Skip to main content
Top
Published in: Malaria Journal 1/2021

Open Access 01-12-2021 | Malaria | Research

The effect of community-driven larval source management and house improvement on malaria transmission when added to the standard malaria control strategies in Malawi: a cluster-randomized controlled trial

Authors: Robert S. McCann, Alinune N. Kabaghe, Paula Moraga, Steven Gowelo, Monicah M. Mburu, Tinashe Tizifa, Michael G. Chipeta, William Nkhono, Aurelio Di Pasquale, Nicolas Maire, Lucinda Manda-Taylor, Themba Mzilahowa, Henk van den Berg, Peter J. Diggle, Dianne J. Terlouw, Willem Takken, Michèle van Vugt, Kamija S. Phiri

Published in: Malaria Journal | Issue 1/2021

Login to get access

Abstract

Background

Current standard interventions are not universally sufficient for malaria elimination. The effects of community-based house improvement (HI) and larval source management (LSM) as supplementary interventions to the Malawi National Malaria Control Programme (NMCP) interventions were assessed in the context of an intensive community engagement programme.

Methods

The study was a two-by-two factorial, cluster-randomized controlled trial in Malawi. Village clusters were randomly assigned to four arms: a control arm; HI; LSM; and HI + LSM. Malawi NMCP interventions and community engagement were used in all arms. Household-level, cross-sectional surveys were conducted on a rolling, 2-monthly basis to measure parasitological and entomological outcomes over 3 years, beginning with one baseline year. The primary outcome was the entomological inoculation rate (EIR). Secondary outcomes included mosquito density, Plasmodium falciparum prevalence, and haemoglobin levels. All outcomes were assessed based on intention to treat, and comparisons between trial arms were conducted at both cluster and household level.

Results

Eighteen clusters derived from 53 villages with 4558 households and 20,013 people were randomly assigned to the four trial arms. The mean nightly EIR fell from 0.010 infectious bites per person (95% CI 0.006–0.015) in the baseline year to 0.001 (0.000, 0.003) in the last year of the trial. Over the full trial period, the EIR did not differ between the four trial arms (p = 0.33). Similar results were observed for the other outcomes: mosquito density and P. falciparum prevalence decreased over 3 years of sampling, while haemoglobin levels increased; and there were minimal differences between the trial arms during the trial period.

Conclusions

In the context of high insecticide-treated bed net use, neither community-based HI, LSM, nor HI + LSM contributed to further reductions in malaria transmission or prevalence beyond the reductions observed over two years across all four trial arms. This was the first trial, as far as the authors are aware, to test the potential complementary impact of LSM and/or HI beyond levels achieved by standard interventions. The unexpectedly low EIR values following intervention implementation indicated a promising reduction in malaria transmission for the area, but also limited the usefulness of this outcome for measuring differences in malaria transmission among the trial arms.
Trial registration PACTR, PACTR201604001501493, Registered 3 March 2016, https://​pactr.​samrc.​ac.​za/​.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. World malaria report 2015. Geneva, World Health Organization; 2015. WHO. World malaria report 2015. Geneva, World Health Organization; 2015.
2.
go back to reference Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.CrossRef Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.CrossRef
3.
go back to reference WHO. World malaria report 2018. Geneva, World Health Organization; 2018. WHO. World malaria report 2018. Geneva, World Health Organization; 2018.
4.
go back to reference Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.CrossRef Ranson H, Lissenden N. Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.CrossRef
5.
go back to reference Dondorp AM, Smithuis FM, Woodrow C, von Seidlein L. How to contain artemisinin- and multidrug-resistant falciparum malaria. Trends Parasitol. 2017;33:353–63.CrossRef Dondorp AM, Smithuis FM, Woodrow C, von Seidlein L. How to contain artemisinin- and multidrug-resistant falciparum malaria. Trends Parasitol. 2017;33:353–63.CrossRef
6.
go back to reference Theiss-Nyland K, Ejersa W, Karema C, Koné D, Koenker H, Cyaka Y, et al. Operational challenges to continuous LLIN distribution: a qualitative rapid assessment in four countries. Malar J. 2016;15:131.CrossRef Theiss-Nyland K, Ejersa W, Karema C, Koné D, Koenker H, Cyaka Y, et al. Operational challenges to continuous LLIN distribution: a qualitative rapid assessment in four countries. Malar J. 2016;15:131.CrossRef
7.
go back to reference Killeen GF. Characterizing, controlling and eliminating residual malaria transmission. Malar J. 2014;13:330.CrossRef Killeen GF. Characterizing, controlling and eliminating residual malaria transmission. Malar J. 2014;13:330.CrossRef
8.
go back to reference WHO. Global technical strategy for malaria 2016–2030. Geneva, World Health Organization; 2015. WHO. Global technical strategy for malaria 2016–2030. Geneva, World Health Organization; 2015.
9.
go back to reference Williams YA, Tusting LS, Hocini S, Graves PM, Killeen GF, Kleinschmidt I, et al. Expanding the vector control toolbox for malaria elimination: a systematic review of the evidence. Adv Parasitol. 2018;99:345–79.CrossRef Williams YA, Tusting LS, Hocini S, Graves PM, Killeen GF, Kleinschmidt I, et al. Expanding the vector control toolbox for malaria elimination: a systematic review of the evidence. Adv Parasitol. 2018;99:345–79.CrossRef
10.
go back to reference Killeen GF, Masalu JP, Chinula D, Fotakis EA, Kavishe DR, Malone D, et al. Control of malaria vector mosquitoes by insecticide-treated combinations of window screens and eave baffles. Emerg Infect Dis. 2017;23:782–9.CrossRef Killeen GF, Masalu JP, Chinula D, Fotakis EA, Kavishe DR, Malone D, et al. Control of malaria vector mosquitoes by insecticide-treated combinations of window screens and eave baffles. Emerg Infect Dis. 2017;23:782–9.CrossRef
11.
go back to reference Knols BGJ, Farenhorst M, Andriessen R, Snetselaar J, Suer RA, Osinga AJ, et al. Eave tubes for malaria control in Africa: an introduction. Malar J. 2016;15:404.CrossRef Knols BGJ, Farenhorst M, Andriessen R, Snetselaar J, Suer RA, Osinga AJ, et al. Eave tubes for malaria control in Africa: an introduction. Malar J. 2016;15:404.CrossRef
12.
go back to reference Fillinger U, Lindsay SW. Larval source management for malaria control in Africa: myths and reality. Malar J. 2011;10:353.CrossRef Fillinger U, Lindsay SW. Larval source management for malaria control in Africa: myths and reality. Malar J. 2011;10:353.CrossRef
13.
go back to reference Lindsay SW, Emerson PM, Charlwood JD. Reducing malaria by mosquito-proofing houses. Trends Parasitol. 2002;18:510–4.CrossRef Lindsay SW, Emerson PM, Charlwood JD. Reducing malaria by mosquito-proofing houses. Trends Parasitol. 2002;18:510–4.CrossRef
14.
go back to reference Tusting LS, Bottomley C, Gibson H, Kleinschmidt I, Tatem AJ, Lindsay SW, et al. Housing improvements and malaria risk in sub-Saharan Africa: a multi-country analysis of survey data. PLoS Med. 2017;14:e1002234.CrossRef Tusting LS, Bottomley C, Gibson H, Kleinschmidt I, Tatem AJ, Lindsay SW, et al. Housing improvements and malaria risk in sub-Saharan Africa: a multi-country analysis of survey data. PLoS Med. 2017;14:e1002234.CrossRef
15.
go back to reference Kirby MJ, Ameh D, Bottomley C, Green C, Jawara M, Milligan PJ, et al. Effect of two different house screening interventions on exposure to malaria vectors and on anaemia in children in The Gambia: a randomised controlled trial. Lancet. 2009;374:998–1009.CrossRef Kirby MJ, Ameh D, Bottomley C, Green C, Jawara M, Milligan PJ, et al. Effect of two different house screening interventions on exposure to malaria vectors and on anaemia in children in The Gambia: a randomised controlled trial. Lancet. 2009;374:998–1009.CrossRef
16.
go back to reference Getawen SK, Ashine T, Massebo F, Woldeyes D, Lindtjørn B. Exploring the impact of house screening intervention on entomological indices and incidence of malaria in Arba Minch town, southwest Ethiopia: a randomized control trial. Acta Trop. 2018;181:84–94.CrossRef Getawen SK, Ashine T, Massebo F, Woldeyes D, Lindtjørn B. Exploring the impact of house screening intervention on entomological indices and incidence of malaria in Arba Minch town, southwest Ethiopia: a randomized control trial. Acta Trop. 2018;181:84–94.CrossRef
17.
go back to reference Tusting LS, Thwing J, Sinclair D, Fillinger U, Gimnig JE, Bonner KE, et al. Mosquito larval source management for controlling malaria. Cochrane Database Syst Rev. 2013;2013:CD008923.PubMedCentral Tusting LS, Thwing J, Sinclair D, Fillinger U, Gimnig JE, Bonner KE, et al. Mosquito larval source management for controlling malaria. Cochrane Database Syst Rev. 2013;2013:CD008923.PubMedCentral
18.
go back to reference WHO. Global vector control response 2017–2030. Geneva, World Health Organization; 2017. WHO. Global vector control response 2017–2030. Geneva, World Health Organization; 2017.
19.
go back to reference Mukabana WR, Kannady K, Kiama GM, Ijumba JN, Mathenge EM, Kiche I, et al. Ecologists can enable communities to implement malaria vector control in Africa. Malar J. 2006;5:9.CrossRef Mukabana WR, Kannady K, Kiama GM, Ijumba JN, Mathenge EM, Kiche I, et al. Ecologists can enable communities to implement malaria vector control in Africa. Malar J. 2006;5:9.CrossRef
20.
go back to reference van den Berg H, Knols BGJ. The Farmer Field School: a method for enhancing the role of rural communities in malaria control ? Malar J. 2006;5:3.CrossRef van den Berg H, Knols BGJ. The Farmer Field School: a method for enhancing the role of rural communities in malaria control ? Malar J. 2006;5:3.CrossRef
21.
go back to reference Mzilahowa T, Hastings IM, Molyneux ME, McCall PJ. Entomological indices of malaria transmission in Chikhwawa district, Southern Malawi. Malar J. 2012;11:380.CrossRef Mzilahowa T, Hastings IM, Molyneux ME, McCall PJ. Entomological indices of malaria transmission in Chikhwawa district, Southern Malawi. Malar J. 2012;11:380.CrossRef
22.
go back to reference van den Berg H, Van Vugt M, Kabaghe AN, Nkalapa M, Kaotcha R, Truwah Z, et al. Community-based malaria control in southern Malawi: a description of experimental interventions of community workshops, house improvement and larval source management. Malar J. 2018;17:266.CrossRef van den Berg H, Van Vugt M, Kabaghe AN, Nkalapa M, Kaotcha R, Truwah Z, et al. Community-based malaria control in southern Malawi: a description of experimental interventions of community workshops, house improvement and larval source management. Malar J. 2018;17:266.CrossRef
23.
go back to reference Diallo D, Doumbo OK, Plowe CV, Wellems TE, Emanuel EJ, Hurst SA. Community permission for medical research in developing countries. Clin Infect Dis. 2005;41:255–9.CrossRef Diallo D, Doumbo OK, Plowe CV, Wellems TE, Emanuel EJ, Hurst SA. Community permission for medical research in developing countries. Clin Infect Dis. 2005;41:255–9.CrossRef
24.
go back to reference McCann RS, van den Berg H, Takken W, Chetwynd AG, Giorgi E, Terlouw DJ, et al. Reducing contamination risk in cluster-randomized infectious disease-intervention trials. Int J Epidemiol. 2018;47:2015–24.CrossRef McCann RS, van den Berg H, Takken W, Chetwynd AG, Giorgi E, Terlouw DJ, et al. Reducing contamination risk in cluster-randomized infectious disease-intervention trials. Int J Epidemiol. 2018;47:2015–24.CrossRef
25.
go back to reference Guerra CA, Reiner RC, Perkins T, Lindsay SW, Midega JT, Brady OJ, et al. A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-borne pathogens. Parasit Vectors. 2014;7:276.CrossRef Guerra CA, Reiner RC, Perkins T, Lindsay SW, Midega JT, Brady OJ, et al. A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-borne pathogens. Parasit Vectors. 2014;7:276.CrossRef
26.
go back to reference Hiscox A, Otieno B, Kibet A, Mweresa CK, Omusula P, Geier M, et al. Development and optimization of the Suna trap as a tool for mosquito monitoring and control. Malar J. 2014;13:257.CrossRef Hiscox A, Otieno B, Kibet A, Mweresa CK, Omusula P, Geier M, et al. Development and optimization of the Suna trap as a tool for mosquito monitoring and control. Malar J. 2014;13:257.CrossRef
27.
go back to reference Mburu MM, Zembere K, Hiscox A, Banda J, Phiri KS, van den Berg H, et al. Assessment of the Suna trap for sampling mosquitoes indoors and outdoors. Malar J. 2019;18:51.CrossRef Mburu MM, Zembere K, Hiscox A, Banda J, Phiri KS, van den Berg H, et al. Assessment of the Suna trap for sampling mosquitoes indoors and outdoors. Malar J. 2019;18:51.CrossRef
29.
go back to reference McCann RS, van den Berg H, Diggle PJ, Van Vugt M, Terlouw DJ, Phiri KS, et al. Assessment of the effect of larval source management and house improvement on malaria transmission when added to standard malaria control strategies in southern Malawi: study protocol for a cluster-randomised controlled trial. BMC Infect Dis. 2017;17:639.CrossRef McCann RS, van den Berg H, Diggle PJ, Van Vugt M, Terlouw DJ, Phiri KS, et al. Assessment of the effect of larval source management and house improvement on malaria transmission when added to standard malaria control strategies in southern Malawi: study protocol for a cluster-randomised controlled trial. BMC Infect Dis. 2017;17:639.CrossRef
30.
go back to reference Tusting LS, Bousema T, Smith DL, Drakeley C. Measuring changes in Plasmodium falciparum transmission: precision, accuracy and costs of metrics. Adv Parasitol. 2014;84:151–208.CrossRef Tusting LS, Bousema T, Smith DL, Drakeley C. Measuring changes in Plasmodium falciparum transmission: precision, accuracy and costs of metrics. Adv Parasitol. 2014;84:151–208.CrossRef
31.
go back to reference Beier JC, Killeen GF, Githure JI. Entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am J Trop Med Hyg. 1999;61:109–13.CrossRef Beier JC, Killeen GF, Githure JI. Entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am J Trop Med Hyg. 1999;61:109–13.CrossRef
32.
go back to reference Smith DL, Dushoff J, Snow RW, Hay SI. The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature. 2005;438:492–5.CrossRef Smith DL, Dushoff J, Snow RW, Hay SI. The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature. 2005;438:492–5.CrossRef
33.
go back to reference WHO. Focus on Malawi. Geneva, World Health Organization; 2013. WHO. Focus on Malawi. Geneva, World Health Organization; 2013.
34.
go back to reference Finda MF, Limwagu AJ, Ngowo HS, Matowo NS, Swai JK, Kaindoa E, et al. Dramatic decreases of malaria transmission intensities in Ifakara, south-eastern Tanzania since early 2000s. Malar J. 2018;17:362.CrossRef Finda MF, Limwagu AJ, Ngowo HS, Matowo NS, Swai JK, Kaindoa E, et al. Dramatic decreases of malaria transmission intensities in Ifakara, south-eastern Tanzania since early 2000s. Malar J. 2018;17:362.CrossRef
35.
go back to reference Mwangangi JM, Mbogo CM, Orindi BO. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar J. 2013;12:13.CrossRef Mwangangi JM, Mbogo CM, Orindi BO. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar J. 2013;12:13.CrossRef
36.
go back to reference Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE, et al. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province. Kenya Malar J. 2010;9:62.CrossRef Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE, et al. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province. Kenya Malar J. 2010;9:62.CrossRef
37.
go back to reference Mburu MM, Juurlink M, Spitzen J, Moraga P, Hiscox A, Mzilahowa T, et al. Impact of partially and fully closed eaves on house entry rates by mosquitoes. Parasit Vectors. 2018;11:383.CrossRef Mburu MM, Juurlink M, Spitzen J, Moraga P, Hiscox A, Mzilahowa T, et al. Impact of partially and fully closed eaves on house entry rates by mosquitoes. Parasit Vectors. 2018;11:383.CrossRef
38.
go back to reference Mburu MM, Mzilahowa T, Amoah B, Chifundo D, Phiri KS, van den Berg H, et al. Biting patterns of malaria vectors of the lower Shire valley, southern Malawi. Acta Trop. 2019;197:105059.CrossRef Mburu MM, Mzilahowa T, Amoah B, Chifundo D, Phiri KS, van den Berg H, et al. Biting patterns of malaria vectors of the lower Shire valley, southern Malawi. Acta Trop. 2019;197:105059.CrossRef
39.
go back to reference Gowelo S, Chirombo J, Koenraadt CJM, Mzilahowa T, van den Berg H, Takken W, et al. Characterisation of anopheline larval habitats in southern Malawi. Acta Trop. 2020;210:105558.CrossRef Gowelo S, Chirombo J, Koenraadt CJM, Mzilahowa T, van den Berg H, Takken W, et al. Characterisation of anopheline larval habitats in southern Malawi. Acta Trop. 2020;210:105558.CrossRef
40.
go back to reference Tusting LS, Ippolito MM, Willey BA, Kleinschmidt I, Dorsey G, Gosling RD, et al. The evidence for improving housing to reduce malaria: a systematic review and meta-analysis. Malar J. 2015;14:209.CrossRef Tusting LS, Ippolito MM, Willey BA, Kleinschmidt I, Dorsey G, Gosling RD, et al. The evidence for improving housing to reduce malaria: a systematic review and meta-analysis. Malar J. 2015;14:209.CrossRef
41.
go back to reference Kaindoa EW, Finda M, Kiplagat J, Mkandawile G, Nyoni A, Coetzee M, et al. Housing gaps, mosquitoes and public viewpoints: a mixed methods assessment of relationships between house characteristics, malaria vector biting risk and community perspectives in rural Tanzania. Malar J. 2018;17:298.CrossRef Kaindoa EW, Finda M, Kiplagat J, Mkandawile G, Nyoni A, Coetzee M, et al. Housing gaps, mosquitoes and public viewpoints: a mixed methods assessment of relationships between house characteristics, malaria vector biting risk and community perspectives in rural Tanzania. Malar J. 2018;17:298.CrossRef
Metadata
Title
The effect of community-driven larval source management and house improvement on malaria transmission when added to the standard malaria control strategies in Malawi: a cluster-randomized controlled trial
Authors
Robert S. McCann
Alinune N. Kabaghe
Paula Moraga
Steven Gowelo
Monicah M. Mburu
Tinashe Tizifa
Michael G. Chipeta
William Nkhono
Aurelio Di Pasquale
Nicolas Maire
Lucinda Manda-Taylor
Themba Mzilahowa
Henk van den Berg
Peter J. Diggle
Dianne J. Terlouw
Willem Takken
Michèle van Vugt
Kamija S. Phiri
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Malaria
Published in
Malaria Journal / Issue 1/2021
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-021-03769-0

Other articles of this Issue 1/2021

Malaria Journal 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.