Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2021

Open Access 01-12-2021 | Tracheostomy | Research

Mechanical power normalized to lung-thorax compliance predicts prolonged ventilation weaning failure: a prospective study

Authors: Alessandro Ghiani, Joanna Paderewska, Swenja Walcher, Claus Neurohr

Published in: BMC Pulmonary Medicine | Issue 1/2021

Login to get access

Abstract

Background

Mechanical power (MP) of artificial ventilation, the energy transferred to the respiratory system, is a chief determinant of adequate oxygenation and decarboxylation. Calculated MP, the product of applied airway pressure and minute ventilation, may serve as an estimate of respiratory muscle workload when switching to spontaneous breathing. The aim of the study was to assess MP’s discriminatory performance in predicting successful weaning from prolonged tracheostomy ventilation.

Methods

Prospective, observational study in 130 prolonged mechanically ventilated, tracheotomized patients in a specialized weaning center. Predictive weaning outcome ability of arterial blood gas analyses and indices derived from calculated MP at beginning and end of weaning was determined in terms of area under receiver operating characteristic curve (AUROC) and measures derived from k-fold cross-validation (likelihood ratios, diagnostic odds ratio, F1 score, and Matthews correlation coefficient [MCC]).

Results

Forty-four (33.8%) patients experienced weaning failure. Absolute MP showed poor discrimination in predicting outcome; whereas specific MP (MP normalized to dynamic lung-thorax compliance, LTCdyn-MP) had moderate diagnostic accuracy (MCC 0.38; AUROC 0.79, 95%CI [0.71‒0.86], p < 0.001), further improved by correction for corresponding mechanical ventilation PaCO2 (termed the power index of the respiratory system [PIrs]: MCC 0.52; AUROC 0.86 [0.79‒0.92], p < 0.001). Diagnostic performance of MP indices increased over the course of weaning, with maximum accuracy immediately before completion (LTCdyn-MP: MCC 0.49; AUROC 0.86 [0.78‒0.91], p < 0.001; PIrs: MCC 0.68; AUROC 0.92 [0.86‒0.96], p < 0.001).

Conclusions

MP normalized to dynamic lung-thorax compliance, a surrogate for applied power per unit of ventilated lung volume, accurately discriminated between low and high risk for weaning failure following prolonged mechanical ventilation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jubran A, Grant BJB, Duffner LA, et al. Long-term outcome after prolonged mechanical ventilation. Am J Respir Crit Care Med. 2019;199(12):1508–16.CrossRef Jubran A, Grant BJB, Duffner LA, et al. Long-term outcome after prolonged mechanical ventilation. Am J Respir Crit Care Med. 2019;199(12):1508–16.CrossRef
2.
go back to reference Bonnici DM, Sanctuary T, Warren A, et al. Prospective observational cohort study of patients with weaning failure admitted to a specialist weaning, rehabilitation and home mechanical ventilation centre. BMJ Open. 2016;6:e010025.CrossRef Bonnici DM, Sanctuary T, Warren A, et al. Prospective observational cohort study of patients with weaning failure admitted to a specialist weaning, rehabilitation and home mechanical ventilation centre. BMJ Open. 2016;6:e010025.CrossRef
3.
go back to reference Ghiani A, Sainis A, Sainis G, Neurohr C. Anemia and red blood cell transfusion practice in prolonged mechanically ventilated patients admitted to a specialized weaning center: an observational study. BMC Pulm Med. 2019;19:250.CrossRef Ghiani A, Sainis A, Sainis G, Neurohr C. Anemia and red blood cell transfusion practice in prolonged mechanically ventilated patients admitted to a specialized weaning center: an observational study. BMC Pulm Med. 2019;19:250.CrossRef
4.
go back to reference Baptistella AF, Sarmento FJ, Ribeiro da Silva K, et al. Predictive factors of weaning from mechanical ventilation and extubation outcome: a systematic review. J Crit Care. 2018;48:56–62.CrossRef Baptistella AF, Sarmento FJ, Ribeiro da Silva K, et al. Predictive factors of weaning from mechanical ventilation and extubation outcome: a systematic review. J Crit Care. 2018;48:56–62.CrossRef
5.
go back to reference Purro A, Appendini L, De Gaetano A, Gudjonsdottir M, Donner CF, Rossi A. Physiologic determinants of ventilator dependence in long-term mechanically ventilated patients. Am J Respir Crit Care Med. 2000;161(4):1115–23.CrossRef Purro A, Appendini L, De Gaetano A, Gudjonsdottir M, Donner CF, Rossi A. Physiologic determinants of ventilator dependence in long-term mechanically ventilated patients. Am J Respir Crit Care Med. 2000;161(4):1115–23.CrossRef
6.
go back to reference Carlucci A, Ceriana P, Prinianakis G, Fanfulla F, Colombo R, Nava S. Determinants of weaning success in patients with prolonged mechanical ventilation. Crit Care. 2009;13:R97.CrossRef Carlucci A, Ceriana P, Prinianakis G, Fanfulla F, Colombo R, Nava S. Determinants of weaning success in patients with prolonged mechanical ventilation. Crit Care. 2009;13:R97.CrossRef
7.
go back to reference Ghiani A, Paderewska J, Sainis A, Crispin A, Walcher S, Neurohr C. Variables predicting weaning outcome in prolonged mechanically ventilated tracheotomized patients: a retrospective study. J Intensive Care. 2020;8:19.CrossRef Ghiani A, Paderewska J, Sainis A, Crispin A, Walcher S, Neurohr C. Variables predicting weaning outcome in prolonged mechanically ventilated tracheotomized patients: a retrospective study. J Intensive Care. 2020;8:19.CrossRef
8.
go back to reference Boles JM, Bion J, Connors A, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29(5):1033–56.CrossRef Boles JM, Bion J, Connors A, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29(5):1033–56.CrossRef
9.
go back to reference Schönhofer B, Geiseler J, Dellweg D, et al. Prolonged weaning: S2k-guideline published by the German Respiratory Society. Pneumologie. 2019;73(12):723–814.CrossRef Schönhofer B, Geiseler J, Dellweg D, et al. Prolonged weaning: S2k-guideline published by the German Respiratory Society. Pneumologie. 2019;73(12):723–814.CrossRef
10.
go back to reference Jubran A, Grant BJ, Duffner LA, et al. Effect of pressure support vs unassisted breathing through a tracheostomy collar on weaning duration in patients requiring prolonged mechanical ventilation: a randomized trial. JAMA. 2013;309(7):671–7.CrossRef Jubran A, Grant BJ, Duffner LA, et al. Effect of pressure support vs unassisted breathing through a tracheostomy collar on weaning duration in patients requiring prolonged mechanical ventilation: a randomized trial. JAMA. 2013;309(7):671–7.CrossRef
11.
go back to reference Okabe Y, Asaga T, Bekku S, et al. Lung-thorax compliance measured during a spontaneous breathing trial is a good index of extubation failure in the surgical intensive care unit: a retrospective cohort study. J Intensive Care. 2018;6:44.CrossRef Okabe Y, Asaga T, Bekku S, et al. Lung-thorax compliance measured during a spontaneous breathing trial is a good index of extubation failure in the surgical intensive care unit: a retrospective cohort study. J Intensive Care. 2018;6:44.CrossRef
12.
go back to reference Becher T, van der Staay M, Schädler D, Frerichs I, Weiler N. Calculation of mechanical power for pressure-controlled ventilation. Intensive Care Med. 2019;45(9):1321–3.CrossRef Becher T, van der Staay M, Schädler D, Frerichs I, Weiler N. Calculation of mechanical power for pressure-controlled ventilation. Intensive Care Med. 2019;45(9):1321–3.CrossRef
13.
go back to reference Chiumello D, Gotti M, Guanziroli M, et al. Bedside calculation of mechanical power during volume- and pressure controlled mechanical ventilation. Crit Care. 2020;24:417.CrossRef Chiumello D, Gotti M, Guanziroli M, et al. Bedside calculation of mechanical power during volume- and pressure controlled mechanical ventilation. Crit Care. 2020;24:417.CrossRef
14.
go back to reference Sinha P, Fauvel NJ, Singh P, Soni N. Analysis of ventilatory ratio as a novel method to monitor ventilatory adequacy at the bedside. Crit Care. 2013;17:R34.CrossRef Sinha P, Fauvel NJ, Singh P, Soni N. Analysis of ventilatory ratio as a novel method to monitor ventilatory adequacy at the bedside. Crit Care. 2013;17:R34.CrossRef
15.
go back to reference Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef
16.
go back to reference Windisch W, Dreher M, Geiseler J, et al. Guidelines for non-invasive and invasive home mechanical ventilation for treatment of chronic respiratory failure: update 2017. Pneumologie. 2017;71(11):722–95.CrossRef Windisch W, Dreher M, Geiseler J, et al. Guidelines for non-invasive and invasive home mechanical ventilation for treatment of chronic respiratory failure: update 2017. Pneumologie. 2017;71(11):722–95.CrossRef
17.
go back to reference Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Stat Surv. 2010;4:40–79.CrossRef Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Stat Surv. 2010;4:40–79.CrossRef
18.
go back to reference Coppola S, Caccioppola A, Froio S, et al. Effect of mechanical power on intensive care mortality in ARDS patients. Crit Care. 2020;24:246.CrossRef Coppola S, Caccioppola A, Froio S, et al. Effect of mechanical power on intensive care mortality in ARDS patients. Crit Care. 2020;24:246.CrossRef
19.
go back to reference Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567–75.CrossRef Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567–75.CrossRef
20.
go back to reference Quanjer PH, Stanojevic S, Cole TJ, et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324–43.CrossRef Quanjer PH, Stanojevic S, Cole TJ, et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324–43.CrossRef
21.
go back to reference Blanch L, Lopez-Aguilar J, Lucangelo U. Dead space in acute respiratory distress syndrome: more than a feeling! Crit Care. 2016;20:214.CrossRef Blanch L, Lopez-Aguilar J, Lucangelo U. Dead space in acute respiratory distress syndrome: more than a feeling! Crit Care. 2016;20:214.CrossRef
22.
go back to reference Coppadoro A, Grassi A, Giovannoni C, et al. Occurrence of pendelluft under pressure support ventilation in patients who failed a spontaneous breathing trial: an observational study. Ann Intensive Care. 2020;10:39.CrossRef Coppadoro A, Grassi A, Giovannoni C, et al. Occurrence of pendelluft under pressure support ventilation in patients who failed a spontaneous breathing trial: an observational study. Ann Intensive Care. 2020;10:39.CrossRef
23.
go back to reference Wu YK, Kao KC, Hsu KH, Hsieh MJ, Tsai YH. Predictors of successful weaning from prolonged mechanical ventilation in Taiwan. Respir Med. 2009;103(8):1189–95.CrossRef Wu YK, Kao KC, Hsu KH, Hsieh MJ, Tsai YH. Predictors of successful weaning from prolonged mechanical ventilation in Taiwan. Respir Med. 2009;103(8):1189–95.CrossRef
24.
go back to reference Savi A, Teixeira C, Silva JM, et al. Weaning predictors do not predict extubation failure in simple-to-wean patients. J Crit Care. 2012;27(221):e1-8. Savi A, Teixeira C, Silva JM, et al. Weaning predictors do not predict extubation failure in simple-to-wean patients. J Crit Care. 2012;27(221):e1-8.
25.
go back to reference Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med. 1991;324(21):1445–50.CrossRef Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med. 1991;324(21):1445–50.CrossRef
26.
go back to reference Delisle S, Francoeur M, Albert M, Ouellet P, Bellemare P, Arsenault P. Preliminary evaluation of a new index to predict the outcome of a spontaneous breathing trial. Respir Care. 2011;56(10):1500–5.CrossRef Delisle S, Francoeur M, Albert M, Ouellet P, Bellemare P, Arsenault P. Preliminary evaluation of a new index to predict the outcome of a spontaneous breathing trial. Respir Care. 2011;56(10):1500–5.CrossRef
27.
go back to reference Huaringa AJ, Wang A, Haro MH, Leyva FJ. The weaning index as a predictor of weaning success. J Intensive Care Med. 2012;28(6):369–74.CrossRef Huaringa AJ, Wang A, Haro MH, Leyva FJ. The weaning index as a predictor of weaning success. J Intensive Care Med. 2012;28(6):369–74.CrossRef
28.
go back to reference Nemer SN, Barbas CSV, Caldeira JB, et al. A new integrative weaning index of discontinuation from mechanical ventilation. Crit Care. 2009;13:R152.CrossRef Nemer SN, Barbas CSV, Caldeira JB, et al. A new integrative weaning index of discontinuation from mechanical ventilation. Crit Care. 2009;13:R152.CrossRef
29.
go back to reference Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Eng J Med. 2008;358(13):1327–35.CrossRef Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Eng J Med. 2008;358(13):1327–35.CrossRef
30.
go back to reference Dres M, Dube BP, Mayaux J, et al. Coexistance and impact of limb muscle and diaphragm weakness at time of liberation from mechanical ventilation in medical intensive care unit patients. Am J Respir Crit Care Med. 2017;195(1):57–66.CrossRef Dres M, Dube BP, Mayaux J, et al. Coexistance and impact of limb muscle and diaphragm weakness at time of liberation from mechanical ventilation in medical intensive care unit patients. Am J Respir Crit Care Med. 2017;195(1):57–66.CrossRef
31.
go back to reference Goligher EC, Dres M, Fan E, et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med. 2018;197(2):204–13.CrossRef Goligher EC, Dres M, Fan E, et al. Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. Am J Respir Crit Care Med. 2018;197(2):204–13.CrossRef
32.
go back to reference Grassi A, Ferlicca D, Lupieri E, et al. Assisted mechanical ventilation promotes recovery of diaphragmatic thickness in critically ill patients: a prospective observational study. Crit Care. 2020;24:85.CrossRef Grassi A, Ferlicca D, Lupieri E, et al. Assisted mechanical ventilation promotes recovery of diaphragmatic thickness in critically ill patients: a prospective observational study. Crit Care. 2020;24:85.CrossRef
Metadata
Title
Mechanical power normalized to lung-thorax compliance predicts prolonged ventilation weaning failure: a prospective study
Authors
Alessandro Ghiani
Joanna Paderewska
Swenja Walcher
Claus Neurohr
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Tracheostomy
Published in
BMC Pulmonary Medicine / Issue 1/2021
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-021-01566-8

Other articles of this Issue 1/2021

BMC Pulmonary Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine