Skip to main content
Top
Published in: BMC Medicine 1/2016

Open Access 01-12-2016 | Research article

Heterogeneous dynamics, robustness/fragility trade-offs, and the eradication of the macroparasitic disease, lymphatic filariasis

Authors: Edwin Michael, Brajendra K. Singh

Published in: BMC Medicine | Issue 1/2016

Login to get access

Abstract

Background

The current WHO-led initiative to eradicate the macroparasitic disease, lymphatic filariasis (LF), based on single-dose annual mass drug administration (MDA) represents one of the largest health programs devised to reduce the burden of tropical diseases. However, despite the advances made in instituting large-scale MDA programs in affected countries, a challenge to meeting the goal of global eradication is the heterogeneous transmission of LF across endemic regions, and the impact that such complexity may have on the effort required to interrupt transmission in all socioecological settings.

Methods

Here, we apply a Bayesian computer simulation procedure to fit transmission models of LF to field data assembled from 18 sites across the major LF endemic regions of Africa, Asia and Papua New Guinea, reflecting different ecological and vector characteristics, to investigate the impacts and implications of transmission heterogeneity and complexity on filarial infection dynamics, system robustness and control.

Results

We find firstly that LF elimination thresholds varied significantly between the 18 study communities owing to site variations in transmission and initial ecological parameters. We highlight how this variation in thresholds lead to the need for applying variable durations of interventions across endemic communities for achieving LF elimination; however, a major new result is the finding that filarial population responses to interventions ultimately reflect outcomes of interplays between dynamics and the biological architectures and processes that generate robustness/fragility trade-offs in parasite transmission. Intervention simulations carried out in this study further show how understanding these factors is also key to the design of options that would effectively eliminate LF from all settings. In this regard, we find how including vector control into MDA programs may not only offer a countermeasure that will reliably increase system fragility globally across all settings and hence provide a control option robust to differential locality-specific transmission dynamics, but by simultaneously reducing transmission regime variability also permit more reliable macroscopic predictions of intervention effects.

Conclusions

Our results imply that a new approach, combining adaptive modelling of parasite transmission with the use of biological robustness as a design principle, is required if we are to both enhance understanding of complex parasitic infections and delineate options to facilitate their elimination effectively.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ottesen EA, Hooper PJ, Bradley M, Biswas G. The global programme to eliminate lymphatic filariasis: health impact after 8 years. PLoS Negl Trop Dis. 2008;2(10):e317.PubMedPubMedCentralCrossRef Ottesen EA, Hooper PJ, Bradley M, Biswas G. The global programme to eliminate lymphatic filariasis: health impact after 8 years. PLoS Negl Trop Dis. 2008;2(10):e317.PubMedPubMedCentralCrossRef
2.
go back to reference Rebollo MP, Bockarie MJ. Toward the elimination of lymphatic filariasis by 2020: treatment update and impact assessment for the endgame. Expert Rev Anti Infect Ther. 2013;11(7):723–31.PubMedCrossRef Rebollo MP, Bockarie MJ. Toward the elimination of lymphatic filariasis by 2020: treatment update and impact assessment for the endgame. Expert Rev Anti Infect Ther. 2013;11(7):723–31.PubMedCrossRef
3.
go back to reference Michael E, Bundy DA, Grenfell BT. Re-assessing the global prevalence and distribution of lymphatic filariasis. Parasitology. 1996;112(Pt 4):409–28.PubMedCrossRef Michael E, Bundy DA, Grenfell BT. Re-assessing the global prevalence and distribution of lymphatic filariasis. Parasitology. 1996;112(Pt 4):409–28.PubMedCrossRef
4.
5.
go back to reference Slater H, Michael E. Predicting the current and future potential distributions of lymphatic filariasis in Africa using maximum entropy ecological niche modelling. PLoS One. 2012;7(2):e32202.PubMedPubMedCentralCrossRef Slater H, Michael E. Predicting the current and future potential distributions of lymphatic filariasis in Africa using maximum entropy ecological niche modelling. PLoS One. 2012;7(2):e32202.PubMedPubMedCentralCrossRef
6.
go back to reference Slater H, Michael E. Mapping, Bayesian geostatistical analysis and spatial prediction of lymphatic filariasis prevalence in Africa. PLoS One. 2013;8(8):e71574.PubMedPubMedCentralCrossRef Slater H, Michael E. Mapping, Bayesian geostatistical analysis and spatial prediction of lymphatic filariasis prevalence in Africa. PLoS One. 2013;8(8):e71574.PubMedPubMedCentralCrossRef
7.
go back to reference Gambhir M, Michael E. Complex ecological dynamics and eradicability of the vector borne macroparasitic disease, lymphatic filariasis. PLoS One. 2008;3(8):e2874.PubMedPubMedCentralCrossRef Gambhir M, Michael E. Complex ecological dynamics and eradicability of the vector borne macroparasitic disease, lymphatic filariasis. PLoS One. 2008;3(8):e2874.PubMedPubMedCentralCrossRef
8.
go back to reference Gambhir M, Bockarie M, Tisch D, Kazura J, Remais J, Spear R, et al. Geographic and ecologic heterogeneity in elimination thresholds for the major vector-borne helminthic disease, lymphatic filariasis. BMC Biol. 2010;8:22.PubMedPubMedCentralCrossRef Gambhir M, Bockarie M, Tisch D, Kazura J, Remais J, Spear R, et al. Geographic and ecologic heterogeneity in elimination thresholds for the major vector-borne helminthic disease, lymphatic filariasis. BMC Biol. 2010;8:22.PubMedPubMedCentralCrossRef
9.
go back to reference Michael E, Gambhir M. Transmission models and management of lymphatic filariasis elimination. Adv Exp Med Biol. 2010;673:157–71.PubMedCrossRef Michael E, Gambhir M. Transmission models and management of lymphatic filariasis elimination. Adv Exp Med Biol. 2010;673:157–71.PubMedCrossRef
10.
go back to reference Cushman S, Huettmann F. Spatial complexity, informatics, and wildlife conservation. Tokyo: Springer; 2010.CrossRef Cushman S, Huettmann F. Spatial complexity, informatics, and wildlife conservation. Tokyo: Springer; 2010.CrossRef
11.
go back to reference Singh BK, Bockarie MJ, Gambhir M, Siba PM, Tisch DJ, Kazura J, et al. Sequential modeling of the effects of mass drug treatments on Anopheline-mediated lymphatic filariasis infection in Papua New Guinea. PLoS One. 2013;8(6):e67004.PubMedPubMedCentralCrossRef Singh BK, Bockarie MJ, Gambhir M, Siba PM, Tisch DJ, Kazura J, et al. Sequential modeling of the effects of mass drug treatments on Anopheline-mediated lymphatic filariasis infection in Papua New Guinea. PLoS One. 2013;8(6):e67004.PubMedPubMedCentralCrossRef
12.
go back to reference Rwegoshora RT, Rwegoshora EM, Pedersen DA, Mukoko DW, Meyrowitsch N, Masese MN, et al. Bancroftian filariasis: Patterns of vector abundance and transmission in two East African communities with different levels of endemicity. Ann Trop Med Parasitol. 2005;99(3):253–65.PubMedCrossRef Rwegoshora RT, Rwegoshora EM, Pedersen DA, Mukoko DW, Meyrowitsch N, Masese MN, et al. Bancroftian filariasis: Patterns of vector abundance and transmission in two East African communities with different levels of endemicity. Ann Trop Med Parasitol. 2005;99(3):253–65.PubMedCrossRef
13.
go back to reference Pedersen EM. Vectors of lymphatic filariasis in Eastern and Southern Africa. In: Simonsen PE, Malecela MN, Michael E, Mackenzie CD, editors. Lymphatic filariasis: research and control in Eastern and Southern Africa. Copenhagen: Centre for Health Research and Development (DBL); 2008. p. 78–110. Pedersen EM. Vectors of lymphatic filariasis in Eastern and Southern Africa. In: Simonsen PE, Malecela MN, Michael E, Mackenzie CD, editors. Lymphatic filariasis: research and control in Eastern and Southern Africa. Copenhagen: Centre for Health Research and Development (DBL); 2008. p. 78–110.
14.
go back to reference Simonsen PE, Pedersen EM, Rwegoshora RT, Malecela MN, Derua YA, Magesa SM. Lymphatic filariasis control in Tanzania: effect of repeated mass drug administration with ivermectin and albendazole on infection and transmission. PLoS Negl Trop Dis. 2010;4(6):e696.PubMedPubMedCentralCrossRef Simonsen PE, Pedersen EM, Rwegoshora RT, Malecela MN, Derua YA, Magesa SM. Lymphatic filariasis control in Tanzania: effect of repeated mass drug administration with ivermectin and albendazole on infection and transmission. PLoS Negl Trop Dis. 2010;4(6):e696.PubMedPubMedCentralCrossRef
15.
go back to reference Mboera LE, Senkoro KP, Mayala BK, Rumisha SF, Rwegoshora RT, Mlozi MR, et al. Spatio-temporal variation in malaria transmission intensity in five agro-ecosystems in Mvomero district, Tanzania. Geospat Health. 2010;4(2):167–78.PubMedCrossRef Mboera LE, Senkoro KP, Mayala BK, Rumisha SF, Rwegoshora RT, Mlozi MR, et al. Spatio-temporal variation in malaria transmission intensity in five agro-ecosystems in Mvomero district, Tanzania. Geospat Health. 2010;4(2):167–78.PubMedCrossRef
16.
go back to reference McMahon JE, Magayauka SA, Kolstrup N, Mosha FW, Bushrod FM, Abaru DE, et al. Studies on the transmission and prevalence of Bancroftian filariasis in four coastal villages of Tanzania. Ann Trop Med Parasitol. 1981;75(4):415–31.PubMed McMahon JE, Magayauka SA, Kolstrup N, Mosha FW, Bushrod FM, Abaru DE, et al. Studies on the transmission and prevalence of Bancroftian filariasis in four coastal villages of Tanzania. Ann Trop Med Parasitol. 1981;75(4):415–31.PubMed
17.
go back to reference Michael E, Gambhir M. Vector transmission heterogeneity and the population dynamics and control of lymphatic filariasis. Adv Exp Med Biol. 2010;673:13–31.PubMedCrossRef Michael E, Gambhir M. Vector transmission heterogeneity and the population dynamics and control of lymphatic filariasis. Adv Exp Med Biol. 2010;673:13–31.PubMedCrossRef
18.
go back to reference Holling CS, Meffe GK. Command and control and the pathology of natural resource management. Conserv Biol. 1996;10:328–37.CrossRef Holling CS, Meffe GK. Command and control and the pathology of natural resource management. Conserv Biol. 1996;10:328–37.CrossRef
19.
go back to reference Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, et al. Regime shifts, resilience, and biodiversity in ecostem management. Annu Rev Ecol Sys. 2004;35:557–81.CrossRef Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, et al. Regime shifts, resilience, and biodiversity in ecostem management. Annu Rev Ecol Sys. 2004;35:557–81.CrossRef
20.
go back to reference Esterre P, Plichart C, Sechan Y, Nguyen NL. The impact of 34 years of massive DEC chemotherapy on Wuchereria bancrofti infection and transmission: the Maupiti cohort. Trop Med Int Health. 2001;6(3):190–5.PubMedCrossRef Esterre P, Plichart C, Sechan Y, Nguyen NL. The impact of 34 years of massive DEC chemotherapy on Wuchereria bancrofti infection and transmission: the Maupiti cohort. Trop Med Int Health. 2001;6(3):190–5.PubMedCrossRef
21.
go back to reference Sunish I, Rajendran R, Mani T, Munirathinam A, Tewari S, Hiriyan J, et al. Resurgence in filarial transmission after withdrawal of mass drug administration and the relationship between antigenaemia and microfilaraemia–a longitudinal study. Trop Med Int Health. 2002;7(1):59–69.PubMedCrossRef Sunish I, Rajendran R, Mani T, Munirathinam A, Tewari S, Hiriyan J, et al. Resurgence in filarial transmission after withdrawal of mass drug administration and the relationship between antigenaemia and microfilaraemia–a longitudinal study. Trop Med Int Health. 2002;7(1):59–69.PubMedCrossRef
22.
go back to reference Liang S, Seto EY, Remais JV, Zhong B, Yang C, Hubbard A, et al. Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. Proc Natl Acad Sci U S A. 2007;104(17):7110–5.PubMedPubMedCentralCrossRef Liang S, Seto EY, Remais JV, Zhong B, Yang C, Hubbard A, et al. Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. Proc Natl Acad Sci U S A. 2007;104(17):7110–5.PubMedPubMedCentralCrossRef
23.
go back to reference Pedersen EM, Stolk WA, Laney SJ, Michael E. The role of monitoring mosquito infection in the Global Programme to Eliminate Lymphatic Filariasis. Trends Parasitol. 2009;25(7):319–27.PubMedCrossRef Pedersen EM, Stolk WA, Laney SJ, Michael E. The role of monitoring mosquito infection in the Global Programme to Eliminate Lymphatic Filariasis. Trends Parasitol. 2009;25(7):319–27.PubMedCrossRef
24.
go back to reference Filipe JA, Boussinesq M, Renz A, Collins RC, Vivas-Martinez S, Grillet ME, et al. Human infection patterns and heterogeneous exposure in river blindness. Proc Natl Acad Sci U S A. 2005;102(42):15265–70.PubMedPubMedCentralCrossRef Filipe JA, Boussinesq M, Renz A, Collins RC, Vivas-Martinez S, Grillet ME, et al. Human infection patterns and heterogeneous exposure in river blindness. Proc Natl Acad Sci U S A. 2005;102(42):15265–70.PubMedPubMedCentralCrossRef
25.
go back to reference Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W, et al. Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med. 2010;7(8):e1000324.PubMedPubMedCentralCrossRef Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W, et al. Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med. 2010;7(8):e1000324.PubMedPubMedCentralCrossRef
26.
go back to reference Bejon P, Bejon T, Williams A, Liljander A, Noor J, Wambua E, et al. Stable and unstable malaria hotspots in longitudinal cohort studies in Kenya. PLoS Med. 2010;7(7):e1000304.PubMedPubMedCentralCrossRef Bejon P, Bejon T, Williams A, Liljander A, Noor J, Wambua E, et al. Stable and unstable malaria hotspots in longitudinal cohort studies in Kenya. PLoS Med. 2010;7(7):e1000304.PubMedPubMedCentralCrossRef
27.
go back to reference Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken W, et al. Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med. 2012;9(1):e1001165.PubMedPubMedCentralCrossRef Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken W, et al. Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med. 2012;9(1):e1001165.PubMedPubMedCentralCrossRef
28.
go back to reference Midega JT, Smith DL, Olotu A, Mwangangi JM, Nzovu JG, Wambua J, et al. Wind direction and proximity to larval sites determines malaria risk in Kilifi District in Kenya. Nat Commun. 2012;3:674.PubMedPubMedCentralCrossRef Midega JT, Smith DL, Olotu A, Mwangangi JM, Nzovu JG, Wambua J, et al. Wind direction and proximity to larval sites determines malaria risk in Kilifi District in Kenya. Nat Commun. 2012;3:674.PubMedPubMedCentralCrossRef
29.
go back to reference Wagner A. The origins of evolutionary innovations: a theory of transformative change in living systems. New York, NY: Oxford University Press; 2011.CrossRef Wagner A. The origins of evolutionary innovations: a theory of transformative change in living systems. New York, NY: Oxford University Press; 2011.CrossRef
30.
go back to reference Poole D, Raftery AE. Inference for deterministic simulation models: the Bayesian melding approach. J Am Stat Assoc. 2000;95(452):1244–55.CrossRef Poole D, Raftery AE. Inference for deterministic simulation models: the Bayesian melding approach. J Am Stat Assoc. 2000;95(452):1244–55.CrossRef
31.
go back to reference Spear RC, Hubbard A, Liang S, Seto E. Disease transmission models for public health decision making: toward an approach for designing intervention strategies for Schistosomiasis japonica. Environ Health Perspect. 2002;110(9):907–15.PubMedPubMedCentralCrossRef Spear RC, Hubbard A, Liang S, Seto E. Disease transmission models for public health decision making: toward an approach for designing intervention strategies for Schistosomiasis japonica. Environ Health Perspect. 2002;110(9):907–15.PubMedPubMedCentralCrossRef
33.
go back to reference Daniels BC, Chen YJ, Sethna JP, Gutenkunst RN, Myers CR. Myers. Sloppiness, robustness, and evolvability in systems biology. Curr Opin Biotechnol. 2008;19(4):389–95.PubMedCrossRef Daniels BC, Chen YJ, Sethna JP, Gutenkunst RN, Myers CR. Myers. Sloppiness, robustness, and evolvability in systems biology. Curr Opin Biotechnol. 2008;19(4):389–95.PubMedCrossRef
34.
go back to reference Machta BB, Chachra R, Transtrum MK, Sethna JP. Parameter space compression underlies emergent theories and predictive models. Science. 2013;342(6158):604–7.PubMedCrossRef Machta BB, Chachra R, Transtrum MK, Sethna JP. Parameter space compression underlies emergent theories and predictive models. Science. 2013;342(6158):604–7.PubMedCrossRef
35.
go back to reference Michael E, Malecela-Lazaro MN, Kabali C, Snow LC, Kazura JW. Mathematical models and lymphatic filariasis control: endpoints and optimal interventions. Trends Parasitol. 2006;22(5):226–33.PubMedCrossRef Michael E, Malecela-Lazaro MN, Kabali C, Snow LC, Kazura JW. Mathematical models and lymphatic filariasis control: endpoints and optimal interventions. Trends Parasitol. 2006;22(5):226–33.PubMedCrossRef
36.
go back to reference Michael E, Malecela-Lazaro MN, Simonsen PE, Pedersen EM, Barker G, Kumar A, et al. Mathematical modelling and the control of lymphatic filariasis. Lancet Infect Dis. 2004;4(4):223–34.PubMedCrossRef Michael E, Malecela-Lazaro MN, Simonsen PE, Pedersen EM, Barker G, Kumar A, et al. Mathematical modelling and the control of lymphatic filariasis. Lancet Infect Dis. 2004;4(4):223–34.PubMedCrossRef
37.
go back to reference Chan MS, Srividya A, Norman RA, Pani SP, Ramaiah KD, Vanamail P, et al. Epifil: a dynamic model of infection and disease in lymphatic filariasis. Am J Trop Med Hyg. 1998;59(4):606–14.PubMed Chan MS, Srividya A, Norman RA, Pani SP, Ramaiah KD, Vanamail P, et al. Epifil: a dynamic model of infection and disease in lymphatic filariasis. Am J Trop Med Hyg. 1998;59(4):606–14.PubMed
38.
go back to reference Norman RA, Chan MS, Srividya A, Pani SP, Ramaiah KD, Vanamail P, et al. EPIFIL: the development of an age-structured model for describing the transmission dynamics and control of lymphatic filariasis. Epidemiol Infect. 2000;124(3):529–41.PubMedPubMedCentralCrossRef Norman RA, Chan MS, Srividya A, Pani SP, Ramaiah KD, Vanamail P, et al. EPIFIL: the development of an age-structured model for describing the transmission dynamics and control of lymphatic filariasis. Epidemiol Infect. 2000;124(3):529–41.PubMedPubMedCentralCrossRef
39.
go back to reference Southgate BA, Bryan JH. Factors affecting transmission of Wuchereria bancrofti by anopheline mosquitoes. 4. Facilitation, limitation, proportionality and their epidemiological significance. Trans R Soc Trop Med Hyg. 1992;86(5):523–30.PubMedCrossRef Southgate BA, Bryan JH. Factors affecting transmission of Wuchereria bancrofti by anopheline mosquitoes. 4. Facilitation, limitation, proportionality and their epidemiological significance. Trans R Soc Trop Med Hyg. 1992;86(5):523–30.PubMedCrossRef
40.
go back to reference Pichon G. Limitation and facilitation in the vectors and other aspects of the dynamics of filarial transmission: the need for vector control against Anopheles-transmitted filariasis. Ann Trop Med Parasitol. 2002;96(2):143–52.CrossRef Pichon G. Limitation and facilitation in the vectors and other aspects of the dynamics of filarial transmission: the need for vector control against Anopheles-transmitted filariasis. Ann Trop Med Parasitol. 2002;96(2):143–52.CrossRef
41.
go back to reference Snow LC, Michael E. Transmission dynamics of lymphatic filariasis: density-dependence in the uptake of Wuchereria bancrofti microfilariae by vector mosquitoes. Med Vet Entomol. 2002;16(4):409–23.PubMedCrossRef Snow LC, Michael E. Transmission dynamics of lymphatic filariasis: density-dependence in the uptake of Wuchereria bancrofti microfilariae by vector mosquitoes. Med Vet Entomol. 2002;16(4):409–23.PubMedCrossRef
42.
go back to reference Snow LC, Bockarie MJ, Michael E. Transmission dynamics of lymphatic filariasis: vector-specific density dependence in the development of Wuchereria bancrofti infective larvae in mosquitoes. Med Vet Entomol. 2006;20(3):261–72.PubMedCrossRef Snow LC, Bockarie MJ, Michael E. Transmission dynamics of lymphatic filariasis: vector-specific density dependence in the development of Wuchereria bancrofti infective larvae in mosquitoes. Med Vet Entomol. 2006;20(3):261–72.PubMedCrossRef
43.
go back to reference Michael E, Simonsen P, Malecela M, Jaoko W, Pedersen E, Mukoko D, et al. Transmission intensity and the immunoepidemiology of bancroftian filariasis in East Africa. Parasite Immunol. 2001;23(7):373–88.PubMedCrossRef Michael E, Simonsen P, Malecela M, Jaoko W, Pedersen E, Mukoko D, et al. Transmission intensity and the immunoepidemiology of bancroftian filariasis in East Africa. Parasite Immunol. 2001;23(7):373–88.PubMedCrossRef
44.
go back to reference Spear RC, Hubbard A. Parameter estimation and site-specific calibration of disease transmission models. Adv Exp Med Biol. 2010;673:99–111.PubMedCrossRef Spear RC, Hubbard A. Parameter estimation and site-specific calibration of disease transmission models. Adv Exp Med Biol. 2010;673:99–111.PubMedCrossRef
45.
go back to reference Raftery AE, Givens GH, Zeh JE. Inference from a deterministic population dynamics model for bowhead whales. J Am Stat Assoc. 1995;90:402–16.CrossRef Raftery AE, Givens GH, Zeh JE. Inference from a deterministic population dynamics model for bowhead whales. J Am Stat Assoc. 1995;90:402–16.CrossRef
46.
go back to reference Sevcíková H, Raftery AE, Waddell PA. Assessing uncertainty in urban simulations using Bayesian melding. Transp Res B. 2007;41(6):652.CrossRef Sevcíková H, Raftery AE, Waddell PA. Assessing uncertainty in urban simulations using Bayesian melding. Transp Res B. 2007;41(6):652.CrossRef
47.
go back to reference White MT, Griffin JT, Churcher TS, Ferguson NM, Basanez MG, Ghani AC. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasit Vectors. 2011;4:153.PubMedPubMedCentralCrossRef White MT, Griffin JT, Churcher TS, Ferguson NM, Basanez MG, Ghani AC. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasit Vectors. 2011;4:153.PubMedPubMedCentralCrossRef
48.
go back to reference Okumu FO, Moore SJ. Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future. Malar J. 2011;10(1):208.PubMedPubMedCentralCrossRef Okumu FO, Moore SJ. Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future. Malar J. 2011;10(1):208.PubMedPubMedCentralCrossRef
49.
go back to reference Michael E, Malecela MN, Zervos M, Kazura JW. Global eradication of lymphatic filariasis: the value of chronic disease control in parasite elimination programmes. PLoS One. 2008;3(8):e2936.PubMedPubMedCentralCrossRef Michael E, Malecela MN, Zervos M, Kazura JW. Global eradication of lymphatic filariasis: the value of chronic disease control in parasite elimination programmes. PLoS One. 2008;3(8):e2936.PubMedPubMedCentralCrossRef
50.
go back to reference Wood S. Generalized additive models: an introduction with R. Boca Raton, FL: Chapman & Hall/CRC Press; 2006. Wood S. Generalized additive models: an introduction with R. Boca Raton, FL: Chapman & Hall/CRC Press; 2006.
51.
go back to reference Brown K, Sethna J. Statistical mechanical approaches to models with many poorly known parameters. Phys Rev E. 2003;68(2):021904.CrossRef Brown K, Sethna J. Statistical mechanical approaches to models with many poorly known parameters. Phys Rev E. 2003;68(2):021904.CrossRef
52.
go back to reference Waterfall J, Waterfall F, Casey R, Gutenkunst K, Brown C, Myers P, et al. Sloppy-model universality class and the Vandermonde matrix. Phys Rev Lett. 2006;97(15):150601.PubMedCrossRef Waterfall J, Waterfall F, Casey R, Gutenkunst K, Brown C, Myers P, et al. Sloppy-model universality class and the Vandermonde matrix. Phys Rev Lett. 2006;97(15):150601.PubMedCrossRef
53.
go back to reference Gutenkunst R, Gutenkunst J, Waterfall F, Casey K, Brown C, Myers J, et al. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol. 2007;3(10):e189.PubMedCentralCrossRef Gutenkunst R, Gutenkunst J, Waterfall F, Casey K, Brown C, Myers J, et al. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol. 2007;3(10):e189.PubMedCentralCrossRef
54.
go back to reference May RM. Stability and complexity in model ecosystems. Princeton, NJ: Princeton University Press; 1973. May RM. Stability and complexity in model ecosystems. Princeton, NJ: Princeton University Press; 1973.
55.
go back to reference Wang Y, Gutierrez A. An assessment of the use of stability analyses in population ecology. J Anim Ecol. 1980;49:435–52.CrossRef Wang Y, Gutierrez A. An assessment of the use of stability analyses in population ecology. J Anim Ecol. 1980;49:435–52.CrossRef
56.
go back to reference Reimer LJ, Thomsen EK, Tisch DJ, Henry-Halldin CN, Zimmerman PA, Baea ME, et al. Insecticidal bed nets and filariasis transmission in Papua New Guinea. N Engl J Med. 2013;369(8):745–53.PubMedCrossRef Reimer LJ, Thomsen EK, Tisch DJ, Henry-Halldin CN, Zimmerman PA, Baea ME, et al. Insecticidal bed nets and filariasis transmission in Papua New Guinea. N Engl J Med. 2013;369(8):745–53.PubMedCrossRef
57.
go back to reference Michael E, Bundy DA. Herd immunity to filarial infection is a function of vector biting rate. Proc R Soc Lond B Bio. 1998;265(1399):855–60.CrossRef Michael E, Bundy DA. Herd immunity to filarial infection is a function of vector biting rate. Proc R Soc Lond B Bio. 1998;265(1399):855–60.CrossRef
58.
go back to reference Weihs C, Ligges U, Luebke K, Raabe N. klaR: analyzing German business cycles. In: Baier D, Decker R, Schmidt-Thieme L, editors. Data analysis and decision support. Berlin: Springer; 2005. p. 335–43.CrossRef Weihs C, Ligges U, Luebke K, Raabe N. klaR: analyzing German business cycles. In: Baier D, Decker R, Schmidt-Thieme L, editors. Data analysis and decision support. Berlin: Springer; 2005. p. 335–43.CrossRef
59.
go back to reference Spear RC, Bois FY. Parameter variability and the interpretation of physiologically based pharmacokinetic modeling results. Environ Health Perspect. 1994;102 Suppl 11:61–6.PubMedPubMedCentralCrossRef Spear RC, Bois FY. Parameter variability and the interpretation of physiologically based pharmacokinetic modeling results. Environ Health Perspect. 1994;102 Suppl 11:61–6.PubMedPubMedCentralCrossRef
60.
go back to reference World Health Organization (WHO). World Health Organization Global Programme to Eliminate Lymphatic Filariasis: monitoring and epidemiological assessment mass drug administration. Geneva: WHO; 2011. World Health Organization (WHO). World Health Organization Global Programme to Eliminate Lymphatic Filariasis: monitoring and epidemiological assessment mass drug administration. Geneva: WHO; 2011.
61.
go back to reference Hengl S, Kreutz C, Timmer J, Maiwald T. Data-based identifiability analysis of non-linear dynamical models. Bioinformatics. 2007;23(19):2612–8.PubMedCrossRef Hengl S, Kreutz C, Timmer J, Maiwald T. Data-based identifiability analysis of non-linear dynamical models. Bioinformatics. 2007;23(19):2612–8.PubMedCrossRef
62.
go back to reference Transtrum MK, Machta BB, Brown KS, Daniels BC, Myers CR, Sethna JP. Perspective: sloppiness and emergent theories in physics, biology, and beyond. J Chem Phys. 2015;143(1):010901.PubMedCrossRef Transtrum MK, Machta BB, Brown KS, Daniels BC, Myers CR, Sethna JP. Perspective: sloppiness and emergent theories in physics, biology, and beyond. J Chem Phys. 2015;143(1):010901.PubMedCrossRef
63.
go back to reference Fengos G, Iber D. Prediction stability in a data-based, mechanistic model of σF regulation during sporulation in Bacillus subtilis. Sci Rep. 2013;3:2755.PubMedPubMedCentralCrossRef Fengos G, Iber D. Prediction stability in a data-based, mechanistic model of σF regulation during sporulation in Bacillus subtilis. Sci Rep. 2013;3:2755.PubMedPubMedCentralCrossRef
64.
go back to reference Gunawardena J. Models in systems biology: the parameter problem and the meanings of robustness. In: Lodhi HM, Muggleton SH, editors. Elements of computational systems biology. Hoboken, NJ: Wiley; 2010. p. 19–47.CrossRef Gunawardena J. Models in systems biology: the parameter problem and the meanings of robustness. In: Lodhi HM, Muggleton SH, editors. Elements of computational systems biology. Hoboken, NJ: Wiley; 2010. p. 19–47.CrossRef
65.
go back to reference Carlson JM, Doyle J. Highly optimized tolerance: a mechanism for power laws in designed systems. Phys Rev E. 1999;60(2):1412–27.CrossRef Carlson JM, Doyle J. Highly optimized tolerance: a mechanism for power laws in designed systems. Phys Rev E. 1999;60(2):1412–27.CrossRef
66.
go back to reference Carlson JM, Doyle J. Highly optimized tolerance: robustness and design in complex systems. Phys Rev Lett. 2000;84(11):2529.PubMedCrossRef Carlson JM, Doyle J. Highly optimized tolerance: robustness and design in complex systems. Phys Rev Lett. 2000;84(11):2529.PubMedCrossRef
69.
go back to reference Whitacre JM. Biological robustness: paradigms, mechanisms, and systems principles. Front Gene. 2012;3:67. Whitacre JM. Biological robustness: paradigms, mechanisms, and systems principles. Front Gene. 2012;3:67.
70.
go back to reference Jen E. Robust design: a repertoire of biological, ecological, and engineering case studies. New York, NY: Oxford University Press; 2005. Jen E. Robust design: a repertoire of biological, ecological, and engineering case studies. New York, NY: Oxford University Press; 2005.
71.
go back to reference Abaimov SG. Statistical physics of non-thermal phase transitions: from foundations to applications. New York, NY: Springer; 2015.CrossRef Abaimov SG. Statistical physics of non-thermal phase transitions: from foundations to applications. New York, NY: Springer; 2015.CrossRef
72.
go back to reference Gambhir M, Singh BK, Michael E. The Allee effect and elimination of neglected tropical diseases: a mathematical modelling study. Adv Parasitol. 2015;87:1–31.PubMedCrossRef Gambhir M, Singh BK, Michael E. The Allee effect and elimination of neglected tropical diseases: a mathematical modelling study. Adv Parasitol. 2015;87:1–31.PubMedCrossRef
73.
go back to reference Jen E. Stable or robust? What’s the difference? Complexity. 2003;8(3):12–8.CrossRef Jen E. Stable or robust? What’s the difference? Complexity. 2003;8(3):12–8.CrossRef
74.
go back to reference Kitano H. Biological robustness in complex host-pathogen systems. In: Kitano H, Barry CE, Boshoff HI, editors. Systems biological approaches in infectious diseases. New York, NY: Springer; 2007. p. 239–63.CrossRef Kitano H. Biological robustness in complex host-pathogen systems. In: Kitano H, Barry CE, Boshoff HI, editors. Systems biological approaches in infectious diseases. New York, NY: Springer; 2007. p. 239–63.CrossRef
75.
go back to reference Bockarie MJ, Pedersen EM, White GB, Michael E. Role of vector control in the global program to eliminate lymphatic filariasis. Annu Rev Entomol. 2009;54:469–87.PubMedCrossRef Bockarie MJ, Pedersen EM, White GB, Michael E. Role of vector control in the global program to eliminate lymphatic filariasis. Annu Rev Entomol. 2009;54:469–87.PubMedCrossRef
76.
go back to reference Nayak S, Salim S, Luan D, Zai M, Varner JD. A test of highly optimized tolerance reveals fragile cell-cycle mechanisms are molecular targets in clinical cancer trials. PLoS One. 2008;3(4):e2016.PubMedPubMedCentralCrossRef Nayak S, Salim S, Luan D, Zai M, Varner JD. A test of highly optimized tolerance reveals fragile cell-cycle mechanisms are molecular targets in clinical cancer trials. PLoS One. 2008;3(4):e2016.PubMedPubMedCentralCrossRef
77.
go back to reference Quinton‐Tulloch MJ, Bruggeman FJ, Snoep JL, Westerhoff HV. Trade‐off of dynamic fragility but not of robustness in metabolic pathways in silico. FEBS J. 2013;280(1):160–73.PubMedCrossRef Quinton‐Tulloch MJ, Bruggeman FJ, Snoep JL, Westerhoff HV. Trade‐off of dynamic fragility but not of robustness in metabolic pathways in silico. FEBS J. 2013;280(1):160–73.PubMedCrossRef
78.
go back to reference Bockarie MJ, Alexander ND, Hyun P, Dimber Z, Bockarie F, Ibam E, et al. Randomised community-based trial of annual single-dose diethylcarbamazine with or without ivermectin against Wuchereria bancrofti infection in human beings and mosquitoes. Lancet. 1998;351(9097):162–8.PubMedCrossRef Bockarie MJ, Alexander ND, Hyun P, Dimber Z, Bockarie F, Ibam E, et al. Randomised community-based trial of annual single-dose diethylcarbamazine with or without ivermectin against Wuchereria bancrofti infection in human beings and mosquitoes. Lancet. 1998;351(9097):162–8.PubMedCrossRef
79.
go back to reference Bockarie MJ, Tisch DJ, Kastens W, Alexander ND, Dimber Z, Bockarie F, et al. Mass treatment to eliminate filariasis in Papua New Guinea. N Engl J Med. 2002;347(23):1841–8.PubMedCrossRef Bockarie MJ, Tisch DJ, Kastens W, Alexander ND, Dimber Z, Bockarie F, et al. Mass treatment to eliminate filariasis in Papua New Guinea. N Engl J Med. 2002;347(23):1841–8.PubMedCrossRef
80.
go back to reference Simonsen PE, Meyrowitsch DW, Jaoko WG, Malecela MN, Mukoko D, Pedersen EM, et al. Bancroftian filariasis infection, disease, and specific antibody response patterns in a high and a low endemicity community in East Africa. Am J Trop Med Hyg. 2002;66(5):550–9.PubMed Simonsen PE, Meyrowitsch DW, Jaoko WG, Malecela MN, Mukoko D, Pedersen EM, et al. Bancroftian filariasis infection, disease, and specific antibody response patterns in a high and a low endemicity community in East Africa. Am J Trop Med Hyg. 2002;66(5):550–9.PubMed
81.
go back to reference Wijers DJ, Kiilu G. Bancroftian filariasis in Kenya III. Entomological investigations in Mambrui, a small coastal town, and Jaribuni, a rural area more inland (Coast Province). Ann Trop Med Parasitol. 1977;71(3):347–59.PubMed Wijers DJ, Kiilu G. Bancroftian filariasis in Kenya III. Entomological investigations in Mambrui, a small coastal town, and Jaribuni, a rural area more inland (Coast Province). Ann Trop Med Parasitol. 1977;71(3):347–59.PubMed
82.
go back to reference Wijers DJ, Kinyanjui H. Bancroftian filariasis in Kenya II. Clinical and parasitological investigations in Mambrui, a small coastal town, and Jaribuni, a rural area more inland (Coast Province). Ann Trop Med Parasitol. 1977;71(3):333–45.PubMed Wijers DJ, Kinyanjui H. Bancroftian filariasis in Kenya II. Clinical and parasitological investigations in Mambrui, a small coastal town, and Jaribuni, a rural area more inland (Coast Province). Ann Trop Med Parasitol. 1977;71(3):333–45.PubMed
83.
go back to reference Brengues J. La filariose de Bancroft en Afrique de L’ouest. Memoires d’Orstom. 1975;79:1–299. Brengues J. La filariose de Bancroft en Afrique de L’ouest. Memoires d’Orstom. 1975;79:1–299.
84.
go back to reference Brunhes J. La filariose de Bancroft dans la sous-region malgache Comores-Madagascar-Reunion. Memoires d’Orstom. 1975;81:1–212. Brunhes J. La filariose de Bancroft dans la sous-region malgache Comores-Madagascar-Reunion. Memoires d’Orstom. 1975;81:1–212.
85.
go back to reference Rajagopalan PK, Kazmi SJ, Mani TR. Some aspects of transmission of Wuchereria bancrofti and ecology of the vector Culex pipiens fatigans in Pondicherry. Indian J Med Res. 1977;66(2):200–15.PubMed Rajagopalan PK, Kazmi SJ, Mani TR. Some aspects of transmission of Wuchereria bancrofti and ecology of the vector Culex pipiens fatigans in Pondicherry. Indian J Med Res. 1977;66(2):200–15.PubMed
86.
go back to reference Rozeboom LE, Bhattacharya NC, Gilotra SK. Observations on the transmission of filariasis in urban Calcutta. Am J Epidemiol. 1968;87(3):616–32.PubMed Rozeboom LE, Bhattacharya NC, Gilotra SK. Observations on the transmission of filariasis in urban Calcutta. Am J Epidemiol. 1968;87(3):616–32.PubMed
87.
go back to reference Gubler DJ, Bhattacharya NC. A quantitative approach to the study of Bancroftian filariasis. Am J Trop Med Hyg. 1974;23(6):1027–36.PubMed Gubler DJ, Bhattacharya NC. A quantitative approach to the study of Bancroftian filariasis. Am J Trop Med Hyg. 1974;23(6):1027–36.PubMed
88.
go back to reference Ramaiah K, Pani S, Balakrishnan N, Sadanandane C, Das L, Mariappan T, et al. Prevalence of bancroftian filariasis & its control by single course of diethyl carbamazine in a rural area in Tamil Nadu. Indian J Med Res. 1989;89:184–91.PubMed Ramaiah K, Pani S, Balakrishnan N, Sadanandane C, Das L, Mariappan T, et al. Prevalence of bancroftian filariasis & its control by single course of diethyl carbamazine in a rural area in Tamil Nadu. Indian J Med Res. 1989;89:184–91.PubMed
89.
go back to reference Wolfe MS, Aslamkhan M. Bancroftian filariasis in two villages in Dinajpur District, East Pakistan. I. Infections in man. Am J Trop Med Hyg. 1972;21(2):22–9.PubMed Wolfe MS, Aslamkhan M. Bancroftian filariasis in two villages in Dinajpur District, East Pakistan. I. Infections in man. Am J Trop Med Hyg. 1972;21(2):22–9.PubMed
90.
go back to reference Aslamkhan M, Wolfe MS. Bancroftian filariasis in two villages in Dinajpur District, East Pakistan. II. Entomological investigations. Am J Trop Med Hyg. 1972;21(2):30–7.PubMed Aslamkhan M, Wolfe MS. Bancroftian filariasis in two villages in Dinajpur District, East Pakistan. II. Entomological investigations. Am J Trop Med Hyg. 1972;21(2):30–7.PubMed
91.
go back to reference Self LS, Usman S, Sajidiman H, Partono F, Nelson MJ, Pant CP, et al. A multidisciplinary study on bancroftian filariasis in Jakarta. Trans R Soc Trop Med Hyg. 1978;72(6):581–7.PubMedCrossRef Self LS, Usman S, Sajidiman H, Partono F, Nelson MJ, Pant CP, et al. A multidisciplinary study on bancroftian filariasis in Jakarta. Trans R Soc Trop Med Hyg. 1978;72(6):581–7.PubMedCrossRef
92.
go back to reference World Health Organization (WHO). Progress report 2000–2009 and strategic plan 2010–2020 of the global programme to eliminate lymphatic filariasis: halfway towards eliminating lymphatic filariasis. Geneva: WHO; 2010. World Health Organization (WHO). Progress report 2000–2009 and strategic plan 2010–2020 of the global programme to eliminate lymphatic filariasis: halfway towards eliminating lymphatic filariasis. Geneva: WHO; 2010.
93.
go back to reference PacELF. The PacELF Way: towards the elimination of lymphatic filariasis from the Pacific, 1999–2005. Geneva: World Health Organization WPR; 2006. PacELF. The PacELF Way: towards the elimination of lymphatic filariasis from the Pacific, 1999–2005. Geneva: World Health Organization WPR; 2006.
Metadata
Title
Heterogeneous dynamics, robustness/fragility trade-offs, and the eradication of the macroparasitic disease, lymphatic filariasis
Authors
Edwin Michael
Brajendra K. Singh
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2016
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-016-0557-y

Other articles of this Issue 1/2016

BMC Medicine 1/2016 Go to the issue