Skip to main content
Top
Published in: BMC Endocrine Disorders 1/2015

Open Access 01-12-2015 | Research article

Q-Score: development of a new metric for continuous glucose monitoring that enables stratification of antihyperglycaemic therapies

Authors: Petra Augstein, Peter Heinke, Lutz Vogt, Roberto Vogt, Christine Rackow, Klaus-Dieter Kohnert, Eckhard Salzsieder

Published in: BMC Endocrine Disorders | Issue 1/2015

Login to get access

Abstract

Background

Continuous glucose monitoring (CGM) has revolutionised diabetes management. CGM enables complete visualisation of the glucose profile, and the uncovering of metabolic ‘weak points’. A standardised procedure to evaluate the complex data acquired by CGM, and to create patient-tailored recommendations has not yet been developed. We aimed to develop a new patient-tailored approach for the routine clinical evaluation of CGM profiles. We developed a metric allowing screening for profiles that require therapeutic action and a method to identify the individual CGM parameters with improvement potential.

Methods

Fifteen parameters frequently used to assess CGM profiles were calculated for 1,562 historic CGM profiles from subjects with type 1 or type 2 diabetes. Factor analysis and varimax rotation was performed to identify factors that accounted for the quality of the profiles.

Results

We identified five primary factors that determined CGM profiles (central tendency, hyperglycaemia, hypoglycaemia, intra- and inter-daily variations). One parameter from each factor was selected for constructing the formula for the screening metric, (the ‘Q-Score’). To derive Q-Score classifications, three diabetes specialists independently categorised 766 CGM profiles into groups of ‘very good’, ‘good’, ‘satisfactory’, ‘fair’, and ‘poor’ metabolic control. The Q-Score was then calculated for all profiles, and limits were defined based on the categorised groups (<4.0, very good; 4.0–5.9, good; 6.0–8.4, satisfactory; 8.5–11.9, fair; and ≥12.0, poor). Q-Scores increased significantly (P <0.01) with increasing antihyperglycaemic therapy complexity. Accordingly, the percentage of fair and poor profiles was higher in insulin-treated compared with diet-treated subjects (58.4% vs. 9.3%). In total, 90% of profiles categorised as fair or poor had at least three parameters that could potentially be optimised. The improvement potential of those parameters can be categorised as ‘low’, ‘moderate’ and ‘high’.

Conclusions

The Q-Score is a new metric suitable to screen for CGM profiles that require therapeutic action. Moreover, because single components of the Q-Score formula respond to individual weak points in glycaemic control, parameters with improvement potential can be identified and used as targets for optimising patient-tailored therapies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Klonoff DC. Continuous Glucose Monitoring. Roadmap for 21st century diabetes therapy. Diabetes Care. 2005;28:1231–9.CrossRefPubMed Klonoff DC. Continuous Glucose Monitoring. Roadmap for 21st century diabetes therapy. Diabetes Care. 2005;28:1231–9.CrossRefPubMed
2.
go back to reference Nardacci EA, Bode BW, Hirsch IB. Individualizing Care for the Many: The Evolving Role of Professional Continuous Glucose Monitoring Systems in Clinical Practice. Diabetes Educ. 2010;36:4S–19.CrossRefPubMed Nardacci EA, Bode BW, Hirsch IB. Individualizing Care for the Many: The Evolving Role of Professional Continuous Glucose Monitoring Systems in Clinical Practice. Diabetes Educ. 2010;36:4S–19.CrossRefPubMed
3.
go back to reference Kim H-S, Shin J-A, Chang J-S, Cho J-H, Son H-Y, Yoon K-H. Continuous glucose monitoring: current clinical use. Diabetes Metab Res Rev. 2012;28:73–8.CrossRefPubMed Kim H-S, Shin J-A, Chang J-S, Cho J-H, Son H-Y, Yoon K-H. Continuous glucose monitoring: current clinical use. Diabetes Metab Res Rev. 2012;28:73–8.CrossRefPubMed
4.
go back to reference Marling CR, Shubrook JH, Facopf DO, Vernier SJ, Wiley MT, Schwartz FL. Characterizing Blood Glucose Variability Using New Metrics with Continuous Glucose Monitoring Data. J Diabetes Sci Technol. 2011;5:871–8.CrossRefPubMedPubMedCentral Marling CR, Shubrook JH, Facopf DO, Vernier SJ, Wiley MT, Schwartz FL. Characterizing Blood Glucose Variability Using New Metrics with Continuous Glucose Monitoring Data. J Diabetes Sci Technol. 2011;5:871–8.CrossRefPubMedPubMedCentral
5.
go back to reference The Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group, Ruedy KJ, Tamborlane WV. The Landmark JDRF Continuous Glucose Monitoring Randomized Trials: a Look Back at the Accumulated Evidence. J Cardiovasc Trans Res. 2012;5:380–7.CrossRef The Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group, Ruedy KJ, Tamborlane WV. The Landmark JDRF Continuous Glucose Monitoring Randomized Trials: a Look Back at the Accumulated Evidence. J Cardiovasc Trans Res. 2012;5:380–7.CrossRef
6.
go back to reference Clarke W, Kovatchev B. Statistical Tools to Analyze Continuous Glucose Monitor Data. Diabetes Technol Ther. 2009;11:S–45–54.CrossRef Clarke W, Kovatchev B. Statistical Tools to Analyze Continuous Glucose Monitor Data. Diabetes Technol Ther. 2009;11:S–45–54.CrossRef
7.
go back to reference Rodbard D. Interpretation of Continuous Glucose Monitoring Data: Glycemic Variability and Quality of Glycemic Control. Diabetes Technol Ther. 2009;11:S–55–66. Rodbard D. Interpretation of Continuous Glucose Monitoring Data: Glycemic Variability and Quality of Glycemic Control. Diabetes Technol Ther. 2009;11:S–55–66.
8.
go back to reference Rodbard D, Bailey T, Jovanovic L, Zisser H, Kaplan R, Garg SK. Improved Quality of Glycemic Control and Reduced Glycemic Variability with Use of Continuous Glucose Monitoring. Diabetes Technol Ther. 2009;11:717–23.CrossRefPubMed Rodbard D, Bailey T, Jovanovic L, Zisser H, Kaplan R, Garg SK. Improved Quality of Glycemic Control and Reduced Glycemic Variability with Use of Continuous Glucose Monitoring. Diabetes Technol Ther. 2009;11:717–23.CrossRefPubMed
10.
go back to reference Bergenstal RM, Ahmann AJ, Bailey T, Beck RW, Bissen J, Buckingham B, et al. Recommendations for Standardizing Glucose Reporting and Analysis to Optimize Clinical Decision Making in Diabetes: The Ambulatory Glucose Profile (AGP). Diabetes Technol Ther. 2013;15:198–211.CrossRefPubMed Bergenstal RM, Ahmann AJ, Bailey T, Beck RW, Bissen J, Buckingham B, et al. Recommendations for Standardizing Glucose Reporting and Analysis to Optimize Clinical Decision Making in Diabetes: The Ambulatory Glucose Profile (AGP). Diabetes Technol Ther. 2013;15:198–211.CrossRefPubMed
11.
go back to reference Rodbard D. Clinical interpretation of indices of quality of glycemic control and glycemic variability. Postgrad Med. 2011;123:107–18.CrossRefPubMed Rodbard D. Clinical interpretation of indices of quality of glycemic control and glycemic variability. Postgrad Med. 2011;123:107–18.CrossRefPubMed
12.
go back to reference Inchiostro S, Candido R, Cavalot F. How can we monitor glycaemic variability in the clinical setting? Diabetes Obes Metab. 2013;15:13–6.CrossRefPubMed Inchiostro S, Candido R, Cavalot F. How can we monitor glycaemic variability in the clinical setting? Diabetes Obes Metab. 2013;15:13–6.CrossRefPubMed
13.
go back to reference Wilson DM, Xing D, Cheng J, Beck RW, Hirsch I, Kollman C, et al. Persistence of Individual Variations in Glycated Hemoglobin. Diabetes Care. 2011;34:1315–7.CrossRefPubMedPubMedCentral Wilson DM, Xing D, Cheng J, Beck RW, Hirsch I, Kollman C, et al. Persistence of Individual Variations in Glycated Hemoglobin. Diabetes Care. 2011;34:1315–7.CrossRefPubMedPubMedCentral
14.
go back to reference Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Factors Predictive of Use and of Benefit From Continuous Glucose Monitoring in Type 1 Diabetes. Diabetes Care. 2009;32:1947–53.CrossRefPubMedCentral Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Factors Predictive of Use and of Benefit From Continuous Glucose Monitoring in Type 1 Diabetes. Diabetes Care. 2009;32:1947–53.CrossRefPubMedCentral
15.
go back to reference Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Effectiveness of Continuous Glucose Monitoring in a Clinical Care Environment: Evidence from the Juvenile Diabetes Research Foundation Continuous Glucose Monitoring (JDRF-CGM) trial. Diabetes Care. 2009;33:17–22.CrossRefPubMedCentral Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Effectiveness of Continuous Glucose Monitoring in a Clinical Care Environment: Evidence from the Juvenile Diabetes Research Foundation Continuous Glucose Monitoring (JDRF-CGM) trial. Diabetes Care. 2009;33:17–22.CrossRefPubMedCentral
16.
go back to reference Hill NR, Hindmarsh PC, Stevens RJ, Stratton IM, Levy JC, Matthews DR. A method for assessing quality of control from glucose profiles. Diabet Med. 2007;24:753–8.CrossRefPubMed Hill NR, Hindmarsh PC, Stevens RJ, Stratton IM, Levy JC, Matthews DR. A method for assessing quality of control from glucose profiles. Diabet Med. 2007;24:753–8.CrossRefPubMed
17.
go back to reference Service FJ, Molnar GD, Rosevear JW, Ackerman E, Gatewood LC, Taylor WF. Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes. 1970;19:644–55.CrossRefPubMed Service FJ, Molnar GD, Rosevear JW, Ackerman E, Gatewood LC, Taylor WF. Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes. 1970;19:644–55.CrossRefPubMed
18.
go back to reference McDonnell CM, Donath SM, Vidmar SI, Werther GA, Cameron FJ. A Novel Approach to Continuous Glucose Analysis Utilizing Glycemic Variation. Diabetes Technol Ther. 2005;7:253–63.CrossRefPubMed McDonnell CM, Donath SM, Vidmar SI, Werther GA, Cameron FJ. A Novel Approach to Continuous Glucose Analysis Utilizing Glycemic Variation. Diabetes Technol Ther. 2005;7:253–63.CrossRefPubMed
19.
go back to reference Kovatchev BP, Otto E, Cox D, Gonder-Frederick L, Clarke W. Evaluation of a New Measure of Blood Glucose Variability in Diabetes. Diabetes Care. 2006;29:2433–8.CrossRefPubMed Kovatchev BP, Otto E, Cox D, Gonder-Frederick L, Clarke W. Evaluation of a New Measure of Blood Glucose Variability in Diabetes. Diabetes Care. 2006;29:2433–8.CrossRefPubMed
20.
go back to reference Molnar GD, Taylor WF, Ho MM. Day-to-day variation of continuously monitored glycaemia: a further measure of diabetic instability. Diabetologia. 1972;8:342–8.CrossRefPubMed Molnar GD, Taylor WF, Ho MM. Day-to-day variation of continuously monitored glycaemia: a further measure of diabetic instability. Diabetologia. 1972;8:342–8.CrossRefPubMed
21.
go back to reference Rawlings RA, Shi H, Yuan L-H, Brehm W, Pop-Busui R, Nelson PW. Translating Glucose Variability Metrics into the Clinic via Continuous Glucose Monitoring: A Graphical User Interface for Diabetes Evaluation (CGM-GUIDE ©). Diabetes Technol Ther. 2011;13:1241–8.CrossRefPubMedPubMedCentral Rawlings RA, Shi H, Yuan L-H, Brehm W, Pop-Busui R, Nelson PW. Translating Glucose Variability Metrics into the Clinic via Continuous Glucose Monitoring: A Graphical User Interface for Diabetes Evaluation (CGM-GUIDE ©). Diabetes Technol Ther. 2011;13:1241–8.CrossRefPubMedPubMedCentral
22.
go back to reference Thomas A, Schönauer M, Achermann F, Schnell O, Hanefeld M, Ziegelasch H-J, et al. The “Glucose Pentagon”: Assessing Glycemic Control of Patients with Diabetes Mellitus by a Model Integrating Different Parameters from Glucose Profiles. Diabetes Technol Ther. 2009;11:399–409.CrossRefPubMed Thomas A, Schönauer M, Achermann F, Schnell O, Hanefeld M, Ziegelasch H-J, et al. The “Glucose Pentagon”: Assessing Glycemic Control of Patients with Diabetes Mellitus by a Model Integrating Different Parameters from Glucose Profiles. Diabetes Technol Ther. 2009;11:399–409.CrossRefPubMed
23.
24.
go back to reference Augstein P, Vogt L, Kohnert K-D, Freyse E-J, Heinke P, Salzsieder E. Outpatient assessment of Karlsburg Diabetes Management System-based decision support. Diabetes Care. 2007;30:1704–8.CrossRefPubMed Augstein P, Vogt L, Kohnert K-D, Freyse E-J, Heinke P, Salzsieder E. Outpatient assessment of Karlsburg Diabetes Management System-based decision support. Diabetes Care. 2007;30:1704–8.CrossRefPubMed
25.
go back to reference Salzsieder E, Augstein P, Vogt L, Kohnert K-D, Heinke P, Freyse E-J, et al. Telemedicine-based KADIS combined with CGMS has high potential for improving outpatient diabetes care. J Diabetes Sci Technol. 2007;1:511–21.CrossRefPubMedPubMedCentral Salzsieder E, Augstein P, Vogt L, Kohnert K-D, Heinke P, Freyse E-J, et al. Telemedicine-based KADIS combined with CGMS has high potential for improving outpatient diabetes care. J Diabetes Sci Technol. 2007;1:511–21.CrossRefPubMedPubMedCentral
26.
go back to reference Salzsieder E, Augstein P. The Karlsburg Diabetes Management System: Translation from Research to eHealth Application. J Diabetes Sci Technol. 2011;5:13–22.CrossRefPubMedPubMedCentral Salzsieder E, Augstein P. The Karlsburg Diabetes Management System: Translation from Research to eHealth Application. J Diabetes Sci Technol. 2011;5:13–22.CrossRefPubMedPubMedCentral
27.
go back to reference Kohnert K-D, Augstein P, Heinke P, Zander E, Peterson K, Freyse E-J, et al. Chronic hyperglycemia but not glucose variability determines HbA1c levels in well-controlled patients with type 2 diabetes. Diabetes Res Clin Pract. 2007;77:420–6.CrossRefPubMed Kohnert K-D, Augstein P, Heinke P, Zander E, Peterson K, Freyse E-J, et al. Chronic hyperglycemia but not glucose variability determines HbA1c levels in well-controlled patients with type 2 diabetes. Diabetes Res Clin Pract. 2007;77:420–6.CrossRefPubMed
28.
go back to reference Augstein P, Vogt L, Kohnert K-D, Heinke P, Salzsieder E. Translation of Personalized Decision Support into Routine Diabetes Care. J Diabetes Sci Technol. 2010;4:1532–9.CrossRefPubMedPubMedCentral Augstein P, Vogt L, Kohnert K-D, Heinke P, Salzsieder E. Translation of Personalized Decision Support into Routine Diabetes Care. J Diabetes Sci Technol. 2010;4:1532–9.CrossRefPubMedPubMedCentral
29.
go back to reference Bortz J, Lienert GA, Boehnke K. Verteilungsfreie Methoden in Der Biostatistik. 3rd ed. Heidelberg: Springer; 2010. Bortz J, Lienert GA, Boehnke K. Verteilungsfreie Methoden in Der Biostatistik. 3rd ed. Heidelberg: Springer; 2010.
30.
go back to reference Uberla K. Eine Systematische Einführung für Psychologen, Mediziner, Wirtschafts- und Sozial-Wissenschaftler. 1st ed. Berlin-Heidelberg-New York: Springer; 1968. Uberla K. Eine Systematische Einführung für Psychologen, Mediziner, Wirtschafts- und Sozial-Wissenschaftler. 1st ed. Berlin-Heidelberg-New York: Springer; 1968.
31.
go back to reference Cohen J. Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull. 1968;70:213–20.CrossRefPubMed Cohen J. Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull. 1968;70:213–20.CrossRefPubMed
32.
go back to reference Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.CrossRefPubMed Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.CrossRefPubMed
33.
go back to reference Kovatchev BP. Diabetes Technology: Markers, Monitoring, Assessment, and Control of Blood Glucose Fluctuations in Diabetes. Scientifica. 2012;2012:1–14.CrossRef Kovatchev BP. Diabetes Technology: Markers, Monitoring, Assessment, and Control of Blood Glucose Fluctuations in Diabetes. Scientifica. 2012;2012:1–14.CrossRef
34.
go back to reference Rodbard HW, Schnell O, Unger J, Rees C, Amstutz L, Parkin CG, et al. Use of an Automated Decision Support Tool Optimizes Clinicians’ Ability to Interpret and Appropriately Respond to Structured Self-Monitoring of Blood Glucose Data. Diabetes Care. 2012;35:693–8.CrossRefPubMedPubMedCentral Rodbard HW, Schnell O, Unger J, Rees C, Amstutz L, Parkin CG, et al. Use of an Automated Decision Support Tool Optimizes Clinicians’ Ability to Interpret and Appropriately Respond to Structured Self-Monitoring of Blood Glucose Data. Diabetes Care. 2012;35:693–8.CrossRefPubMedPubMedCentral
35.
go back to reference Fabris C, Facchinetti A, Sparacino G, Zanon M, Guerra S, Maran A, et al. Glucose Variability Indices in Type 1 Diabetes: Parsimonious Set of Indices Revealed by Sparse Principal Component Analysis. Diabetes Technol Ther. 2014;16:644–52.CrossRefPubMed Fabris C, Facchinetti A, Sparacino G, Zanon M, Guerra S, Maran A, et al. Glucose Variability Indices in Type 1 Diabetes: Parsimonious Set of Indices Revealed by Sparse Principal Component Analysis. Diabetes Technol Ther. 2014;16:644–52.CrossRefPubMed
36.
go back to reference Thomas A, Heinemann L. Prediction of the Risk to Develop Diabetes-Related Late Complications by Means of the Glucose Pentagon Model: Analysis of Data from the Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study. J Diabetes Sci Technol. 2012;6:572–80.CrossRefPubMedPubMedCentral Thomas A, Heinemann L. Prediction of the Risk to Develop Diabetes-Related Late Complications by Means of the Glucose Pentagon Model: Analysis of Data from the Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study. J Diabetes Sci Technol. 2012;6:572–80.CrossRefPubMedPubMedCentral
37.
go back to reference Engler B, Koehler C, Hoffmann C, Landgraf W, Bilz S, Schoner C, et al. Relationship Between HbA1c on Target, Risk of Silent Hypoglycemia and Glycemic Variability in Patients with Type 2 Diabetes Mellitus. Exp Clin Endocrinol Diabetes. 2011;119:59–61.CrossRefPubMed Engler B, Koehler C, Hoffmann C, Landgraf W, Bilz S, Schoner C, et al. Relationship Between HbA1c on Target, Risk of Silent Hypoglycemia and Glycemic Variability in Patients with Type 2 Diabetes Mellitus. Exp Clin Endocrinol Diabetes. 2011;119:59–61.CrossRefPubMed
38.
go back to reference Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2012;55:1577–96.CrossRefPubMed Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2012;55:1577–96.CrossRefPubMed
39.
go back to reference Ceriello A, Gallo M, Gentile S, Giorda CB, Micheli A. To what extent is the new position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) “personalised?”. Diabetologia. 2012;55:2853–5.CrossRefPubMed Ceriello A, Gallo M, Gentile S, Giorda CB, Micheli A. To what extent is the new position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) “personalised?”. Diabetologia. 2012;55:2853–5.CrossRefPubMed
Metadata
Title
Q-Score: development of a new metric for continuous glucose monitoring that enables stratification of antihyperglycaemic therapies
Authors
Petra Augstein
Peter Heinke
Lutz Vogt
Roberto Vogt
Christine Rackow
Klaus-Dieter Kohnert
Eckhard Salzsieder
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Endocrine Disorders / Issue 1/2015
Electronic ISSN: 1472-6823
DOI
https://doi.org/10.1186/s12902-015-0019-0

Other articles of this Issue 1/2015

BMC Endocrine Disorders 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.