Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Glioblastoma | Research

Cell senescence-associated genes predict the malignant characteristics of glioblastoma

Authors: Chenyang Tan, Yan Wei, Xuan Ding, Chao Han, Zhongzheng Sun, Chengwei Wang

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Background

Glioblastoma (GBM) is the most malignant, aggressive and recurrent primary brain tumor. Cell senescence can cause irreversible cessation of cell division in normally proliferating cells. According to studies, senescence is a primary anti-tumor mechanism that may be seen in a variety of tumor types. It halts the growth and spread of tumors. Tumor suppressive functions held by cellular senescence provide new directions and pathways to promote cancer therapy.

Methods

We comprehensively analyzed the cell senescence-associated genes expression patterns. The potential molecular subtypes were acquired based on unsupervised cluster analysis. The tumor immune microenvironment (TME) variations, immune cell infiltration, and stemness index between 3 subtypes were analyzed. To identify genes linked with GBM prognosis and build a risk score model, we used weighted gene co-expression network analysis (WGCNA), univariate Cox regression, Least absolute shrinkage and selection operator regression (LASSO), and multivariate Cox regression analysis. And the correlation between risk scores and clinical traits, TME, GBM subtypes, as well as immunotherapy responses were estimated. Immunohistochemistry (IHC) and cellular experiments were performed to evaluate the expression and function of representative genes. Then the 2 risk scoring models were constructed based on the same method of calculation whose samples were acquired from the CGGA dataset and TCGA datasets to verify the rationality and the reliability of the risk scoring model. Finally, we conducted a pan-cancer analysis of the risk score, assessed drug sensitivity based on risk scores, and analyzed the pathways of sensitive drug action.

Results

The 3 potential molecular subtypes were acquired based on cell senescence-associated genes expression. The Log-rank test showed the difference in GBM patient survival between 3 potential molecular subtypes (P = 0.0027). Then, 11 cell senescence-associated genes were obtained to construct a risk-scoring model, which was systematically randomized to distinguish the train set (n = 293) and the test set (n = 292). The Kaplan-Meier (K-M) analyses indicated that the high-risk score in the train set (P < 0.0001), as well as the test set (P = 0.0053), corresponded with poorer survival. In addition, the high-risk score group showed a poor response to immunotherapy. The reliability and credibility of the risk scoring model were confirmed according to the CGGA dataset, TCGA datasets, and Pan-cancer analysis. According to drug sensitivity analysis, it was discovered that LJI308, a potent selective inhibitor of RSK pathways, has the highest drug sensitivity. Moreover, the GBM patients with higher risk scores may potentially be more beneficial from drugs that target cell cycle, mitosis, microtubule, DNA replication and apoptosis regulation signaling.

Conclusion

We identified potential associations between clinical characteristics, TME, stemness, subtypes, and immunotherapy, and we clarified the therapeutic usefulness of cell senescence-associated genes.
Appendix
Available only for authorised users
Literature
1.
go back to reference McBain C, Lawrie T, Rogozińska E, Kernohan A, Robinson T, Jefferies S. Treatment options for progression or recurrence of glioblastoma: a network meta-analysis. Cochrane Database Syst Rev. 2021;5:CD013579. McBain C, Lawrie T, Rogozińska E, Kernohan A, Robinson T, Jefferies S. Treatment options for progression or recurrence of glioblastoma: a network meta-analysis. Cochrane Database Syst Rev. 2021;5:CD013579.
2.
go back to reference Stupp R, Mason W, van den Bent M, Weller M, Fisher B, Taphoorn M, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRef Stupp R, Mason W, van den Bent M, Weller M, Fisher B, Taphoorn M, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRef
3.
go back to reference Stupp R, Hegi M, Mason W, van den Bent M, Taphoorn M, Janzer R, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.CrossRef Stupp R, Hegi M, Mason W, van den Bent M, Taphoorn M, Janzer R, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.CrossRef
4.
go back to reference Gorgoulis V, Adams P, Alimonti A, Bennett D, Bischof O, Bishop C, et al. Cellular senescence: defining a path forward. Cell. 2019;179:813–27.CrossRef Gorgoulis V, Adams P, Alimonti A, Bennett D, Bischof O, Bishop C, et al. Cellular senescence: defining a path forward. Cell. 2019;179:813–27.CrossRef
5.
go back to reference Gal H, Lysenko M, Stroganov S, Vadai E, Youssef S, Tzadikevitch-Geffen K, et al. Molecular pathways of senescence regulate placental structure and function. EMBO J. 2019;38:e100849.CrossRef Gal H, Lysenko M, Stroganov S, Vadai E, Youssef S, Tzadikevitch-Geffen K, et al. Molecular pathways of senescence regulate placental structure and function. EMBO J. 2019;38:e100849.CrossRef
6.
go back to reference Kowald A, Passos J, Kirkwood T. On the evolution of cellular senescence. Aging Cell. 2020;19:e13270.CrossRef Kowald A, Passos J, Kirkwood T. On the evolution of cellular senescence. Aging Cell. 2020;19:e13270.CrossRef
9.
go back to reference Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22:75–95.CrossRef Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22:75–95.CrossRef
10.
go back to reference Shmulevich R, Krizhanovsky V. Cell senescence, DNA damage, and metabolism. Antioxid Redox Signal. 2021;34:324–34.CrossRef Shmulevich R, Krizhanovsky V. Cell senescence, DNA damage, and metabolism. Antioxid Redox Signal. 2021;34:324–34.CrossRef
11.
go back to reference Sun J, Lu X. Cancer immunotherapy: current applications and challenges. Cancer Lett. 2020;480:1–3.CrossRef Sun J, Lu X. Cancer immunotherapy: current applications and challenges. Cancer Lett. 2020;480:1–3.CrossRef
12.
go back to reference Hou J, Karin M, Sun B. Targeting cancer-promoting inflammation - have anti-inflammatory therapies come of age? Nature reviews. Clin Oncol. 2021;18:261–79. Hou J, Karin M, Sun B. Targeting cancer-promoting inflammation - have anti-inflammatory therapies come of age? Nature reviews. Clin Oncol. 2021;18:261–79.
13.
go back to reference Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer. 2021;21:298–312.CrossRef Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer. 2021;21:298–312.CrossRef
14.
go back to reference Li L, Jiang M, Qi L, Wu Y, Song D, Gan J, et al. Pyroptosis, a new bridge to tumor immunity. Cancer Sci. 2021;112:3979–94.CrossRef Li L, Jiang M, Qi L, Wu Y, Song D, Gan J, et al. Pyroptosis, a new bridge to tumor immunity. Cancer Sci. 2021;112:3979–94.CrossRef
15.
go back to reference Reck M, Rodríguez-Abreu D, Robinson A, Hui R, Csőszi T, Fülöp A, et al. Five-year outcomes with Pembrolizumab versus chemotherapy for metastatic non-small-cell lung cancer with PD-L1 tumor proportion score ≥ 50. J Clin Oncol Off J Am Soc Clin Oncol. 2021;39:2339–49.CrossRef Reck M, Rodríguez-Abreu D, Robinson A, Hui R, Csőszi T, Fülöp A, et al. Five-year outcomes with Pembrolizumab versus chemotherapy for metastatic non-small-cell lung cancer with PD-L1 tumor proportion score ≥ 50. J Clin Oncol  Off J Am Soc Clin Oncol. 2021;39:2339–49.CrossRef
16.
go back to reference Gadgeel S, Rodríguez-Abreu D, Speranza G, Esteban E, Felip E, Dómine M, et al. Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non-small-cell lung cancer. J Clin oncol OffJ Am Soc Clin Oncol. 2020;38:1505–17.CrossRef Gadgeel S, Rodríguez-Abreu D, Speranza G, Esteban E, Felip E, Dómine M, et al. Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non-small-cell lung cancer. J Clin oncol OffJ Am Soc Clin Oncol. 2020;38:1505–17.CrossRef
17.
go back to reference Dudnik E, Moskovitz M, Rottenberg Y, Lobachov A, Mandelboim R, Shochat T, et al. Pembrolizumab as a monotherapy or in combination with platinum-based chemotherapy in advanced non-small cell lung cancer with PD-L1 tumor proportion score (TPS) ≥ 50%: real-world data. Oncoimmunology. 2021;10:1865653.CrossRef Dudnik E, Moskovitz M, Rottenberg Y, Lobachov A, Mandelboim R, Shochat T, et al. Pembrolizumab as a monotherapy or in combination with platinum-based chemotherapy in advanced non-small cell lung cancer with PD-L1 tumor proportion score (TPS) ≥ 50%: real-world data. Oncoimmunology. 2021;10:1865653.CrossRef
18.
go back to reference Haslam A, Prasad V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw open. 2019;2:e192535.CrossRef Haslam A, Prasad V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw open. 2019;2:e192535.CrossRef
19.
go back to reference Hegde P, Chen D. Top 10 challenges in cancer immunotherapy. Immunity. 2020;52:17–35.CrossRef Hegde P, Chen D. Top 10 challenges in cancer immunotherapy. Immunity. 2020;52:17–35.CrossRef
20.
go back to reference Sanmamed M, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell. 2018;175:313–26.CrossRef Sanmamed M, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell. 2018;175:313–26.CrossRef
21.
go back to reference Saba J, Liakath-Ali K, Green R, Watt F. Translational control of stem cell function. Nat Rev Mol Cell Biol. 2021;22:671–90.CrossRef Saba J, Liakath-Ali K, Green R, Watt F. Translational control of stem cell function. Nat Rev Mol Cell Biol. 2021;22:671–90.CrossRef
23.
go back to reference Baraban E, Cooper K. Dedifferentiated and undifferentiated neoplasms: a conceptual approach. Semin Diagn Pathol. 2021;38:119–26.CrossRef Baraban E, Cooper K. Dedifferentiated and undifferentiated neoplasms: a conceptual approach. Semin Diagn Pathol. 2021;38:119–26.CrossRef
24.
go back to reference Moudgil-Joshi J, Kaliaperumal C. Letter regarding Louis et al: the 2021 WHO classification of tumors of the central nervous system: a summary. Neurooncology. 2021;23:2120–1. Moudgil-Joshi J, Kaliaperumal C. Letter regarding Louis et al: the 2021 WHO classification of tumors of the central nervous system: a summary. Neurooncology. 2021;23:2120–1.
25.
go back to reference Li H, Li J, Chen L, Qi S, Yu S, Weng Z, et al. HERC3-Mediated SMAD7 ubiquitination degradation promotes autophagy-Induced EMT and chemoresistance in glioblastoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2019;25:3602–16.CrossRef Li H, Li J, Chen L, Qi S, Yu S, Weng Z, et al. HERC3-Mediated SMAD7 ubiquitination degradation promotes autophagy-Induced EMT and chemoresistance in glioblastoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2019;25:3602–16.CrossRef
26.
go back to reference Iwata R, Hyoung Lee J, Hayashi M, Dianzani U, Ofune K, Maruyama M, et al. ICOSLG-mediated regulatory T-cell expansion and IL-10 production promote progression of glioblastoma. Neurooncology. 2020;22:333–44. Iwata R, Hyoung Lee J, Hayashi M, Dianzani U, Ofune K, Maruyama M, et al. ICOSLG-mediated regulatory T-cell expansion and IL-10 production promote progression of glioblastoma. Neurooncology. 2020;22:333–44.
27.
go back to reference Gao Z, Xu J, Fan Y, Qi Y, Wang S, Zhao S, et al. PDIA3P1 promotes Temozolomide resistance in glioblastoma by inhibiting C/EBPβ degradation to facilitate proneural-to-mesenchymal transition. J Exp Clin Cancer Res CR. 2022;41:223.CrossRef Gao Z, Xu J, Fan Y, Qi Y, Wang S, Zhao S, et al. PDIA3P1 promotes Temozolomide resistance in glioblastoma by inhibiting C/EBPβ degradation to facilitate proneural-to-mesenchymal transition. J Exp Clin Cancer Res CR. 2022;41:223.CrossRef
28.
go back to reference Nuño M, Gillen D. Censoring-robust time-dependent receiver operating characteristic curve estimators. Stat Med. 2021;40:6885–99.CrossRef Nuño M, Gillen D. Censoring-robust time-dependent receiver operating characteristic curve estimators. Stat Med. 2021;40:6885–99.CrossRef
30.
go back to reference Jiang T, Shi T, Zhang H, Hu J, Song Y, Wei J, et al. Tumor neoantigens: from basic research to clinical applications. J Hematol Oncol. 2019;12:93.CrossRef Jiang T, Shi T, Zhang H, Hu J, Song Y, Wei J, et al. Tumor neoantigens: from basic research to clinical applications. J Hematol Oncol. 2019;12:93.CrossRef
31.
go back to reference Gupta R, Li F, Roszik J, Lizée G. Exploiting tumor neoantigens to target cancer evolution: current challenges and promising therapeutic approaches. Cancer Discov. 2021;11:1024–39.CrossRef Gupta R, Li F, Roszik J, Lizée G. Exploiting tumor neoantigens to target cancer evolution: current challenges and promising therapeutic approaches. Cancer Discov. 2021;11:1024–39.CrossRef
34.
go back to reference Hu J, Cao J, Topatana W, Juengpanich S, Li S, Zhang B, et al. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J Hematol Oncol. 2021;14:157.CrossRef Hu J, Cao J, Topatana W, Juengpanich S, Li S, Zhang B, et al. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J Hematol Oncol. 2021;14:157.CrossRef
36.
go back to reference Lettau K, Zips D, Toulany M. Simultaneous targeting of RSK and AKT efficiently inhibits YB-1-mediated repair of Ionizing radiation-Induced DNA double-strand breaks in breast cancer cells. Int J Radiat Oncol Biol Phys. 2021;109:567–80.CrossRef Lettau K, Zips D, Toulany M. Simultaneous targeting of RSK and AKT efficiently inhibits YB-1-mediated repair of Ionizing radiation-Induced DNA double-strand breaks in breast cancer cells. Int J Radiat Oncol Biol Phys. 2021;109:567–80.CrossRef
39.
go back to reference Birch J, Gil J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 2020;34:1565–76.CrossRef Birch J, Gil J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 2020;34:1565–76.CrossRef
40.
go back to reference Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular senescence: aging, cancer, and injury. Physiol Rev. 2019;99:1047–78.CrossRef Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular senescence: aging, cancer, and injury. Physiol Rev. 2019;99:1047–78.CrossRef
42.
go back to reference Chen J, Chen K, Wang L, Luo J, Zheng Q, He Y. Decoy receptor 2 mediates the apoptosis-resistant phenotype of senescent renal tubular cells and accelerates renal fibrosis in diabetic nephropathy. Cell Death Dis. 2022;13:522.CrossRef Chen J, Chen K, Wang L, Luo J, Zheng Q, He Y. Decoy receptor 2 mediates the apoptosis-resistant phenotype of senescent renal tubular cells and accelerates renal fibrosis in diabetic nephropathy. Cell Death Dis. 2022;13:522.CrossRef
43.
go back to reference Prieto L, Baker D. Cellular senescence and the Immune system in cancer. Gerontology. 2019;65:505–12.CrossRef Prieto L, Baker D. Cellular senescence and the Immune system in cancer. Gerontology. 2019;65:505–12.CrossRef
44.
go back to reference Wang L, Lankhorst L, Bernards R. Exploiting senescence for the treatment of cancer. Nat Rev Cancer. 2022;22:340–55.CrossRef Wang L, Lankhorst L, Bernards R. Exploiting senescence for the treatment of cancer. Nat Rev Cancer. 2022;22:340–55.CrossRef
45.
go back to reference Sieben C, Sturmlechner I, van de Sluis B, van Deursen J. Two-step senescence-focused cancer therapies. Trends Cell Biol. 2018;28:723–37.CrossRef Sieben C, Sturmlechner I, van de Sluis B, van Deursen J. Two-step senescence-focused cancer therapies. Trends Cell Biol. 2018;28:723–37.CrossRef
46.
go back to reference Casella G, Munk R, Kim K, Piao Y, De S, Abdelmohsen K, et al. Transcriptome signature of cellular senescence. Nucleic Acids Res. 2019;47:7294–305.CrossRef Casella G, Munk R, Kim K, Piao Y, De S, Abdelmohsen K, et al. Transcriptome signature of cellular senescence. Nucleic Acids Res. 2019;47:7294–305.CrossRef
47.
go back to reference Fakhri S, Zachariah Moradi S, DeLiberto L, Bishayee A. Cellular senescence signaling in cancer: a novel therapeutic target to combat human malignancies. Biochem Pharmacol. 2022;199:114989.CrossRef Fakhri S, Zachariah Moradi S, DeLiberto L, Bishayee A. Cellular senescence signaling in cancer: a novel therapeutic target to combat human malignancies. Biochem Pharmacol. 2022;199:114989.CrossRef
48.
go back to reference Hsu Y, Liao L, Yu C, Chiang C, Jhan J, Chang L, et al. Overexpression of the pituitary tumor transforming gene induces p53-dependent senescence through activating DNA damage response pathway in normal human fibroblasts. J Biol Chem. 2010;285:22630–8.CrossRef Hsu Y, Liao L, Yu C, Chiang C, Jhan J, Chang L, et al. Overexpression of the pituitary tumor transforming gene induces p53-dependent senescence through activating DNA damage response pathway in normal human fibroblasts. J Biol Chem. 2010;285:22630–8.CrossRef
49.
go back to reference Hsu YH, Liao LJ, Yu CH, Chiang CP, Jhan JR, Chang LC, et al. Overexpression of the pituitary tumor transforming gene induces p53-dependent senescence through activating DNA damage response pathway in normal human fibroblasts. J Biol Chem. 2010;285:22630–8.CrossRef Hsu YH, Liao LJ, Yu CH, Chiang CP, Jhan JR, Chang LC, et al. Overexpression of the pituitary tumor transforming gene induces p53-dependent senescence through activating DNA damage response pathway in normal human fibroblasts. J Biol Chem. 2010;285:22630–8.CrossRef
50.
go back to reference Fuertes M, Sapochnik M, Tedesco L, Senin S, Attorresi A, Ajler P, et al. Protein stabilization by RSUME accounts for PTTG pituitary tumor abundance and oncogenicity. Endocrine-related Cancer. 2018;25:665–76.CrossRef Fuertes M, Sapochnik M, Tedesco L, Senin S, Attorresi A, Ajler P, et al. Protein stabilization by RSUME accounts for PTTG pituitary tumor abundance and oncogenicity. Endocrine-related Cancer. 2018;25:665–76.CrossRef
51.
go back to reference Gong S, Wu C, Duan Y, Tang J, Wu P. A comprehensive pan-cancer analysis for pituitary tumor-transforming gene 1. Front Genet. 2022;13:843579.CrossRef Gong S, Wu C, Duan Y, Tang J, Wu P. A comprehensive pan-cancer analysis for pituitary tumor-transforming gene 1. Front Genet. 2022;13:843579.CrossRef
52.
go back to reference Tong Y, Zhao W, Zhou C, Wawrowsky K, Melmed S. PTTG1 attenuates drug-induced cellular senescence. PLoS ONE. 2011;6:e23754.CrossRef Tong Y, Zhao W, Zhou C, Wawrowsky K, Melmed S. PTTG1 attenuates drug-induced cellular senescence. PLoS ONE. 2011;6:e23754.CrossRef
53.
go back to reference Duffy M, O’Grady S, Tang M, Crown J. MYC as a target for cancer treatment. Cancer Treat Rev. 2021;94:102154.CrossRef Duffy M, O’Grady S, Tang M, Crown J. MYC as a target for cancer treatment. Cancer Treat Rev. 2021;94:102154.CrossRef
54.
go back to reference Guney I, Wu S, Sedivy JM. Reduced c-Myc signaling triggers telomere-independent senescence by regulating Bmi-1 and p16(INK4a). Proc Natl Acad Sci U S A. 2006;103:3645–50.CrossRef Guney I, Wu S, Sedivy JM. Reduced c-Myc signaling triggers telomere-independent senescence by regulating Bmi-1 and p16(INK4a). Proc Natl Acad Sci U S A. 2006;103:3645–50.CrossRef
55.
go back to reference Panda S, Banerjee N, Chatterjee S. Solute carrier proteins and c-Myc: a strong connection in cancer progression. Drug Discov Today. 2020;25:891–900.CrossRef Panda S, Banerjee N, Chatterjee S. Solute carrier proteins and c-Myc: a strong connection in cancer progression. Drug Discov Today. 2020;25:891–900.CrossRef
56.
go back to reference Fatma H, Maurya S, Siddique H. Epigenetic modifications of c-MYC: role in cancer cell reprogramming, progression and chemoresistance. Sem Cancer Biol. 2022;83:166–76.CrossRef Fatma H, Maurya S, Siddique H. Epigenetic modifications of c-MYC: role in cancer cell reprogramming, progression and chemoresistance. Sem Cancer Biol. 2022;83:166–76.CrossRef
57.
go back to reference Unno K, Chalmers Z, Pamarthy S, Vatapalli R, Rodriguez Y, Lysy B, et al. Activated ALK cooperates with N-Myc via Wnt/β-Catenin signaling to induce neuroendocrine prostate Cancer. Cancer Res. 2021;81:2157–70.CrossRef Unno K, Chalmers Z, Pamarthy S, Vatapalli R, Rodriguez Y, Lysy B, et al. Activated ALK cooperates with N-Myc via Wnt/β-Catenin signaling to induce neuroendocrine prostate Cancer. Cancer Res. 2021;81:2157–70.CrossRef
58.
go back to reference Gao J, Jung M, Mayoh C, Venkat P, Hannan K, Fletcher J, et al. Suppression of ABCE1-mediated mRNA translation limits N-MYC-driven cancer progression. Cancer Res. 2020;80:3706–18.CrossRef Gao J, Jung M, Mayoh C, Venkat P, Hannan K, Fletcher J, et al. Suppression of ABCE1-mediated mRNA translation limits N-MYC-driven cancer progression. Cancer Res. 2020;80:3706–18.CrossRef
59.
go back to reference Wang C, Zhang J, Yin J, Gan Y, Xu S, Gu Y, et al. Alternative approaches to target myc for cancer treatment. Signal Transduct Target Therapy. 2021;6:117.CrossRef Wang C, Zhang J, Yin J, Gan Y, Xu S, Gu Y, et al. Alternative approaches to target myc for cancer treatment. Signal Transduct Target Therapy. 2021;6:117.CrossRef
60.
go back to reference Lahlali T, Plissonnier M, Romero-López C, Michelet M, Ducarouge B, Berzal-Herranz A, et al. Netrin-1 protects hepatocytes against cell death through sustained translation during the unfolded protein response. Cell Mol Gastroenterol Hepatol. 2016;2:281-301.e289.CrossRef Lahlali T, Plissonnier M, Romero-López C, Michelet M, Ducarouge B, Berzal-Herranz A, et al. Netrin-1 protects hepatocytes against cell death through sustained translation during the unfolded protein response. Cell Mol Gastroenterol Hepatol. 2016;2:281-301.e289.CrossRef
61.
go back to reference Li Y, Casey S, Felsher D. Inactivation of MYC reverses tumorigenesis. J Intern Med. 2014;276:52–60.CrossRef Li Y, Casey S, Felsher D. Inactivation of MYC reverses tumorigenesis. J Intern Med. 2014;276:52–60.CrossRef
62.
go back to reference Dansen TB, Whitfield J, Rostker F, Brown-Swigart L, Evan GI. Specific requirement for bax, not Bak, in myc-induced apoptosis and tumor suppression in vivo. J Biol Chem. 2006;281:10890–5.CrossRef Dansen TB, Whitfield J, Rostker F, Brown-Swigart L, Evan GI. Specific requirement for bax, not Bak, in myc-induced apoptosis and tumor suppression in vivo. J Biol Chem. 2006;281:10890–5.CrossRef
63.
go back to reference Nieminen AI, Partanen JI, Hau A, Klefstrom J. c-Myc primed mitochondria determine cellular sensitivity to TRAIL-induced apoptosis. Embo j. 2007;26:1055–67.CrossRef Nieminen AI, Partanen JI, Hau A, Klefstrom J. c-Myc primed mitochondria determine cellular sensitivity to TRAIL-induced apoptosis. Embo j. 2007;26:1055–67.CrossRef
64.
go back to reference Harrington CT, Sotillo E, Dang CV, Thomas-Tikhonenko A. Tilting MYC toward cancer cell death. Trends Cancer. 2021;7:982–94.CrossRef Harrington CT, Sotillo E, Dang CV, Thomas-Tikhonenko A. Tilting MYC toward cancer cell death. Trends Cancer. 2021;7:982–94.CrossRef
65.
go back to reference Davies KJA, Forman HJ. Does Bach1 & c-Myc dependent redox dysregulation of Nrf2 & adaptive homeostasis decrease cancer risk in ageing? Free Radic Biol Med. 2019;134:708–14.CrossRef Davies KJA, Forman HJ. Does Bach1 & c-Myc dependent redox dysregulation of Nrf2 & adaptive homeostasis decrease cancer risk in ageing? Free Radic Biol Med. 2019;134:708–14.CrossRef
Metadata
Title
Cell senescence-associated genes predict the malignant characteristics of glioblastoma
Authors
Chenyang Tan
Yan Wei
Xuan Ding
Chao Han
Zhongzheng Sun
Chengwei Wang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02834-1

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine