Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2021

Open Access 01-12-2021 | Idiopathic Pulmonary Fibrosis | Research

Exposure–safety analyses of nintedanib in patients with chronic fibrosing interstitial lung disease

Authors: Ulrike Schmid, Benjamin Weber, Celine Sarr, Matthias Freiwald

Published in: BMC Pulmonary Medicine | Issue 1/2021

Login to get access

Abstract

Background

Nintedanib reduces the rate of decline in forced vital capacity in patients with idiopathic pulmonary fibrosis (IPF), other chronic fibrosing interstitial lung diseases (ILDs) with a progressive phenotype and systemic sclerosis-associated ILD (SSc-ILD). The recommended dose of nintedanib is 150 mg twice daily (BID).

Methods

Data from Phase II and III trials in IPF and Phase III trials in SSc-ILD and progressive fibrosing ILDs other than IPF were analyzed to investigate the relationship between nintedanib plasma concentrations (exposure) and safety (liver enzyme elevations [defined as transaminase elevations equal or greater than 3 times the upper limit of normal] and diarrhea).

Results

Using data from 1403 subjects with IPF treated with 50–150 mg nintedanib BID, a parametric time-to-first-event model for liver enzyme elevations was established. Besides exposure, gender was a significant covariate, with a three–fourfold higher exposure-adjusted risk in females than males. Subsequent analysis of combined data from IPF, SSc-ILD (n = 576) and progressive fibrosing ILD (n = 663) studies suggested a consistent exposure–liver enzyme elevation relationship across studies. No exposure–diarrhea relationship was found using data from the various fibrosing ILDs, but diarrhea risk was dependent on dose administered.

Conclusions

The positive correlation between exposure and risk of liver enzyme elevations was consistent across nintedanib studies in IPF, SSc-ILD and progressing fibrosing ILDs other than IPF. The effect size does not warrant a priori dose adjustment in patients with altered plasma exposure (excluding hepatic impairment patients, where there are specific labelling recommendations). For diarrhea, dose administered was a better predictor than exposure.
Appendix
Available only for authorised users
Literature
3.
go back to reference Richeldi L, du Bois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2071–82.CrossRef Richeldi L, du Bois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2071–82.CrossRef
4.
go back to reference Richeldi L, Cottin V, du Bois RM, et al. Nintedanib in patients with idiopathic pulmonary fibrosis: combined evidence from the TOMORROW and INPULSIS(®) trials. Respir Med. 2016;113:74–9.CrossRef Richeldi L, Cottin V, du Bois RM, et al. Nintedanib in patients with idiopathic pulmonary fibrosis: combined evidence from the TOMORROW and INPULSIS(®) trials. Respir Med. 2016;113:74–9.CrossRef
5.
go back to reference Richeldi L, Kreuter M, Selman M, et al. Long-term treatment of patients with idiopathic pulmonary fibrosis with nintedanib: results from the TOMORROW trial and its open-label extension. Thorax. 2018;73:581–3.CrossRef Richeldi L, Kreuter M, Selman M, et al. Long-term treatment of patients with idiopathic pulmonary fibrosis with nintedanib: results from the TOMORROW trial and its open-label extension. Thorax. 2018;73:581–3.CrossRef
6.
go back to reference Richeldi L, Costabel U, Selman M, et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med. 2011;365:1079–87.CrossRef Richeldi L, Costabel U, Selman M, et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med. 2011;365:1079–87.CrossRef
7.
go back to reference Distler O, Highland KB, Gahlemann M, et al. Nintedanib for systemic sclerosis–associated interstitial lung disease. N Engl J Med. 2019;380:2518–28.CrossRef Distler O, Highland KB, Gahlemann M, et al. Nintedanib for systemic sclerosis–associated interstitial lung disease. N Engl J Med. 2019;380:2518–28.CrossRef
8.
go back to reference Flaherty KR, Wells AU, Cottin V, et al. Nintedanib in progressive fibrosing interstitial lung diseases. N Engl J Med. 2019;381:1718–27.CrossRef Flaherty KR, Wells AU, Cottin V, et al. Nintedanib in progressive fibrosing interstitial lung diseases. N Engl J Med. 2019;381:1718–27.CrossRef
9.
go back to reference Stopfer P, Rathgen K, Bischoff D, et al. Pharmacokinetics and metabolism of BIBF 1120 after oral dosing to healthy male volunteers. Xenobiotica. 2011;41:297–311.CrossRef Stopfer P, Rathgen K, Bischoff D, et al. Pharmacokinetics and metabolism of BIBF 1120 after oral dosing to healthy male volunteers. Xenobiotica. 2011;41:297–311.CrossRef
10.
go back to reference Schmid U, Doege C, Dallinger C, Freiwald M. Population pharmacokinetics of nintedanib in patients with idiopathic pulmonary fibrosis. Pulm Pharmacol Ther. 2018;48:136–43.CrossRef Schmid U, Doege C, Dallinger C, Freiwald M. Population pharmacokinetics of nintedanib in patients with idiopathic pulmonary fibrosis. Pulm Pharmacol Ther. 2018;48:136–43.CrossRef
11.
go back to reference Wind S, Schmid U, Freiwald M, et al. Clinical pharmacokinetics and pharmacodynamics of nintedanib. Clin Pharmacokinet. 2019;58:1131–47.CrossRef Wind S, Schmid U, Freiwald M, et al. Clinical pharmacokinetics and pharmacodynamics of nintedanib. Clin Pharmacokinet. 2019;58:1131–47.CrossRef
12.
go back to reference Marzin K, Kretschmar G, Luedtke D, et al. Pharmacokinetics of nintedanib in subjects with hepatic impairment. J Clin Pharmacol. 2018;58:357–63.CrossRef Marzin K, Kretschmar G, Luedtke D, et al. Pharmacokinetics of nintedanib in subjects with hepatic impairment. J Clin Pharmacol. 2018;58:357–63.CrossRef
13.
go back to reference Richeldi L, Cottin V, Flaherty KR, et al. Design of the INPULSIS trials: two phase 3 trials of nintedanib in patients with idiopathic pulmonary fibrosis. Respir Med. 2014;108:1023–30.CrossRef Richeldi L, Cottin V, Flaherty KR, et al. Design of the INPULSIS trials: two phase 3 trials of nintedanib in patients with idiopathic pulmonary fibrosis. Respir Med. 2014;108:1023–30.CrossRef
14.
go back to reference Flaherty KR, Brown KK, Wells AU, et al. Design of the PF-ILD trial: a double-blind, randomised, placebo-controlled phase III trial of nintedanib in patients with progressive fibrosing interstitial lung disease. BMJ Open Respir Res. 2017;4:e000212.CrossRef Flaherty KR, Brown KK, Wells AU, et al. Design of the PF-ILD trial: a double-blind, randomised, placebo-controlled phase III trial of nintedanib in patients with progressive fibrosing interstitial lung disease. BMJ Open Respir Res. 2017;4:e000212.CrossRef
15.
go back to reference Distler O, Brown KK, Distler JHW, et al. Design of a randomised, placebo-controlled clinical trial of nintedanib in patients with systemic sclerosis-associated interstitial lung disease (SENSCIS). Clin Exp Rheumatol. 2017;35(Suppl 106):75–81.PubMed Distler O, Brown KK, Distler JHW, et al. Design of a randomised, placebo-controlled clinical trial of nintedanib in patients with systemic sclerosis-associated interstitial lung disease (SENSCIS). Clin Exp Rheumatol. 2017;35(Suppl 106):75–81.PubMed
16.
go back to reference Beal SL, Sheiner LB. NONMEM users guide—part VII conditional estimation methods. San Francisco: NONMEM Project Group; 1998. Beal SL, Sheiner LB. NONMEM users guide—part VII conditional estimation methods. San Francisco: NONMEM Project Group; 1998.
17.
go back to reference Holford N. A time to event tutorial for pharmacometricians. CPT Pharmacometr Syst Pharmacol. 2013;2:e43.CrossRef Holford N. A time to event tutorial for pharmacometricians. CPT Pharmacometr Syst Pharmacol. 2013;2:e43.CrossRef
18.
go back to reference Jonsson EN, Karlsson MO. Automated covariate model building within NONMEM. Pharm Res. 1998;15:1463–8.CrossRef Jonsson EN, Karlsson MO. Automated covariate model building within NONMEM. Pharm Res. 1998;15:1463–8.CrossRef
19.
go back to reference Kavsak P. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics, edited by Nader Rifai, Andrea Rita Horvath and Carl T. Wittwer, published by Elsevier, St. Louis, Missouri, USA (ISBN 978-0-323-35921-4, copyright 2018). Elsevier; 2017. Kavsak P. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics, edited by Nader Rifai, Andrea Rita Horvath and Carl T. Wittwer, published by Elsevier, St. Louis, Missouri, USA (ISBN 978-0-323-35921-4, copyright 2018). Elsevier; 2017.
21.
go back to reference Ette EI, Williams PJ. Pharmacometrics: the science of quantitative pharmacology. New York: Wiley-Interscience; 2007.CrossRef Ette EI, Williams PJ. Pharmacometrics: the science of quantitative pharmacology. New York: Wiley-Interscience; 2007.CrossRef
22.
go back to reference Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN)—a Perl module for NONMEM related programming. Comput Methods Programs Biomed. 2004;75:85–94.CrossRef Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN)—a Perl module for NONMEM related programming. Comput Methods Programs Biomed. 2004;75:85–94.CrossRef
23.
go back to reference Lindbom L, Pihlgren P, Jonsson N. PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79:241–57.CrossRef Lindbom L, Pihlgren P, Jonsson N. PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79:241–57.CrossRef
24.
go back to reference M’Kada H, Munteanu M, Perazzo H, et al. What are the best reference values for a normal serum alanine transaminase activity (ALT)? Impact on the presumed prevalence of drug induced liver injury (DILI). Regul Toxicol Pharmacol. 2011;60:290–5.CrossRef M’Kada H, Munteanu M, Perazzo H, et al. What are the best reference values for a normal serum alanine transaminase activity (ALT)? Impact on the presumed prevalence of drug induced liver injury (DILI). Regul Toxicol Pharmacol. 2011;60:290–5.CrossRef
25.
go back to reference Kwo PY, Cohen SM, Lim JK. ACG clinical guideline: evaluation of abnormal liver chemistries. Am J Gastroenterol. 2017;112:18–35.CrossRef Kwo PY, Cohen SM, Lim JK. ACG clinical guideline: evaluation of abnormal liver chemistries. Am J Gastroenterol. 2017;112:18–35.CrossRef
26.
go back to reference Kolahdoozan S, Mirminachi B, Sepanlou SG, et al. Upper normal limits of serum alanine aminotransferase in healthy population: a systematic review. Middle East J Dig Dis. 2020;12:194.CrossRef Kolahdoozan S, Mirminachi B, Sepanlou SG, et al. Upper normal limits of serum alanine aminotransferase in healthy population: a systematic review. Middle East J Dig Dis. 2020;12:194.CrossRef
27.
go back to reference Neuschwander-Tetri BA, Ünalp A, Creer MH. Nonalcoholic steatohepatitis clinical research network: the upper limits of normal for serum ALT levels reported by clinical laboratories depend on local reference populations. Arch Intern Med. 2004;168:663.CrossRef Neuschwander-Tetri BA, Ünalp A, Creer MH. Nonalcoholic steatohepatitis clinical research network: the upper limits of normal for serum ALT levels reported by clinical laboratories depend on local reference populations. Arch Intern Med. 2004;168:663.CrossRef
28.
go back to reference Dutta A, Saha C, Johnson CS, Chalasani N. Variability in the upper limit of normal for serum alanine aminotransferase levels: a statewide study. Hepatology. 2009;50:1957–62.CrossRef Dutta A, Saha C, Johnson CS, Chalasani N. Variability in the upper limit of normal for serum alanine aminotransferase levels: a statewide study. Hepatology. 2009;50:1957–62.CrossRef
29.
go back to reference Schmid U, Weber B, Magnusson MO, Freiwald M. Exposure-efficacy analyses of nintedanib in patients with chronic fibrosing interstitial lung disease. Respir Med. 2021;180:106369.CrossRef Schmid U, Weber B, Magnusson MO, Freiwald M. Exposure-efficacy analyses of nintedanib in patients with chronic fibrosing interstitial lung disease. Respir Med. 2021;180:106369.CrossRef
30.
go back to reference Corte T, Bonella F, Crestani B, et al. Safety, tolerability and appropriate use of nintedanib in idiopathic pulmonary fibrosis. Respir Res. 2015;16:116.CrossRef Corte T, Bonella F, Crestani B, et al. Safety, tolerability and appropriate use of nintedanib in idiopathic pulmonary fibrosis. Respir Res. 2015;16:116.CrossRef
Metadata
Title
Exposure–safety analyses of nintedanib in patients with chronic fibrosing interstitial lung disease
Authors
Ulrike Schmid
Benjamin Weber
Celine Sarr
Matthias Freiwald
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2021
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-021-01598-0

Other articles of this Issue 1/2021

BMC Pulmonary Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine