Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2022

Open Access 01-12-2022 | Toxoplasmosis | Research

Formulation of Neem oil-loaded solid lipid nanoparticles and evaluation of its anti-Toxoplasma activity

Authors: Sara Nemati, Hanieh Mohammad Rahimi, Zahra Hesari, Meysam Sharifdini, Nooshin Jalilzadeh Aghdam, Hamed Mirjalali, Mohammad Reza Zali

Published in: BMC Complementary Medicine and Therapies | Issue 1/2022

Login to get access

Abstract

Background

Toxoplasmosis is caused by an intracellular zoonotic protozoan, Toxoplasma gondii, which could be lethal in immunocompromised patients. This study aimed to synthesize Neem oil-loaded solid lipid nanoparticles (NeO-SLNs) and to evaluate the anti-Toxoplasma activity of this component.

Methods

The NeO-SLNs were constructed using double emulsification method, and their shape and size distribution were evaluated using transmission electron microscope (TEM) and dynamic light scattering (DLS), respectively. An MTT assay was employed to evaluate the cell toxicity of the component. The anti-Toxoplasma activity of NeO-SLNs was investigated using vital (trypan-blue) staining. Anti-intracellular Toxoplasma activity of NeO-SLNs was evaluated in T. gondii-infected Vero cells.

Results

The TEM analysis represented round shape NeO-SLNs with clear and stable margins. DLS analysis showed a mean particle size 337.6 nm for SLNs, and most of nanoparticles were in range 30 to 120 nm. The cell toxicity of NeO-SLNs was directly correlated with the concentration of the component (P-value = 0.0013). The concentration of NeO-SLNs, which was toxic for at least 50% of alive T. gondii (cytotoxic concentration (CC50)), was > 10 mg/mL. The ability of NeO-SLNs to kill Toxoplasma was concentration-dependent (P-value < 0.0001), and all concentrations killed at least 70% of alive tachyzoites. Furthermore, the viability of T. gondii- infected Vero cells was inversely correlated with NeO-SLNs concentrations (P-value = 0.0317), and in the concentration 100 μg/mL at least 75% of T. gondii- infected Vero cells remained alive.

Conclusions

Overall, our findings demonstrated that the NeO-SLNs was able to kill T. gondii tachyzoites in concentration 100 μg/mL with a cell toxicity lower than 20%. Such results suggest that employing SLNs as carrier for NeO can effectively kill T. gondii tachyzoites with acceptable cell toxicity. Our findings also showed that SLNs capsulation of the NeO can lead to prolonged release of the extract, suggesting that NeO-SLNs could be also employed to clear cyst stages, which should be further investigated in animal models.
Literature
1.
go back to reference Lago EG, Neto EC, Melamed J, Rucks AP, Presotto C, Coelho JC, et al. Congenital toxoplasmosis: late pregnancy infections detected by neonatal screening and maternal serological testing at delivery. Paediat Perinatal Epidemiol. 2007;21(6):525–31. Lago EG, Neto EC, Melamed J, Rucks AP, Presotto C, Coelho JC, et al. Congenital toxoplasmosis: late pregnancy infections detected by neonatal screening and maternal serological testing at delivery. Paediat Perinatal Epidemiol. 2007;21(6):525–31.
4.
go back to reference Ayi I, Sowah AO-K, Blay EA, Suzuki T, Ohta N, Ayeh-Kumi PF. Toxoplasma gondii infections among pregnant women, children and HIV-seropositive persons in Accra, Ghana. Trop Med Health. 2016;44(1):17.PubMedPubMedCentralCrossRef Ayi I, Sowah AO-K, Blay EA, Suzuki T, Ohta N, Ayeh-Kumi PF. Toxoplasma gondii infections among pregnant women, children and HIV-seropositive persons in Accra, Ghana. Trop Med Health. 2016;44(1):17.PubMedPubMedCentralCrossRef
5.
go back to reference Kartasasmita A, Muntur WP, Enus S, Iskandar E. Rapid resolution of Toxoplasma chorioretinitis treatment using quadruple therapy. Clin Ophthalmol. 2017;11:2133–7.PubMedPubMedCentralCrossRef Kartasasmita A, Muntur WP, Enus S, Iskandar E. Rapid resolution of Toxoplasma chorioretinitis treatment using quadruple therapy. Clin Ophthalmol. 2017;11:2133–7.PubMedPubMedCentralCrossRef
6.
go back to reference Alday PH, Doggett JS. Drugs in development for toxoplasmosis: advances, challenges, and current status. Drug Des Develop Therap. 2017;11:273–93.CrossRef Alday PH, Doggett JS. Drugs in development for toxoplasmosis: advances, challenges, and current status. Drug Des Develop Therap. 2017;11:273–93.CrossRef
7.
go back to reference Ambroise-Thomas P, Pelloux H. Toxoplasmosis - congenital and in immunocompromised patients: a parallel. Parasitol Today (Personal ed). 1993;9(2):61–3.CrossRef Ambroise-Thomas P, Pelloux H. Toxoplasmosis - congenital and in immunocompromised patients: a parallel. Parasitol Today (Personal ed). 1993;9(2):61–3.CrossRef
8.
go back to reference Raffi F, Aboulker JP, Michelet C, Reliquet V, Pelloux H, Huart A, et al. A prospective study of criteria for the diagnosis of toxoplasmic encephalitis in 186 AIDS patients. The BIOTOXO Study Group. AIDS (London, England). 1997;11(2):177–84. Raffi F, Aboulker JP, Michelet C, Reliquet V, Pelloux H, Huart A, et al. A prospective study of criteria for the diagnosis of toxoplasmic encephalitis in 186 AIDS patients. The BIOTOXO Study Group. AIDS (London, England). 1997;11(2):177–84.
9.
go back to reference Jafarpour Azami S, Mohammad Rahimi H, Mirjalali H, Zali MR. Unravelling Toxoplasma treatment: conventional drugs toward nanomedicine. World J Microbiol Biotechnol. 2021;37(3):48.PubMedCrossRef Jafarpour Azami S, Mohammad Rahimi H, Mirjalali H, Zali MR. Unravelling Toxoplasma treatment: conventional drugs toward nanomedicine. World J Microbiol Biotechnol. 2021;37(3):48.PubMedCrossRef
10.
go back to reference Sharif M, Sarvi S, Pagheh AS, Asfaram S, Rahimi MT, Mehrzadi S, et al. The efficacy of herbal medicines against Toxoplasma gondii during the last 3 decades: a systematic review. Can J Physiol Pharmacol. 2016;94(12):1237–48. Sharif M, Sarvi S, Pagheh AS, Asfaram S, Rahimi MT, Mehrzadi S, et al. The efficacy of herbal medicines against Toxoplasma gondii during the last 3 decades: a systematic review. Can J Physiol Pharmacol. 2016;94(12):1237–48.
11.
go back to reference Cheraghipour K, Masoori L, Ezzatpour B, Roozbehani M, Sheikhian A, Malekara V, et al. The experimental role of medicinal plants in treatment of Toxoplasma gondii infection: a systematic review. Acta Parasitol. 2021;66(2):303–28. Cheraghipour K, Masoori L, Ezzatpour B, Roozbehani M, Sheikhian A, Malekara V, et al. The experimental role of medicinal plants in treatment of Toxoplasma gondii infection: a systematic review. Acta Parasitol. 2021;66(2):303–28.
12.
go back to reference Al Nasr I, Ahmed F, Pullishery F, El-Ashram S, Ramaiah VV. Toxoplasmosis and anti-Toxoplasma effects of medicinal plant extracts-a mini-review. Asian Pac J Trop Med. 2016;9(8):730–4.PubMedCrossRef Al Nasr I, Ahmed F, Pullishery F, El-Ashram S, Ramaiah VV. Toxoplasmosis and anti-Toxoplasma effects of medicinal plant extracts-a mini-review. Asian Pac J Trop Med. 2016;9(8):730–4.PubMedCrossRef
13.
go back to reference Mordue AJ. Natural pesticides from the neem tree (Azadirachta indica a. Juss) and other tropical plants. Entomol Exp Appl. 1986;41(3):319–20.CrossRef Mordue AJ. Natural pesticides from the neem tree (Azadirachta indica a. Juss) and other tropical plants. Entomol Exp Appl. 1986;41(3):319–20.CrossRef
14.
go back to reference Manca ML, Manconi M, Meloni MC, Marongiu F, Allaw M, Usach I, et al. Nanotechnology for natural medicine: formulation of neem oil loaded phospholipid vesicles modified with argan oil as a strategy to protect the skin from oxidative stress and promote wound healing. Antioxidants (Basel, Switzerland). 2021;10(5):670. Manca ML, Manconi M, Meloni MC, Marongiu F, Allaw M, Usach I, et al. Nanotechnology for natural medicine: formulation of neem oil loaded phospholipid vesicles modified with argan oil as a strategy to protect the skin from oxidative stress and promote wound healing. Antioxidants (Basel, Switzerland). 2021;10(5):670.
15.
go back to reference Mantzoukas S, Ntoukas A, Lagogiannis I, Kalyvas N, Eliopoulos P, Poulas K. Larvicidal action of cannabidiol oil and neem oil against three stored product insect pests: effect on survival time and in progeny. Biology. 2020;9(10):321.PubMedCentralCrossRef Mantzoukas S, Ntoukas A, Lagogiannis I, Kalyvas N, Eliopoulos P, Poulas K. Larvicidal action of cannabidiol oil and neem oil against three stored product insect pests: effect on survival time and in progeny. Biology. 2020;9(10):321.PubMedCentralCrossRef
16.
go back to reference Giuggioli D, Lumetti F, Spinella A, Cocchiara E, Sighinolfi G, Citriniti G, et al. Use of neem oil and Hypericum perforatum for treatment of calcinosis-related skin ulcers in systemic sclerosis. J Int Med Res. 2020;48(4):300060519882176. Giuggioli D, Lumetti F, Spinella A, Cocchiara E, Sighinolfi G, Citriniti G, et al. Use of neem oil and Hypericum perforatum for treatment of calcinosis-related skin ulcers in systemic sclerosis. J Int Med Res. 2020;48(4):300060519882176.
17.
go back to reference Shu’aibu I, Hamman J, Goje L, Mu’inat A, Jauro H, Kabiru M. Phytochemical analysis and evaluation of bacteriostatic effect of neem (Azadirachta indica) leaves on some clinical bacterial isolates. J Harmoniz Res Appl Sci. 2015;3(3):152–7. Shu’aibu I, Hamman J, Goje L, Mu’inat A, Jauro H, Kabiru M. Phytochemical analysis and evaluation of bacteriostatic effect of neem (Azadirachta indica) leaves on some clinical bacterial isolates. J Harmoniz Res Appl Sci. 2015;3(3):152–7.
18.
go back to reference Z-h P, Zhang Y-Q, Yin Z-Q, Xu J, Jia R-Y, Lu Y, et al. Antibacterial activity of 9-octadecanoic acid-hexadecanoic acid-tetrahydrofuran-3,4-diyl ester from neem oil. Agric Sci China. 2010;9(8):1236–40. Z-h P, Zhang Y-Q, Yin Z-Q, Xu J, Jia R-Y, Lu Y, et al. Antibacterial activity of 9-octadecanoic acid-hexadecanoic acid-tetrahydrofuran-3,4-diyl ester from neem oil. Agric Sci China. 2010;9(8):1236–40.
19.
go back to reference Blum FC, Singh J, Merrell DS. In vitro activity of neem (Azadirachta indica) oil extract against Helicobacter pylori. J Ethnopharmacol. 2019;232:236–43.PubMedCrossRef Blum FC, Singh J, Merrell DS. In vitro activity of neem (Azadirachta indica) oil extract against Helicobacter pylori. J Ethnopharmacol. 2019;232:236–43.PubMedCrossRef
20.
go back to reference Del Serrone P, Toniolo C, Nicoletti M. Neem (Azadirachta indica A. Juss) oil to tackle enteropathogenic Escherichia coli. Biomed Res Int. 2015;2015:343610.PubMedPubMedCentral Del Serrone P, Toniolo C, Nicoletti M. Neem (Azadirachta indica A. Juss) oil to tackle enteropathogenic Escherichia coli. Biomed Res Int. 2015;2015:343610.PubMedPubMedCentral
21.
go back to reference Mishra P, Suresh Kumar RS, Jerobin J, Thomas J, Mukherjee A, Chandrasekaran N. Study on antimicrobial potential of neem oil nanoemulsion against Pseudomonas aeruginosa infection in Labeo rohita. Biotechnol Appl Biochem. 2014;61(5):611–9.PubMedCrossRef Mishra P, Suresh Kumar RS, Jerobin J, Thomas J, Mukherjee A, Chandrasekaran N. Study on antimicrobial potential of neem oil nanoemulsion against Pseudomonas aeruginosa infection in Labeo rohita. Biotechnol Appl Biochem. 2014;61(5):611–9.PubMedCrossRef
22.
go back to reference Tiwari V, Darmani NA, Yue BYJT, Shukla D. In vitro antiviral activity of neem (Azardirachta indica L.) bark extract against herpes simplex virus type-1 infection. Phytother Res. 2010;24(8):1132–40.PubMedPubMedCentralCrossRef Tiwari V, Darmani NA, Yue BYJT, Shukla D. In vitro antiviral activity of neem (Azardirachta indica L.) bark extract against herpes simplex virus type-1 infection. Phytother Res. 2010;24(8):1132–40.PubMedPubMedCentralCrossRef
23.
go back to reference Melo E, Vilela KJ, Carvalho Wodarz C. Effects of aqueous leaf extracts of Azadirachta indica a. Juss. (neem) and Melia azedarach L. (Santa Barbara or cinnamon) on the intracellular development of Toxoplasma gondii. Rev Brasil Plant Med. 2010;13:215–22.CrossRef Melo E, Vilela KJ, Carvalho Wodarz C. Effects of aqueous leaf extracts of Azadirachta indica a. Juss. (neem) and Melia azedarach L. (Santa Barbara or cinnamon) on the intracellular development of Toxoplasma gondii. Rev Brasil Plant Med. 2010;13:215–22.CrossRef
24.
go back to reference Pasquoto-Stigliani T, Campos EVR, Oliveira JL, Silva CMG, Bilesky-José N, Guilger M, et al. Nanocapsules containing neem (Azadirachta Indica) oil: development, characterization, and toxicity evaluation. Sci Rep. 2017;7(1):5929. Pasquoto-Stigliani T, Campos EVR, Oliveira JL, Silva CMG, Bilesky-José N, Guilger M, et al. Nanocapsules containing neem (Azadirachta Indica) oil: development, characterization, and toxicity evaluation. Sci Rep. 2017;7(1):5929.
25.
go back to reference Sanuja S, Agalya A, Umapathy MJ. Synthesis and characterization of zinc oxide-neem oil-chitosan bionanocomposite for food packaging application. Int J Biol Macromol. 2015;74:76–84.PubMedCrossRef Sanuja S, Agalya A, Umapathy MJ. Synthesis and characterization of zinc oxide-neem oil-chitosan bionanocomposite for food packaging application. Int J Biol Macromol. 2015;74:76–84.PubMedCrossRef
26.
go back to reference Mirchandani Y, Patravale VB, Brijesh S. Solid lipid nanoparticles for hydrophilic drugs. J Control Release. 2021;335:457–64.PubMedCrossRef Mirchandani Y, Patravale VB, Brijesh S. Solid lipid nanoparticles for hydrophilic drugs. J Control Release. 2021;335:457–64.PubMedCrossRef
27.
go back to reference Ghadiri M, Fatemi S, Vatanara A, Doroud D, Najafabadi AR, Darabi M, et al. Loading hydrophilic drug in solid lipid media as nanoparticles: statistical modeling of entrapment efficiency and particle size. Int J Pharm. 2012;424(1-2):128–37. Ghadiri M, Fatemi S, Vatanara A, Doroud D, Najafabadi AR, Darabi M, et al. Loading hydrophilic drug in solid lipid media as nanoparticles: statistical modeling of entrapment efficiency and particle size. Int J Pharm. 2012;424(1-2):128–37.
28.
go back to reference Vijayan V, Aafreen S, Sakthivel S, Reddy KR. Formulation and characterization of solid lipid nanoparticles loaded Neem oil for topical treatment of acne. J Acute Dis. 2013;2(4):282–6.CrossRef Vijayan V, Aafreen S, Sakthivel S, Reddy KR. Formulation and characterization of solid lipid nanoparticles loaded Neem oil for topical treatment of acne. J Acute Dis. 2013;2(4):282–6.CrossRef
29.
go back to reference Ud Din F, Zeb A, Shah KU, Zia URR. Development, in-vitro and in-vivo evaluation of ezetimibe-loaded solid lipid nanoparticles and their comparison with marketed product. J Drug Deliv Sci Tech. 2019;51:583–90.CrossRef Ud Din F, Zeb A, Shah KU, Zia URR. Development, in-vitro and in-vivo evaluation of ezetimibe-loaded solid lipid nanoparticles and their comparison with marketed product. J Drug Deliv Sci Tech. 2019;51:583–90.CrossRef
30.
go back to reference Pinheiro RGR, Granja A, Loureiro JA, Pereira MC, Pinheiro M, Neves AR, et al. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer's disease. Eur J Pharm Sci. 2020;148:105314. Pinheiro RGR, Granja A, Loureiro JA, Pereira MC, Pinheiro M, Neves AR, et al. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer's disease. Eur J Pharm Sci. 2020;148:105314.
31.
go back to reference Mortazavi SM, Mortazavi SA. Propranolol hydrochloride buccoadhesive tablet: development and in-vitro evaluation. Iran J Pharmaceut Res. 2020;19(2):22–33. Mortazavi SM, Mortazavi SA. Propranolol hydrochloride buccoadhesive tablet: development and in-vitro evaluation. Iran J Pharmaceut Res. 2020;19(2):22–33.
32.
go back to reference Parvinroo S, Eslami M, Ebrahimi-Najafabadi H, Hesari Z. Natural polymers for vaginal mucoadhesive delivery of vinegar, using design of experiment methods. Vojnosanit Pregl. 2022;79:337–44. Parvinroo S, Eslami M, Ebrahimi-Najafabadi H, Hesari Z. Natural polymers for vaginal mucoadhesive delivery of vinegar, using design of experiment methods. Vojnosanit Pregl. 2022;79:337–44.
33.
go back to reference Khosravi M, Mohammad Rahimi H, Doroud D, Mirsamadi ES, Mirjalali H, Zali MR. In vitro evaluation of mannosylated paromomycin-loaded solid lipid nanoparticles on acute toxoplasmosis. Front Cell Infect Microbiol. 2020;10:33.PubMedPubMedCentralCrossRef Khosravi M, Mohammad Rahimi H, Doroud D, Mirsamadi ES, Mirjalali H, Zali MR. In vitro evaluation of mannosylated paromomycin-loaded solid lipid nanoparticles on acute toxoplasmosis. Front Cell Infect Microbiol. 2020;10:33.PubMedPubMedCentralCrossRef
34.
go back to reference Teimouri A, Azami SJ, Keshavarz H, Esmaeili F, Alimi R, Mavi SA, et al. Anti-Toxoplasma activity of various molecular weights and concentrations of chitosan nanoparticles on tachyzoites of RH strain. Int J Nanomedicine. 2018;13:1341–51. Teimouri A, Azami SJ, Keshavarz H, Esmaeili F, Alimi R, Mavi SA, et al. Anti-Toxoplasma activity of various molecular weights and concentrations of chitosan nanoparticles on tachyzoites of RH strain. Int J Nanomedicine. 2018;13:1341–51.
35.
go back to reference Machado LF, Sanfelice RA, Bosqui LR, Assolini JP, Scandorieiro S, Navarro IT, et al. Biogenic silver nanoparticles reduce adherence, infection, and proliferation of Toxoplasma gondii RH strain in HeLa cells without inflammatory mediators induction. Exp Parasitol. 2020;211:107853. Machado LF, Sanfelice RA, Bosqui LR, Assolini JP, Scandorieiro S, Navarro IT, et al. Biogenic silver nanoparticles reduce adherence, infection, and proliferation of Toxoplasma gondii RH strain in HeLa cells without inflammatory mediators induction. Exp Parasitol. 2020;211:107853.
36.
go back to reference Mohammad Rahimi H, Khosravi M, Hesari Z, Sharifdini M, Mirjalali H, Zali MR. Anti-Toxoplasma activity and chemical compositions of aquatic extract of Mentha pulegium L. and Rubus idaeus L.: an in vitro study. Food Sci Nut. 2020;8(7):3656–64.CrossRef Mohammad Rahimi H, Khosravi M, Hesari Z, Sharifdini M, Mirjalali H, Zali MR. Anti-Toxoplasma activity and chemical compositions of aquatic extract of Mentha pulegium L. and Rubus idaeus L.: an in vitro study. Food Sci Nut. 2020;8(7):3656–64.CrossRef
37.
go back to reference Shojaee S, Firouzeh N, Keshavarz H, Jafar-Pour Azami S, Salimi M, Mohebali M. Nanosilver colloid inhibits Toxoplasma gondii tachyzoites and bradyzoites in vitro. Iran J Parasitol. 2019;14(3):362–7.PubMedPubMedCentral Shojaee S, Firouzeh N, Keshavarz H, Jafar-Pour Azami S, Salimi M, Mohebali M. Nanosilver colloid inhibits Toxoplasma gondii tachyzoites and bradyzoites in vitro. Iran J Parasitol. 2019;14(3):362–7.PubMedPubMedCentral
38.
go back to reference Das P, Sharma N, Puzari A, Kakati DK, Devi N. Synthesis and characterization of neem (Azadirachta indica) seed oil-based alkyd resins for efficient anticorrosive coating application. Polym Bull. 2021;78(1):457–79.CrossRef Das P, Sharma N, Puzari A, Kakati DK, Devi N. Synthesis and characterization of neem (Azadirachta indica) seed oil-based alkyd resins for efficient anticorrosive coating application. Polym Bull. 2021;78(1):457–79.CrossRef
39.
go back to reference Bhargava S, Madhav NVS. Data on spectroscopic, rheological characterization of neem oil and its isolated fractions. Data Br. 2018;21:996–1003.CrossRef Bhargava S, Madhav NVS. Data on spectroscopic, rheological characterization of neem oil and its isolated fractions. Data Br. 2018;21:996–1003.CrossRef
40.
go back to reference Caumes E, Bocquet H, Guermonprez G, Rogeaux O, Bricaire F, Katlama C, et al. Adverse cutaneous reactions to pyrimethamine/sulfadiazine and pyrimethamine/clindamycin in patients with AIDS and toxoplasmic encephalitis. Clin Infect Dis. 1995;21(3):656–8. Caumes E, Bocquet H, Guermonprez G, Rogeaux O, Bricaire F, Katlama C, et al. Adverse cutaneous reactions to pyrimethamine/sulfadiazine and pyrimethamine/clindamycin in patients with AIDS and toxoplasmic encephalitis. Clin Infect Dis. 1995;21(3):656–8.
41.
go back to reference Pfefferkorn ER, Nothnagel RF, Borotz SE. Parasiticidal effect of clindamycin on Toxoplasma gondii grown in cultured cells and selection of a drug-resistant mutant. Antimicrob Agents Chemother. 1992;36(5):1091–6.PubMedPubMedCentralCrossRef Pfefferkorn ER, Nothnagel RF, Borotz SE. Parasiticidal effect of clindamycin on Toxoplasma gondii grown in cultured cells and selection of a drug-resistant mutant. Antimicrob Agents Chemother. 1992;36(5):1091–6.PubMedPubMedCentralCrossRef
42.
go back to reference Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014;4:177–7. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014;4:177–7.
43.
go back to reference Bent S. Herbal medicine in the United States: review of efficacy, safety, and regulation: grand rounds at University of California, san Francisco medical center. J Gen Intern Med. 2008;23(6):854–9.PubMedPubMedCentralCrossRef Bent S. Herbal medicine in the United States: review of efficacy, safety, and regulation: grand rounds at University of California, san Francisco medical center. J Gen Intern Med. 2008;23(6):854–9.PubMedPubMedCentralCrossRef
44.
go back to reference Kheirandish F, Delfan B, Mahmoudvand H, Moradi N, Ezatpour B, Ebrahimzadeh F, et al. Antileishmanial, antioxidant, and cytotoxic activities of Quercus infectoria Olivier extract. Biomed Pharmacother. 2016;82:208–15. Kheirandish F, Delfan B, Mahmoudvand H, Moradi N, Ezatpour B, Ebrahimzadeh F, et al. Antileishmanial, antioxidant, and cytotoxic activities of Quercus infectoria Olivier extract. Biomed Pharmacother. 2016;82:208–15.
45.
go back to reference Reynolds MG, Oh J, Roos DS. In vitro generation of novel pyrimethamine resistance mutations in the Toxoplasma gondii dihydrofolate reductase. Antimicrob Agents Chemother. 2001;45(4):1271–7.PubMedPubMedCentralCrossRef Reynolds MG, Oh J, Roos DS. In vitro generation of novel pyrimethamine resistance mutations in the Toxoplasma gondii dihydrofolate reductase. Antimicrob Agents Chemother. 2001;45(4):1271–7.PubMedPubMedCentralCrossRef
46.
go back to reference Dyab AK, Yones DA, Ibraheim ZZ, Hassan TM. Anti-giardial therapeutic potential of dichloromethane extracts of Zingiber officinale and Curcuma longa in vitro and in vivo. Parasitol Res. 2016;115(7):2637–45.PubMedCrossRef Dyab AK, Yones DA, Ibraheim ZZ, Hassan TM. Anti-giardial therapeutic potential of dichloromethane extracts of Zingiber officinale and Curcuma longa in vitro and in vivo. Parasitol Res. 2016;115(7):2637–45.PubMedCrossRef
47.
go back to reference Mirzaalizadeh B, Sharif M, Daryani A, Ebrahimzadeh MA, Zargari M, Sarvi S, et al. Effects of Aloe vera and Eucalyptus methanolic extracts on experimental toxoplasmosis in vitro and in vivo. Exp Parasitol. 2018;192:6–11. Mirzaalizadeh B, Sharif M, Daryani A, Ebrahimzadeh MA, Zargari M, Sarvi S, et al. Effects of Aloe vera and Eucalyptus methanolic extracts on experimental toxoplasmosis in vitro and in vivo. Exp Parasitol. 2018;192:6–11.
48.
go back to reference Ribeiro TG, Chavez-Fumagalli MA, Valadares DG, Franca JR, Lage PS, Duarte MC, et al. Antileishmanial activity and cytotoxicity of Brazilian plants. Exp Parasitol. 2014;143:60–8. Ribeiro TG, Chavez-Fumagalli MA, Valadares DG, Franca JR, Lage PS, Duarte MC, et al. Antileishmanial activity and cytotoxicity of Brazilian plants. Exp Parasitol. 2014;143:60–8.
49.
go back to reference López V, Gerique J, Langa E, Berzosa C, Valero MS, Gómez-Rincón C. Antihelmintic effects of nutmeg (Myristica fragans) on Anisakis simplex L3 larvae obtained from Micromesistius potassou. Res Vet Sci. 2015;100:148–52.PubMedCrossRef López V, Gerique J, Langa E, Berzosa C, Valero MS, Gómez-Rincón C. Antihelmintic effects of nutmeg (Myristica fragans) on Anisakis simplex L3 larvae obtained from Micromesistius potassou. Res Vet Sci. 2015;100:148–52.PubMedCrossRef
50.
go back to reference Gaurav D, Mahesh B, Deependra R, Sandeep R. Anthelmintic activity of Myristica fragrans (nutmeg) extract. Res J Pharm, Biol Chem Sci. 2011;2(2):315–8. Gaurav D, Mahesh B, Deependra R, Sandeep R. Anthelmintic activity of Myristica fragrans (nutmeg) extract. Res J Pharm, Biol Chem Sci. 2011;2(2):315–8.
51.
go back to reference Yadav AK, Tangpu V. Anticestodal activity of Adhatoda vasica extract against Hymenolepis diminuta infections in rats. J Ethnopharmacol. 2008;119(2):322–4.PubMedCrossRef Yadav AK, Tangpu V. Anticestodal activity of Adhatoda vasica extract against Hymenolepis diminuta infections in rats. J Ethnopharmacol. 2008;119(2):322–4.PubMedCrossRef
52.
go back to reference Yadav AK, Tangpu V. Anthelmintic activity of ripe fruit extract of Solanum myriacanthum Dunal (Solanaceae) against experimentally induced Hymenolepis diminuta (Cestoda) infections in rats. Parasitol Res. 2012;110(2):1047–53.PubMedCrossRef Yadav AK, Tangpu V. Anthelmintic activity of ripe fruit extract of Solanum myriacanthum Dunal (Solanaceae) against experimentally induced Hymenolepis diminuta (Cestoda) infections in rats. Parasitol Res. 2012;110(2):1047–53.PubMedCrossRef
53.
go back to reference Jones-Brando L, D'Angelo J, Posner GH, Yolken R. In vitro inhibition of Toxoplasma gondii by four new derivatives of artemisinin. Antimicrob Agents Chemother. 2006;50(12):4206–8.PubMedPubMedCentralCrossRef Jones-Brando L, D'Angelo J, Posner GH, Yolken R. In vitro inhibition of Toxoplasma gondii by four new derivatives of artemisinin. Antimicrob Agents Chemother. 2006;50(12):4206–8.PubMedPubMedCentralCrossRef
54.
go back to reference Benoit-Vical F, Santillana-Hayat M, Kone-Bamba D, Mallie M, Derouin F. Anti-Toxoplasma activity of vegetal extracts used in West African traditional medicine. Parasite (Paris, France). 2000;7(1):3–7.CrossRef Benoit-Vical F, Santillana-Hayat M, Kone-Bamba D, Mallie M, Derouin F. Anti-Toxoplasma activity of vegetal extracts used in West African traditional medicine. Parasite (Paris, France). 2000;7(1):3–7.CrossRef
55.
go back to reference Sarciron ME, Saccharin C, Petavy AF, Peyron F. Effects of artesunate, dihydroartemisinin, and an artesunate-dihydroartemisinin combination against Toxoplasma gondii. Am J Trop Med Hyg. 2000;62(1):73–6.PubMedCrossRef Sarciron ME, Saccharin C, Petavy AF, Peyron F. Effects of artesunate, dihydroartemisinin, and an artesunate-dihydroartemisinin combination against Toxoplasma gondii. Am J Trop Med Hyg. 2000;62(1):73–6.PubMedCrossRef
56.
go back to reference Choi W, Jiang M, Chu J. Antiparasitic effects of Zingiber officinale (ginger) extract against Toxoplasma gondii. J Appl Biomed. 2013;11(1):15–26.CrossRef Choi W, Jiang M, Chu J. Antiparasitic effects of Zingiber officinale (ginger) extract against Toxoplasma gondii. J Appl Biomed. 2013;11(1):15–26.CrossRef
57.
go back to reference Subapriya R, Nagini S. Medicinal properties of neem leaves: a review. Curr Med Chem Anti-Cancer Agent. 2005;5(2):149–6.CrossRef Subapriya R, Nagini S. Medicinal properties of neem leaves: a review. Curr Med Chem Anti-Cancer Agent. 2005;5(2):149–6.CrossRef
58.
go back to reference Valdez-Salas B, Vazquez-Delgado R, Salvador-Carlos J, Beltran-Partida E, Salinas-Martinez R, Cheng N, et al. Azadirachta indica leaf extract as green corrosion inhibitor for reinforced concrete structures: corrosion effectiveness against commercial corrosion inhibitors and concrete integrity. Materials (Basel, Switzerland). 2021;14(12):3326. Valdez-Salas B, Vazquez-Delgado R, Salvador-Carlos J, Beltran-Partida E, Salinas-Martinez R, Cheng N, et al. Azadirachta indica leaf extract as green corrosion inhibitor for reinforced concrete structures: corrosion effectiveness against commercial corrosion inhibitors and concrete integrity. Materials (Basel, Switzerland). 2021;14(12):3326.
59.
go back to reference Sandhir R, Khurana M, Singhal NK. Potential benefits of phytochemicals from Azadirachta indica against neurological disorders. Neurochem Int. 2021;146:105023.PubMedCrossRef Sandhir R, Khurana M, Singhal NK. Potential benefits of phytochemicals from Azadirachta indica against neurological disorders. Neurochem Int. 2021;146:105023.PubMedCrossRef
60.
go back to reference Sarkar S, Singh RP, Bhattacharya G. Exploring the role of Azadirachta indica (neem) and its active compounds in the regulation of biological pathways: an update on molecular approach. 3 Biotech. 2021;11(4):178.PubMedPubMedCentralCrossRef Sarkar S, Singh RP, Bhattacharya G. Exploring the role of Azadirachta indica (neem) and its active compounds in the regulation of biological pathways: an update on molecular approach. 3 Biotech. 2021;11(4):178.PubMedPubMedCentralCrossRef
61.
62.
go back to reference Barabadi H, Alizadeh Z, Rahimi MT, Barac A, Maraolo AE, Robertson LJ, et al. Nanobiotechnology as an emerging approach to combat malaria: a systematic review. Nanomedicine. 2019;18:221–33. Barabadi H, Alizadeh Z, Rahimi MT, Barac A, Maraolo AE, Robertson LJ, et al. Nanobiotechnology as an emerging approach to combat malaria: a systematic review. Nanomedicine. 2019;18:221–33.
63.
go back to reference Pinilla CMB, Lopes NA, Brandelli A. Lipid-based nanostructures for the delivery of natural antimicrobials. Molecules (Basel, Switzerland). 2021;26(12):3587.CrossRef Pinilla CMB, Lopes NA, Brandelli A. Lipid-based nanostructures for the delivery of natural antimicrobials. Molecules (Basel, Switzerland). 2021;26(12):3587.CrossRef
64.
go back to reference Borges A, Freitas V, Mateus N, Fernandes I, Oliveira J. Solid lipid nanoparticles as carriers of natural phenolic compounds. Antioxidants (Basel, Switzerland). 2020;9(10):998. Borges A, Freitas V, Mateus N, Fernandes I, Oliveira J. Solid lipid nanoparticles as carriers of natural phenolic compounds. Antioxidants (Basel, Switzerland). 2020;9(10):998.
65.
go back to reference Kim JH, Baek JS, Park JK, Lee BJ, Kim MS, Hwang SJ, et al. Development of houttuynia cordata extract-loaded solid lipid nanoparticles for oral delivery: high drug loading efficiency and controlled release. Molecules (Basel, Switzerland). 2017;22(12):2215. Kim JH, Baek JS, Park JK, Lee BJ, Kim MS, Hwang SJ, et al. Development of houttuynia cordata extract-loaded solid lipid nanoparticles for oral delivery: high drug loading efficiency and controlled release. Molecules (Basel, Switzerland). 2017;22(12):2215.
66.
go back to reference Vijayanand P, Jyothi V, Aditya N, Mounika A. Development and characterization of solid lipid nanoparticles containing herbal extract: in vivo antidepressant activity. J Drug Deliv. 2018;2018:2908626.PubMedPubMedCentralCrossRef Vijayanand P, Jyothi V, Aditya N, Mounika A. Development and characterization of solid lipid nanoparticles containing herbal extract: in vivo antidepressant activity. J Drug Deliv. 2018;2018:2908626.PubMedPubMedCentralCrossRef
Metadata
Title
Formulation of Neem oil-loaded solid lipid nanoparticles and evaluation of its anti-Toxoplasma activity
Authors
Sara Nemati
Hanieh Mohammad Rahimi
Zahra Hesari
Meysam Sharifdini
Nooshin Jalilzadeh Aghdam
Hamed Mirjalali
Mohammad Reza Zali
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Toxoplasmosis
Published in
BMC Complementary Medicine and Therapies / Issue 1/2022
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-022-03607-z

Other articles of this Issue 1/2022

BMC Complementary Medicine and Therapies 1/2022 Go to the issue