Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Primary research

DEPDC1B collaborates with GABRD to regulate ESCC progression

Authors: Yunfeng Yuan, Wei Ping, Ruijie Zhang, Zhipeng Hao, Ni Zhang

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Background

Esophageal squamous cell carcinoma (ESCC) is the leading cause of cancer-related death worldwide with a poor prognosis. Given that DEPDC1B plays a key role in multiple cancers, the role of this molecule in ESCC was explored to identify potential targets for ESCC patients.

Method

The expression level of DEPDC1B in ESCC was revealed based on the TCGA database and immunohistochemical experiments on clinical tissues. The correlation between DEPDC1B and survival of ESCC patients was analyzed by Kaplan–Meier method. Small hairpin RNA (shRNA)-mediated silencing of DEPDC1B expression in ESCC cells and performed a series of in vitro and in vivo functional validations.

Result

DEPDC1B was overexpressed in ESCC. High expression of DEPDC1B was significantly negatively correlated with overall survival in patients with ESCC. Moreover, knockdown of DEPDC1B inhibited ESCC cell proliferation, clone formation, migration, tumor formation and promoted apoptosis. Furthermore, knockdown of DEPDC1B leaded to significant downregulation of GABRD in ESCC cells. Meanwhile, GABRD expression was upregulated in ESCC, and its silencing can inhibit the proliferation and migration of the tumor cells. Interestingly, there was a protein interaction between DEPDC1B and GABRD. Functionally, GABRD knockdown partially reversed the contribution of DEPDC1B to ESCC progression. In addition, GABRD regulated ESCC progression may depend on PI3K/AKT/mTOR signaling pathway.

Conclusion

DEPDC1B collaborated with GABRD to regulate ESCC progression, and inhibition of this signaling axis may be a potential therapeutic target for ESCC.
Appendix
Available only for authorised users
Literature
1.
go back to reference DiSiena M, Perelman A, Birk J, Rezaizadeh H. Esophageal cancer: an updated review. South Med J. 2021;114(3):161–8.CrossRefPubMed DiSiena M, Perelman A, Birk J, Rezaizadeh H. Esophageal cancer: an updated review. South Med J. 2021;114(3):161–8.CrossRefPubMed
2.
go back to reference Arnold M, Soerjomataram I, Ferlay J, Forman D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut. 2015;64(3):381–7.CrossRefPubMed Arnold M, Soerjomataram I, Ferlay J, Forman D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut. 2015;64(3):381–7.CrossRefPubMed
3.
go back to reference Reichenbach ZW, Murray MG, Saxena R, Farkas D, Karassik EG, Klochkova A, et al. Clinical and translational advances in esophageal squamous cell carcinoma. Adv Cancer Res. 2019;144:95–135.CrossRefPubMed Reichenbach ZW, Murray MG, Saxena R, Farkas D, Karassik EG, Klochkova A, et al. Clinical and translational advances in esophageal squamous cell carcinoma. Adv Cancer Res. 2019;144:95–135.CrossRefPubMed
4.
go back to reference Yuequan J, Shifeng C, Bing Z. Prognostic factors and family history for survival of esophageal squamous cell carcinoma patients after surgery. Ann Thorac Surg. 2010;90(3):908–13.CrossRefPubMed Yuequan J, Shifeng C, Bing Z. Prognostic factors and family history for survival of esophageal squamous cell carcinoma patients after surgery. Ann Thorac Surg. 2010;90(3):908–13.CrossRefPubMed
5.
go back to reference Cancer Genome Atlas Research Network, Analysis Working Group: Asan University, BC Cancer Agency, Brigham and Women’s Hospital, Broad Institute, et al. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541(7636):169–75.CrossRef Cancer Genome Atlas Research Network, Analysis Working Group: Asan University, BC Cancer Agency, Brigham and Women’s Hospital, Broad Institute, et al. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541(7636):169–75.CrossRef
6.
go back to reference Gao YB, Chen ZL, Li JG, Hu XD, Shi XJ, Sun ZM, et al. Genetic landscape of esophageal squamous cell carcinoma. Nat Genet. 2014;46(10):1097–102.CrossRefPubMed Gao YB, Chen ZL, Li JG, Hu XD, Shi XJ, Sun ZM, et al. Genetic landscape of esophageal squamous cell carcinoma. Nat Genet. 2014;46(10):1097–102.CrossRefPubMed
7.
go back to reference Guo W, Wang P, Li N, Shao F, Zhang H, Yang Z, et al. Prognostic value of PD-L1 in esophageal squamous cell carcinoma: a meta-analysis. Oncotarget. 2018;9(17):13920–33.CrossRefPubMed Guo W, Wang P, Li N, Shao F, Zhang H, Yang Z, et al. Prognostic value of PD-L1 in esophageal squamous cell carcinoma: a meta-analysis. Oncotarget. 2018;9(17):13920–33.CrossRefPubMed
8.
go back to reference Jiang D, Song Q, Wang H, Huang J, Wang H, Hou J, et al. Independent prognostic role of PD-L1expression in patients with esophageal squamous cell carcinoma. Oncotarget. 2017;8(5):8315–29.CrossRefPubMed Jiang D, Song Q, Wang H, Huang J, Wang H, Hou J, et al. Independent prognostic role of PD-L1expression in patients with esophageal squamous cell carcinoma. Oncotarget. 2017;8(5):8315–29.CrossRefPubMed
9.
go back to reference Marchesi S, Montani F, Deflorian G, D’Antuono R, Cuomo A, Bologna S, et al. DEPDC1B coordinates de-adhesion events and cell-cycle progression at mitosis. Dev Cell. 2014;31(4):420–33.CrossRefPubMedPubMedCentral Marchesi S, Montani F, Deflorian G, D’Antuono R, Cuomo A, Bologna S, et al. DEPDC1B coordinates de-adhesion events and cell-cycle progression at mitosis. Dev Cell. 2014;31(4):420–33.CrossRefPubMedPubMedCentral
10.
go back to reference Figeac N, Pruller J, Hofer I, Fortier M, OrtusteQuiroga HP, Banerji CRS, et al. DEPDC1B is a key regulator of myoblast proliferation in mouse and man. Cell Prolif. 2020;53(1): e12717.CrossRefPubMed Figeac N, Pruller J, Hofer I, Fortier M, OrtusteQuiroga HP, Banerji CRS, et al. DEPDC1B is a key regulator of myoblast proliferation in mouse and man. Cell Prolif. 2020;53(1): e12717.CrossRefPubMed
11.
go back to reference Su YF, Liang CY, Huang CY, Peng CY, Chen CC, Lin MC, et al. A putative novel protein, DEPDC1B, is overexpressed in oral cancer patients, and enhanced anchorage-independent growth in oral cancer cells that is mediated by Rac1 and ERK. J Biomed Sci. 2014;21:67.CrossRefPubMedPubMedCentral Su YF, Liang CY, Huang CY, Peng CY, Chen CC, Lin MC, et al. A putative novel protein, DEPDC1B, is overexpressed in oral cancer patients, and enhanced anchorage-independent growth in oral cancer cells that is mediated by Rac1 and ERK. J Biomed Sci. 2014;21:67.CrossRefPubMedPubMedCentral
12.
go back to reference Yang Y, Liu L, Cai J, Wu J, Guan H, Zhu X, et al. DEPDC1B enhances migration and invasion of non-small cell lung cancer cells via activating Wnt/beta-catenin signaling. Biochem Biophys Res Commun. 2014;450(1):899–905.CrossRefPubMed Yang Y, Liu L, Cai J, Wu J, Guan H, Zhu X, et al. DEPDC1B enhances migration and invasion of non-small cell lung cancer cells via activating Wnt/beta-catenin signaling. Biochem Biophys Res Commun. 2014;450(1):899–905.CrossRefPubMed
13.
go back to reference Consonni SV, Maurice MM, Bos JL. DEP domains: structurally similar but functionally different. Nat Rev Mol Cell Biol. 2014;15(5):357–62.CrossRefPubMed Consonni SV, Maurice MM, Bos JL. DEP domains: structurally similar but functionally different. Nat Rev Mol Cell Biol. 2014;15(5):357–62.CrossRefPubMed
14.
go back to reference Boudreau HE, Broustas CG, Gokhale PC, Kumar D, Mewani RR, Rone JD, et al. Expression of BRCC3, a novel cell cycle regulated molecule, is associated with increased phospho-ERK and cell proliferation. Int J Mol Med. 2007;19(1):29–39.PubMed Boudreau HE, Broustas CG, Gokhale PC, Kumar D, Mewani RR, Rone JD, et al. Expression of BRCC3, a novel cell cycle regulated molecule, is associated with increased phospho-ERK and cell proliferation. Int J Mol Med. 2007;19(1):29–39.PubMed
15.
go back to reference Peck J, Douglas Gt WuCH, Burbelo PD. Human RhoGAP domain-containing proteins: structure, function and evolutionary relationships. FEBS Lett. 2002;528(1–3):27–34.CrossRefPubMed Peck J, Douglas Gt WuCH, Burbelo PD. Human RhoGAP domain-containing proteins: structure, function and evolutionary relationships. FEBS Lett. 2002;528(1–3):27–34.CrossRefPubMed
16.
go back to reference Bai S, Chen T, Du T, Chen X, Lai Y, Ma X, et al. High levels of DEPDC1B predict shorter biochemical recurrence-free survival of patients with prostate cancer. Oncol Lett. 2017;14(6):6801–8.PubMedPubMedCentral Bai S, Chen T, Du T, Chen X, Lai Y, Ma X, et al. High levels of DEPDC1B predict shorter biochemical recurrence-free survival of patients with prostate cancer. Oncol Lett. 2017;14(6):6801–8.PubMedPubMedCentral
17.
go back to reference Lai CH, Xu K, Zhou J, Wang M, Zhang W, Liu X, et al. DEPDC1B is a tumor promotor in development of bladder cancer through targeting SHC1. Cell Death Dis. 2020;11(11):986.CrossRefPubMedPubMedCentral Lai CH, Xu K, Zhou J, Wang M, Zhang W, Liu X, et al. DEPDC1B is a tumor promotor in development of bladder cancer through targeting SHC1. Cell Death Dis. 2020;11(11):986.CrossRefPubMedPubMedCentral
18.
go back to reference Pollino S, Benassi MS, Pazzaglia L, Conti A, Bertani N, Righi A, et al. Prognostic role of XTP1/DEPDC1B and SDP35/DEPDC1A in high grade soft-tissue sarcomas. Histol Histopathol. 2018;33(6):597–608.PubMed Pollino S, Benassi MS, Pazzaglia L, Conti A, Bertani N, Righi A, et al. Prognostic role of XTP1/DEPDC1B and SDP35/DEPDC1A in high grade soft-tissue sarcomas. Histol Histopathol. 2018;33(6):597–608.PubMed
19.
go back to reference Xu Y, Sun W, Zheng B, Liu X, Luo Z, Kong Y, et al. DEPDC1B knockdown inhibits the development of malignant melanoma through suppressing cell proliferation and inducing cell apoptosis. Exp Cell Res. 2019;379(1):48–54.CrossRefPubMed Xu Y, Sun W, Zheng B, Liu X, Luo Z, Kong Y, et al. DEPDC1B knockdown inhibits the development of malignant melanoma through suppressing cell proliferation and inducing cell apoptosis. Exp Cell Res. 2019;379(1):48–54.CrossRefPubMed
20.
go back to reference Zhao H, Yu M, Sui L, Gong B, Zhou B, Chen J, et al. High expression of DEPDC1 promotes malignant phenotypes of breast cancer cells and predicts poor prognosis in patients with breast cancer. Front Oncol. 2019;9:262.CrossRefPubMedPubMedCentral Zhao H, Yu M, Sui L, Gong B, Zhou B, Chen J, et al. High expression of DEPDC1 promotes malignant phenotypes of breast cancer cells and predicts poor prognosis in patients with breast cancer. Front Oncol. 2019;9:262.CrossRefPubMedPubMedCentral
21.
go back to reference Dang XW, Pan Q, Lin ZH, Wang HH, Li LH, Li L, et al. Overexpressed DEPDC1B contributes to the progression of hepatocellular carcinoma by CDK1. Aging (Albany NY). 2021;13(16):20094–115.CrossRef Dang XW, Pan Q, Lin ZH, Wang HH, Li LH, Li L, et al. Overexpressed DEPDC1B contributes to the progression of hepatocellular carcinoma by CDK1. Aging (Albany NY). 2021;13(16):20094–115.CrossRef
22.
go back to reference Wang L, Tang L, Xu R, Ma J, Tian K, Liu Y, et al. DEPDC1B regulates the progression of human chordoma through UBE2T-mediated ubiquitination of BIRC5. Cell Death Dis. 2021;12(8):753.CrossRefPubMedPubMedCentral Wang L, Tang L, Xu R, Ma J, Tian K, Liu Y, et al. DEPDC1B regulates the progression of human chordoma through UBE2T-mediated ubiquitination of BIRC5. Cell Death Dis. 2021;12(8):753.CrossRefPubMedPubMedCentral
24.
go back to reference Aoki M, Fujishita T. Oncogenic roles of the PI3K/AKT/mTOR Axis. Curr Top Microbiol Immunol. 2017;407:153–89.PubMed Aoki M, Fujishita T. Oncogenic roles of the PI3K/AKT/mTOR Axis. Curr Top Microbiol Immunol. 2017;407:153–89.PubMed
25.
go back to reference Fan X, Wen J, Bao L, Gao F, Li Y, He D. Identification and validation of DEPDC1B as an independent early diagnostic and prognostic biomarker in liver hepatocellular carcinoma. Front Genet. 2021;12: 681809.CrossRefPubMed Fan X, Wen J, Bao L, Gao F, Li Y, He D. Identification and validation of DEPDC1B as an independent early diagnostic and prognostic biomarker in liver hepatocellular carcinoma. Front Genet. 2021;12: 681809.CrossRefPubMed
26.
go back to reference Sun Y, Zhang Z. In silico identification of crucial genes and specific pathways in hepatocellular cancer. Genet Test Mol Biomarkers. 2020;24(5):296–308.CrossRefPubMed Sun Y, Zhang Z. In silico identification of crucial genes and specific pathways in hepatocellular cancer. Genet Test Mol Biomarkers. 2020;24(5):296–308.CrossRefPubMed
27.
go back to reference Zhang S, Shi W, Hu W, Ma D, Yan D, Yu K, et al. DEP domain-containing protein 1B (DEPDC1B) promotes migration and invasion in pancreatic cancer through the Rac1/PAK1-LIMK1-cofilin1 signaling pathway. Onco Targets Ther. 2020;13:1481–96.CrossRefPubMedPubMedCentral Zhang S, Shi W, Hu W, Ma D, Yan D, Yu K, et al. DEP domain-containing protein 1B (DEPDC1B) promotes migration and invasion in pancreatic cancer through the Rac1/PAK1-LIMK1-cofilin1 signaling pathway. Onco Targets Ther. 2020;13:1481–96.CrossRefPubMedPubMedCentral
28.
go back to reference Feng Y, Kapornai K, Kiss E, Tamas Z, Mayer L, Baji I, et al. Association of the GABRD gene and childhood-onset mood disorders. Genes Brain Behav. 2010;9(6):668–72.PubMedPubMedCentral Feng Y, Kapornai K, Kiss E, Tamas Z, Mayer L, Baji I, et al. Association of the GABRD gene and childhood-onset mood disorders. Genes Brain Behav. 2010;9(6):668–72.PubMedPubMedCentral
29.
go back to reference Dibbens LM, Feng HJ, Richards MC, Harkin LA, Hodgson BL, Scott D, et al. GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet. 2004;13(13):1315–9.CrossRefPubMed Dibbens LM, Feng HJ, Richards MC, Harkin LA, Hodgson BL, Scott D, et al. GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet. 2004;13(13):1315–9.CrossRefPubMed
30.
go back to reference Gross AM, Kreisberg JF, Ideker T. Analysis of matched tumor and normal profiles reveals common transcriptional and epigenetic signals shared across cancer types. PLoS ONE. 2015;10(11): e0142618.CrossRefPubMedPubMedCentral Gross AM, Kreisberg JF, Ideker T. Analysis of matched tumor and normal profiles reveals common transcriptional and epigenetic signals shared across cancer types. PLoS ONE. 2015;10(11): e0142618.CrossRefPubMedPubMedCentral
31.
go back to reference Niu G, Deng L, Zhang X, Hu Z, Han S, Xu K, et al. GABRD promotes progression and predicts poor prognosis in colorectal cancer. Open Med (Wars). 2020;15(1):1172–83.CrossRef Niu G, Deng L, Zhang X, Hu Z, Han S, Xu K, et al. GABRD promotes progression and predicts poor prognosis in colorectal cancer. Open Med (Wars). 2020;15(1):1172–83.CrossRef
32.
go back to reference Wu M, Kim KY, Park WC, Ryu HS, Choi SC, Kim MS, et al. Enhanced expression of GABRD predicts poor prognosis in patients with colon adenocarcinoma. Transl Oncol. 2020;13(12): 100861.CrossRefPubMedPubMedCentral Wu M, Kim KY, Park WC, Ryu HS, Choi SC, Kim MS, et al. Enhanced expression of GABRD predicts poor prognosis in patients with colon adenocarcinoma. Transl Oncol. 2020;13(12): 100861.CrossRefPubMedPubMedCentral
33.
go back to reference Purwana I, Zheng J, Li X, Deurloo M, Son DO, Zhang Z, et al. GABA promotes human beta-cell proliferation and modulates glucose homeostasis. Diabetes. 2014;63(12):4197–205.CrossRefPubMed Purwana I, Zheng J, Li X, Deurloo M, Son DO, Zhang Z, et al. GABA promotes human beta-cell proliferation and modulates glucose homeostasis. Diabetes. 2014;63(12):4197–205.CrossRefPubMed
34.
go back to reference Xu J, Li C, Yin XH, Zhang GY. Additive neuroprotection of GABA A and GABA B receptor agonists in cerebral ischemic injury via PI-3K/Akt pathway inhibiting the ASK1-JNK cascade. Neuropharmacology. 2008;54(7):1029–40.CrossRefPubMed Xu J, Li C, Yin XH, Zhang GY. Additive neuroprotection of GABA A and GABA B receptor agonists in cerebral ischemic injury via PI-3K/Akt pathway inhibiting the ASK1-JNK cascade. Neuropharmacology. 2008;54(7):1029–40.CrossRefPubMed
Metadata
Title
DEPDC1B collaborates with GABRD to regulate ESCC progression
Authors
Yunfeng Yuan
Wei Ping
Ruijie Zhang
Zhipeng Hao
Ni Zhang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02593-z

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine