC whose tumors express PD-L1. Clin Cancer Res. 2020;26(10):2284–9.PubMedCrossRef Narayan P, Wahby S, Gao JJ, Amiri-Kordestani L, Ibrahim A, Bloomquist E, et al. FDA approval summary: Atezolizumab plus paclitaxel protein-bound for the treatment of patients with advanced or metastatic TNBC whose tumors express PD-L1. Clin Cancer Res. 2020;26(10):2284–9.PubMedCrossRef
38.
go back to reference Jurj A, Pop LA, Zanoaga O, Ciocan-Cartita CA, Cojocneanu R, Moldovan C, et al. New insights in gene expression alteration as effect of paclitaxel drug resistance in triple negative breast Cancer cells. Cell Physiol Biochem. 2020;54(4):648–64.PubMedCrossRef Jurj A, Pop LA, Zanoaga O, Ciocan-Cartita CA, Cojocneanu R, Moldovan C, et al. New insights in gene expression alteration as effect of paclitaxel drug resistance in triple negative breast Cancer cells. Cell Physiol Biochem. 2020;54(4):648–64.PubMedCrossRef
39.
go back to reference Kang Y, Hu W, Ivan C, Dalton HJ, Miyake T, Pecot CV, et al. Role of focal adhesion kinase in regulating YB-1-mediated paclitaxel resistance in ovarian cancer. J Natl Cancer Inst. 2013;105(19):1485–95.PubMedPubMedCentralCrossRef Kang Y, Hu W, Ivan C, Dalton HJ, Miyake T, Pecot CV, et al. Role of focal adhesion kinase in regulating YB-1-mediated paclitaxel resistance in ovarian cancer. J Natl Cancer Inst. 2013;105(19):1485–95.PubMedPubMedCentralCrossRef
40.
go back to reference Tancioni I, Miller NL, Uryu S, Lawson C, Jean C, Chen XL, et al. FAK activity protects nucleostemin in facilitating breast cancer spheroid and tumor growth. Breast Cancer Res. 2015;17:47.PubMedPubMedCentralCrossRef Tancioni I, Miller NL, Uryu S, Lawson C, Jean C, Chen XL, et al. FAK activity protects nucleostemin in facilitating breast cancer spheroid and tumor growth. Breast Cancer Res. 2015;17:47.PubMedPubMedCentralCrossRef
41.
go back to reference Pop L, Suciu I, Ionescu O, Bacalbasa N, Ionescu P. The role of novel poly (ADP-ribose) inhibitors in the treatment of locally advanced and metastatic Her-2/neu negative breast cancer with inherited germline BRCA1/2 mutations. A review of the literature. J Med Life. 2021;14(1):17–20.PubMedPubMedCentralCrossRef Pop L, Suciu I, Ionescu O, Bacalbasa N, Ionescu P. The role of novel poly (ADP-ribose) inhibitors in the treatment of locally advanced and metastatic Her-2/neu negative breast cancer with inherited germline BRCA1/2 mutations. A review of the literature. J Med Life. 2021;14(1):17–20.PubMedPubMedCentralCrossRef
42.
go back to reference Steiner M, Tan AR. The evolving role of immune checkpoint inhibitors in the treatment of triple-negative breast cancer. Clin Adv Hematol Oncol. 2021;19(5):305–15.PubMed Steiner M, Tan AR. The evolving role of immune checkpoint inhibitors in the treatment of triple-negative breast cancer. Clin Adv Hematol Oncol. 2021;19(5):305–15.PubMed
43.
go back to reference Bartsch R, ESMO. Highlights in breast cancer. Memo. 2020;2021:1–4. Bartsch R, ESMO. Highlights in breast cancer. Memo. 2020;2021:1–4.
44.
go back to reference Nagayama A, Vidula N, Bardia A. Novel therapies for metastatic triple-negative breast Cancer: spotlight on immunotherapy and antibody-drug conjugates. Oncology (Williston Park). 2021;35(5):249–54.CrossRef Nagayama A, Vidula N, Bardia A. Novel therapies for metastatic triple-negative breast Cancer: spotlight on immunotherapy and antibody-drug conjugates. Oncology (Williston Park). 2021;35(5):249–54.CrossRef
46.
go back to reference Ding YC, Steele L, Warden C, Wilczynski S, Mortimer J, Yuan Y, et al. Molecular subtypes of triple-negative breast cancer in women of different race and ethnicity. Oncotarget. 2019;10(2):198–208.PubMedPubMedCentralCrossRef Ding YC, Steele L, Warden C, Wilczynski S, Mortimer J, Yuan Y, et al. Molecular subtypes of triple-negative breast cancer in women of different race and ethnicity. Oncotarget. 2019;10(2):198–208.PubMedPubMedCentralCrossRef
47.
go back to reference Davey RA, Grossmann M. Androgen receptor structure, function and biology: from bench to bedside. Clin Biochem Rev. 2016;37(1):3–15.PubMedPubMedCentral Davey RA, Grossmann M. Androgen receptor structure, function and biology: from bench to bedside. Clin Biochem Rev. 2016;37(1):3–15.PubMedPubMedCentral
48.
go back to reference Labrie F, Luu-The V, Labrie C, Belanger A, Simard J, Lin SX, et al. Endocrine and intracrine sources of androgens in women: inhibition of breast cancer and other roles of androgens and their precursor dehydroepiandrosterone. Endocr Rev. 2003;24(2):152–82.PubMedCrossRef Labrie F, Luu-The V, Labrie C, Belanger A, Simard J, Lin SX, et al. Endocrine and intracrine sources of androgens in women: inhibition of breast cancer and other roles of androgens and their precursor dehydroepiandrosterone. Endocr Rev. 2003;24(2):152–82.PubMedCrossRef
49.
go back to reference Vermeulen A. Plasma androgens in women. J Reprod Med. 1998;43(8 Suppl):725–33.PubMed Vermeulen A. Plasma androgens in women. J Reprod Med. 1998;43(8 Suppl):725–33.PubMed
50.
go back to reference Davison SL, Bell R, Donath S, Montalto JG, Davis SR. Androgen levels in adult females: changes with age, menopause, and oophorectomy. J Clin Endocrinol Metab. 2005;90(7):3847–53.PubMedCrossRef Davison SL, Bell R, Donath S, Montalto JG, Davis SR. Androgen levels in adult females: changes with age, menopause, and oophorectomy. J Clin Endocrinol Metab. 2005;90(7):3847–53.PubMedCrossRef
51.
go back to reference Lehmann BD, Bauer JA, Schafer JM, Pendleton CS, Tang L, Johnson KC, et al. PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res. 2014;16(4):406.PubMedPubMedCentralCrossRef Lehmann BD, Bauer JA, Schafer JM, Pendleton CS, Tang L, Johnson KC, et al. PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res. 2014;16(4):406.PubMedPubMedCentralCrossRef
52.
go back to reference Tan MH, Li J, Xu HE, Melcher K, Yong EL. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin. 2015;36(1):3–23.PubMedCrossRef Tan MH, Li J, Xu HE, Melcher K, Yong EL. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin. 2015;36(1):3–23.PubMedCrossRef
53.
go back to reference Friboulet L, Li N, Katayama R, Lee CC, Gainor JF, Crystal AS, et al. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov. 2014;4(6):662–73.PubMedPubMedCentralCrossRef Friboulet L, Li N, Katayama R, Lee CC, Gainor JF, Crystal AS, et al. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov. 2014;4(6):662–73.PubMedPubMedCentralCrossRef
Metadata
Title
Ceritinib is a novel triple negative breast cancer therapeutic agent
Authors
Shengli Dong
Hassan Yousefi
Isabella Van Savage
Samuel C. Okpechi
Maryl K. Wright
Margarite D. Matossian
Bridgette M. Collins-Burow
Matthew E. Burow
Suresh K. Alahari
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2022
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-022-01601-0

Other articles of this Issue 1/2022

Molecular Cancer 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine