Skip to main content
Top
Published in: Cancer Cell International 1/2020

01-12-2020 | Lymphoma | Primary research

Evaluation of the upregulation and surface expression of hypoxanthine guanine phosphoribosyltransferase in acute lymphoblastic leukemia and Burkitt’s B cell lymphoma

Authors: Michelle H. Townsend, Zac E. Ence, Taylor P. Cox, John E. Lattin, Weston Burrup, Michael K. Boyer, Stephen R. Piccolo, Richard A. Robison, Kim L. O’Neill

Published in: Cancer Cell International | Issue 1/2020

Login to get access

Abstract

Background

The aim of this study is to determine whether Hypoxanthine Guanine Phosphoribosyltransferase (HPRT) could be used as a biomarker for the diagnosis and treatment of B cell malignancies. With 4.3% of all new cancers diagnosed as Non-Hodgkin lymphoma, finding new biomarkers for the treatment of B cell cancers is an ongoing pursuit. HPRT is a nucleotide salvage pathway enzyme responsible for the synthesis of guanine and inosine throughout the cell cycle.

Methods

Raji cells were used for this analysis due to their high HPRT internal expression. Internal expression was evaluated utilizing western blotting and RNA sequencing. Surface localization was analyzed using flow cytometry, confocal microscopy, and membrane biotinylation. To determine the source of HPRT surface expression, a CRISPR knockdown of HPRT was generated and confirmed using western blotting. To determine clinical significance, patient blood samples were collected and analyzed for HPRT surface localization.

Results

We found surface localization of HPRT on both Raji cancer cells and in 77% of the malignant ALL samples analyzed and observed no significant expression in healthy cells. Surface expression was confirmed in Raji cells with confocal microscopy, where a direct overlap between HPRT specific antibodies and a membrane-specific dye was observed. HPRT was also detected in biotinylated membranes of Raji cells. Upon HPRT knockdown in Raji cells, we found a significant reduction in surface expression, which shows that the HPRT found on the surface originates from the cells themselves. Finally, we found that cells that had elevated levels of HPRT had a direct correlation to XRCC2, BRCA1, PIK3CA, MSH2, MSH6, WDYHV1, AK7, and BLMH expression and an inverse correlation to PRKD2, PTGS2, TCF7L2, CDH1, IL6R, MC1R, AMPD1, TLR6, and BAK1 expression. Of the 17 genes with significant correlation, 9 are involved in cellular proliferation and DNA synthesis, regulation, and repair.

Conclusions

As a surface biomarker that is found on malignant cells and not on healthy cells, HPRT could be used as a surface antigen for targeted immunotherapy. In addition, the gene correlations show that HPRT may have an additional role in regulation of cancer proliferation that has not been previously discovered.
Literature
7.
go back to reference Rodriguez-Vida A, Strijbos M, Hutson T. Predictive and prognostic biomarkers of targeted agents and modern immunotherapy in renal cell carcinoma. ESMO open. 2016;1:e000013.CrossRefPubMedPubMedCentral Rodriguez-Vida A, Strijbos M, Hutson T. Predictive and prognostic biomarkers of targeted agents and modern immunotherapy in renal cell carcinoma. ESMO open. 2016;1:e000013.CrossRefPubMedPubMedCentral
9.
go back to reference Yuan J, Hegde PS, Clynes R, Foukas PG, Harari A, Kleen TO, et al. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother cancer. 2016;4:3.CrossRefPubMedPubMedCentral Yuan J, Hegde PS, Clynes R, Foukas PG, Harari A, Kleen TO, et al. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother cancer. 2016;4:3.CrossRefPubMedPubMedCentral
11.
go back to reference Tasian SK, Gardner RA. CD19-redirected chimeric antigen receptor-modified T cells: a promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL). Therapeutic Adv Hematol. 2015;6:228–41.CrossRef Tasian SK, Gardner RA. CD19-redirected chimeric antigen receptor-modified T cells: a promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL). Therapeutic Adv Hematol. 2015;6:228–41.CrossRef
13.
go back to reference Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2016;125:4017–24.CrossRef Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2016;125:4017–24.CrossRef
14.
go back to reference Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21:581–90.CrossRefPubMedPubMedCentral Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21:581–90.CrossRefPubMedPubMedCentral
15.
go back to reference Davila ML, Brentjens RJ. CD19-Targeted CAR T cells as novel cancer immunotherapy for relapsed or refractory B-cell acute lymphoblastic leukemia. Clin Adv Hematol Oncol. 2016;14:802–8.PubMedPubMedCentral Davila ML, Brentjens RJ. CD19-Targeted CAR T cells as novel cancer immunotherapy for relapsed or refractory B-cell acute lymphoblastic leukemia. Clin Adv Hematol Oncol. 2016;14:802–8.PubMedPubMedCentral
17.
go back to reference Alegre MM, Robison RA, Neill KLO. Thymidine kinase 1: a universal marker for cancer. Cancer Clin Oncol. 2013;2:159–67. Alegre MM, Robison RA, Neill KLO. Thymidine kinase 1: a universal marker for cancer. Cancer Clin Oncol. 2013;2:159–67.
19.
go back to reference Fischer J, Paret C, El Malki K, Alt F, Wingerter A, Neu MA, et al. CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-ALL patients at initial diagnosis. J Immunother. 2017;40:187–95.CrossRefPubMedPubMedCentral Fischer J, Paret C, El Malki K, Alt F, Wingerter A, Neu MA, et al. CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-ALL patients at initial diagnosis. J Immunother. 2017;40:187–95.CrossRefPubMedPubMedCentral
22.
go back to reference Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM, Pastan IH, et al. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood. 2013;121:1165–74.CrossRefPubMedPubMedCentral Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM, Pastan IH, et al. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood. 2013;121:1165–74.CrossRefPubMedPubMedCentral
23.
go back to reference Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG, et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4–1BB domains: pilot clinical trial results. Blood. 2012;119:3940–50.CrossRefPubMedPubMedCentral Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG, et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4–1BB domains: pilot clinical trial results. Blood. 2012;119:3940–50.CrossRefPubMedPubMedCentral
24.
go back to reference Hudecek M, Schmitt TM, Baskar S, Lupo-Stanghellini MT, Nishida T, Yamamoto TN, et al. The B-cell tumor-associated antigen ROR1 can be targeted with T cells modified to express a ROR1-specific chimeric antigen receptor. Blood. 2010;116:4532–41.CrossRefPubMedPubMedCentral Hudecek M, Schmitt TM, Baskar S, Lupo-Stanghellini MT, Nishida T, Yamamoto TN, et al. The B-cell tumor-associated antigen ROR1 can be targeted with T cells modified to express a ROR1-specific chimeric antigen receptor. Blood. 2010;116:4532–41.CrossRefPubMedPubMedCentral
26.
go back to reference Townsend MH, Anderson MD, Weagel EG, Velazquez EJ, Weber KS, Robison RA, et al. Non-small-cell lung cancer cell lines A549 and NCI-H460 express hypoxanthine guanine phosphoribosyltransferase on the plasma membrane. Onco Targets Ther. 2017;10:1921–32.CrossRefPubMedPubMedCentral Townsend MH, Anderson MD, Weagel EG, Velazquez EJ, Weber KS, Robison RA, et al. Non-small-cell lung cancer cell lines A549 and NCI-H460 express hypoxanthine guanine phosphoribosyltransferase on the plasma membrane. Onco Targets Ther. 2017;10:1921–32.CrossRefPubMedPubMedCentral
27.
go back to reference Monnat RJ, Chiaverotti T, Hackmann a F, Maresh G. a. Molecular structure and genetic stability of human hypoxanthine phosphoribosyltransferase (HPRT) gene duplications. Genomics. 1992;13:788–96.CrossRefPubMed Monnat RJ, Chiaverotti T, Hackmann a F, Maresh G. a. Molecular structure and genetic stability of human hypoxanthine phosphoribosyltransferase (HPRT) gene duplications. Genomics. 1992;13:788–96.CrossRefPubMed
31.
go back to reference Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.CrossRefPubMedPubMedCentral Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.CrossRefPubMedPubMedCentral
32.
go back to reference Waters CE, Saldivar JC, Hosseini SA, Huebner K. The FHIT gene product: tumor suppressor and genome “caretaker” [Internet]. Cell. Mol. Life Sci. Birkhauser Verlag AG; 2014;4577–87. /pmc/articles/PMC4233150/?report = abstract. Accessed 17 July 2020. Waters CE, Saldivar JC, Hosseini SA, Huebner K. The FHIT gene product: tumor suppressor and genome “caretaker” [Internet]. Cell. Mol. Life Sci. Birkhauser Verlag AG; 2014;4577–87. /pmc/articles/PMC4233150/?report = abstract. Accessed 17 July 2020.
33.
go back to reference Snook AE, Eisenlohr LC, Rothstein JL, Waldman SA. Cancer mucosa antigens as a novel immunotherapeutic class of tumor-associated antigen. Clin Pharmacol Ther. 2007;82:734–9.CrossRefPubMed Snook AE, Eisenlohr LC, Rothstein JL, Waldman SA. Cancer mucosa antigens as a novel immunotherapeutic class of tumor-associated antigen. Clin Pharmacol Ther. 2007;82:734–9.CrossRefPubMed
34.
go back to reference Park DJ, Lesueur F, Nguyen-Dumont T, Pertesi M, Odefrey F, Hammet F, et al. Rare mutations in XRCC2 increase the risk of breast cancer. Am J Hum Genet [Internet] Elsevier. 2012;90:734–9. /pmc/articles/PMC3322233/?report = abstract. Accessed 17 July 2020. Park DJ, Lesueur F, Nguyen-Dumont T, Pertesi M, Odefrey F, Hammet F, et al. Rare mutations in XRCC2 increase the risk of breast cancer. Am J Hum Genet [Internet] Elsevier. 2012;90:734–9. /pmc/articles/PMC3322233/?report = abstract. Accessed 17 July 2020.
36.
go back to reference Abbas T, Dutta A. P21 in cancer: intricate networks and multiple activities [Internet]. Nat. Rev. Cancer. Nature Publishing Group; 2009;400–14. /pmc/articles/PMC2722839/?report = abstract. Accessed 17 July 2020. Abbas T, Dutta A. P21 in cancer: intricate networks and multiple activities [Internet]. Nat. Rev. Cancer. Nature Publishing Group; 2009;400–14. /pmc/articles/PMC2722839/?report = abstract. Accessed 17 July 2020.
37.
go back to reference He L, Shen Y. Mthfr C677T polymorphism and breast, ovarian cancer risk: a meta-analysis of 19,260 patients and 26,364 controls. Onco Targets Ther [Internet]. Dove Medical Press Ltd.; 2017;10:227–38. /pmc/articles/PMC5229257/?report = abstract. Accessed 17 July 2020. He L, Shen Y. Mthfr C677T polymorphism and breast, ovarian cancer risk: a meta-analysis of 19,260 patients and 26,364 controls. Onco Targets Ther [Internet]. Dove Medical Press Ltd.; 2017;10:227–38. /pmc/articles/PMC5229257/?report = abstract. Accessed 17 July 2020.
38.
go back to reference Park J, Chen L, Tockman MS, Elahi A, Lazarus P. The human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) DNA repair enzyme and its association with lung cancer risk. Pharmacogenetics. 2004;14:103–9.CrossRefPubMed Park J, Chen L, Tockman MS, Elahi A, Lazarus P. The human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) DNA repair enzyme and its association with lung cancer risk. Pharmacogenetics. 2004;14:103–9.CrossRefPubMed
40.
go back to reference Tang A, Gao K, Chu L, Zhang R, Yang J, Zheng J. Aurora kinases: novel therapy targets in cancers [Internet]. Oncotarget. Impact Journals LLC; 2017;23937–54. /pmc/articles/PMC5410356/?report = abstract. Accessed 17 July 2020. Tang A, Gao K, Chu L, Zhang R, Yang J, Zheng J. Aurora kinases: novel therapy targets in cancers [Internet]. Oncotarget. Impact Journals LLC; 2017;23937–54.  /pmc/articles/PMC5410356/?report = abstract. Accessed 17 July 2020.
41.
go back to reference Liu XS, Haines JE, Mehanna EK, Genet MD, Ben-Sahra I, Asara JM, et al. ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis. Genes Dev [Internet]. Cold Spring Harbor Laboratory Press; 2014;28:1917–28. /pmc/articles/PMC4197949/?report = abstract. Accessed 17 July 2020. Liu XS, Haines JE, Mehanna EK, Genet MD, Ben-Sahra I, Asara JM, et al. ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis. Genes Dev [Internet]. Cold Spring Harbor Laboratory Press; 2014;28:1917–28. /pmc/articles/PMC4197949/?report = abstract. Accessed 17 July 2020.
43.
go back to reference Ni Z, Tao K, Chen G, Chen Q, Tang J, Luo X, et al. CLPTM1L is overexpressed in lung cancer and associated with apoptosis. PLoS ONE [Internet]. Public Library of Science; 2012;7:52598. /pmc/articles/PMC3530437/?report = abstract. Accessed 17 July 2020. Ni Z, Tao K, Chen G, Chen Q, Tang J, Luo X, et al. CLPTM1L is overexpressed in lung cancer and associated with apoptosis. PLoS ONE [Internet]. Public Library of Science; 2012;7:52598. /pmc/articles/PMC3530437/?report = abstract. Accessed 17 July 2020.
44.
go back to reference Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.CrossRefPubMed Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.CrossRefPubMed
46.
go back to reference TEAM RDC. Statutes of “ The R Foundation for Statistical Computing ” means to meet the objectives. 2005;1–5. TEAM RDC. Statutes of “ The R Foundation for Statistical Computing ” means to meet the objectives. 2005;1–5.
48.
go back to reference Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, et al. Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat. 2007;10:13–29.CrossRefPubMed Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, et al. Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat. 2007;10:13–29.CrossRefPubMed
49.
go back to reference Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411. Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411.
50.
go back to reference Li C-C, Hochstadt J. Membrane-associated enzymes involved in nucleoside processing by plasma membrane vesicles isolated from L,, cells grown in defined medium* [Internet]. http://www.jbc.org/. Li C-C, Hochstadt J. Membrane-associated enzymes involved in nucleoside processing by plasma membrane vesicles isolated from L,, cells grown in defined medium* [Internet]. http://​www.​jbc.​org/​.
51.
go back to reference Rahbarghazi R, Jabbari N, Sani NA, Asghari R, Salimi L, Kalashani SA, et al. Tumor-derived extracellular vesicles: reliable tools for cancer diagnosis and clinical applications. Cell Commun. Signal. BioMed Central Ltd.; 2019. Rahbarghazi R, Jabbari N, Sani NA, Asghari R, Salimi L, Kalashani SA, et al. Tumor-derived extracellular vesicles: reliable tools for cancer diagnosis and clinical applications. Cell Commun. Signal. BioMed Central Ltd.; 2019.
52.
go back to reference Townsend MH, Felsted AM, Cox TP, Ence ZE, Piccolo SR, Robison RA, et al. Abstract 562: HPRT surface localization on prostate cancer cells as a biomarker for immunotherapy. Cancer Res. American Association for Cancer Research (AACR); 2018. p. 562–562. Townsend MH, Felsted AM, Cox TP, Ence ZE, Piccolo SR, Robison RA, et al. Abstract 562: HPRT surface localization on prostate cancer cells as a biomarker for immunotherapy. Cancer Res. American Association for Cancer Research (AACR); 2018. p. 562–562.
53.
go back to reference Lorentzen CL, Straten PT, Ctx PEN. CD19-chimeric antigen receptor T cells for treatment of chronic lymphocytic leukaemia and acute lymphoblastic leukaemia. 2015. Lorentzen CL, Straten PT, Ctx PEN. CD19-chimeric antigen receptor T cells for treatment of chronic lymphocytic leukaemia and acute lymphoblastic leukaemia. 2015.
55.
go back to reference Burger R. Impact of interleukin-6 in hematological malignancies. Transfus Med Hemotherapy 2013;40:336 Burger R. Impact of interleukin-6 in hematological malignancies. Transfus Med Hemotherapy 2013;40:336
Metadata
Title
Evaluation of the upregulation and surface expression of hypoxanthine guanine phosphoribosyltransferase in acute lymphoblastic leukemia and Burkitt’s B cell lymphoma
Authors
Michelle H. Townsend
Zac E. Ence
Taylor P. Cox
John E. Lattin
Weston Burrup
Michael K. Boyer
Stephen R. Piccolo
Richard A. Robison
Kim L. O’Neill
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2020
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01457-8

Other articles of this Issue 1/2020

Cancer Cell International 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine