Skip to main content
Top
Published in: BMC Cancer 1/2020

01-12-2020 | Tyrosine Kinase Inhibitors | Research Article

The effects of combination treatments on drug resistance in chronic myeloid leukaemia: an evaluation of the tyrosine kinase inhibitors axitinib and asciminib

Authors: H. Jonathan G. Lindström, Ran Friedman

Published in: BMC Cancer | Issue 1/2020

Login to get access

Abstract

Background

Chronic myeloid leukaemia is in principle a treatable malignancy but drug resistance is lowering survival. Recent drug discoveries have opened up new options for drug combinations, which is a concept used in other areas for preventing drug resistance. Two of these are (I) Axitinib, which inhibits the T315I mutation of BCR-ABL1, a main source of drug resistance, and (II) Asciminib, which has been developed as an allosteric BCR-ABL1 inhibitor, targeting an entirely different binding site, and as such does not compete for binding with other drugs. These drugs offer new treatment options.

Methods

We measured the proliferation of KCL-22 cells exposed to imatinib–dasatinib, imatinib–asciminib and dasatinib–asciminib combinations and calculated combination index graphs for each case. Moreover, using the median–effect equation we calculated how much axitinib can reduce the growth advantage of T315I mutant clones in combination with available drugs. In addition, we calculated how much the total drug burden could be reduced by combinations using asciminib and other drugs, and evaluated which mutations such combinations might be sensitive to.

Results

Asciminib had synergistic interactions with imatinib or dasatinib in KCL-22 cells at high degrees of inhibition. Interestingly, some antagonism between asciminib and the other drugs was present at lower degrees on inhibition. Simulations revealed that asciminib may allow for dose reductions, and its complementary resistance profile could reduce the risk of mutation based resistance. Axitinib, however, had only a minor effect on T315I growth advantage.

Conclusions

Given how asciminib combinations were synergistic in vitro, our modelling suggests that drug combinations involving asciminib should allow for lower total drug doses, and may result in a reduced spectrum of observed resistance mutations. On the other hand, a combination involving axitinib was not shown to be useful in countering drug resistance.
Appendix
Available only for authorised users
Literature
4.
go back to reference Friedman R. The molecular mechanism behind resistance of the kinase FLT3 to the inhibitor quizartinib. Proteins. 2017; 85(11):2143–52. https://doi.org/10.1002/prot.25368. http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/prot.25368.PubMedCrossRef Friedman R. The molecular mechanism behind resistance of the kinase FLT3 to the inhibitor quizartinib. Proteins. 2017; 85(11):2143–52. https://​doi.​org/​10.​1002/​prot.​25368.​ http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/prot.25368.PubMedCrossRef
8.
go back to reference Deininger MW, Hodgson JG, Shah NP, Cortes JE, Kim D-W, Nicolini FE, Talpaz M, Baccarani M, Müller MC, Li J, Parker WT, Lustgarten S, Clackson T, Haluska FG, Guilhot F, Kantarjian HM, Soverini S, Hochhaus A, Hughes TP, Rivera VM, Branford S. Compound mutations in BCR-ABL1 are not major drivers of primary or secondary resistance to ponatinib in CP-CML patients. Blood. 2016; 127(6):703–12. https://doi.org/10.1182/blood-2015-08-660977. http://arxiv.org/abs/http://www.bloodjournal.org/content/127/6/703.full.pdf.PubMedPubMedCentralCrossRef Deininger MW, Hodgson JG, Shah NP, Cortes JE, Kim D-W, Nicolini FE, Talpaz M, Baccarani M, Müller MC, Li J, Parker WT, Lustgarten S, Clackson T, Haluska FG, Guilhot F, Kantarjian HM, Soverini S, Hochhaus A, Hughes TP, Rivera VM, Branford S. Compound mutations in BCR-ABL1 are not major drivers of primary or secondary resistance to ponatinib in CP-CML patients. Blood. 2016; 127(6):703–12. https://​doi.​org/​10.​1182/​blood-2015-08-660977.​ http://arxiv.org/abs/http://www.bloodjournal.org/content/127/6/703.full.pdf.PubMedPubMedCentralCrossRef
9.
go back to reference Zabriskie MS, Eide CA, Tantravahi SK, Vellore NA, Estrada J, Nicolini FE, Khoury HJ, Larson RA, Konopleva M, Cortes JE, Kantarjian H, Jabbour EJ, Kornblau SM, Lipton JH, Rea D, Stenke L, Barbany G, Lange T, Hernández-Boluda J-C, Ossenkoppele GJ, Press RD, Chuah C, Goldberg SL, Wetzler M, Mahon F-X, Etienne G, Baccarani M, Soverini S, Rosti G, Rousselot P, Friedman R, Deininger M, Reynolds KR, Heaton WL, Eiring AM, Pomicter AD, Khorashad JS, Kelley TW, Baron R, Druker BJ, Deininger MW, O’Hare T. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia. Cancer Cell. 2014; 26(3):428–42. https://doi.org/10.1016/j.ccr.2014.07.006.PubMedPubMedCentralCrossRef Zabriskie MS, Eide CA, Tantravahi SK, Vellore NA, Estrada J, Nicolini FE, Khoury HJ, Larson RA, Konopleva M, Cortes JE, Kantarjian H, Jabbour EJ, Kornblau SM, Lipton JH, Rea D, Stenke L, Barbany G, Lange T, Hernández-Boluda J-C, Ossenkoppele GJ, Press RD, Chuah C, Goldberg SL, Wetzler M, Mahon F-X, Etienne G, Baccarani M, Soverini S, Rosti G, Rousselot P, Friedman R, Deininger M, Reynolds KR, Heaton WL, Eiring AM, Pomicter AD, Khorashad JS, Kelley TW, Baron R, Druker BJ, Deininger MW, O’Hare T. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia. Cancer Cell. 2014; 26(3):428–42. https://​doi.​org/​10.​1016/​j.​ccr.​2014.​07.​006.PubMedPubMedCentralCrossRef
13.
go back to reference Zhang J, Adrián FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE, Sim T, Powers J, Dierks C, Sun F, Guo G-R, Ding Q, Okram B, Choi Y, Wojciechowski A, Deng X, Liu G, Fendrich G, Strauss A, Vajpai N, Grzesiek S, Tuntland T, Liu Y, Bursulaya B, Azam M, Manley PW, Engen JR, Daley GQ, Warmuth M, Gray NS. Targeting bcr–abl by combining allosteric with ATP-binding-site inhibitors. Nature. 2010; 463(7280):501–6. https://doi.org/10.1038/nature08675.PubMedPubMedCentralCrossRef Zhang J, Adrián FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE, Sim T, Powers J, Dierks C, Sun F, Guo G-R, Ding Q, Okram B, Choi Y, Wojciechowski A, Deng X, Liu G, Fendrich G, Strauss A, Vajpai N, Grzesiek S, Tuntland T, Liu Y, Bursulaya B, Azam M, Manley PW, Engen JR, Daley GQ, Warmuth M, Gray NS. Targeting bcr–abl by combining allosteric with ATP-binding-site inhibitors. Nature. 2010; 463(7280):501–6. https://​doi.​org/​10.​1038/​nature08675.PubMedPubMedCentralCrossRef
14.
go back to reference Schoepfer J, Jahnke W, Berellini G, Buonamici S, Cotesta S, Cowan-Jacob SW, Dodd S, Drueckes P, Fabbro D, Gabriel T, Groell J-M, Grotzfeld RM, Hassan AQ, Henry C, Iyer V, Jones D, Lombardo F, Loo A, Manley PW, Pellé X, Rummel G, Salem B, Warmuth M, Wylie AA, Zoller T, Marzinzik AL, Furet P. Discovery of asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J Med Chem. 2018; 61(18):8120–35. https://doi.org/10.1021/acs.jmedchem.8b01040. PMID: 30137981. http://arxiv.org/abs/https://doi.org/10.1021/acs.jmedchem.8b01040.PubMedCrossRef Schoepfer J, Jahnke W, Berellini G, Buonamici S, Cotesta S, Cowan-Jacob SW, Dodd S, Drueckes P, Fabbro D, Gabriel T, Groell J-M, Grotzfeld RM, Hassan AQ, Henry C, Iyer V, Jones D, Lombardo F, Loo A, Manley PW, Pellé X, Rummel G, Salem B, Warmuth M, Wylie AA, Zoller T, Marzinzik AL, Furet P. Discovery of asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J Med Chem. 2018; 61(18):8120–35. https://​doi.​org/​10.​1021/​acs.​jmedchem.​8b01040.​ PMID: 30137981. http://arxiv.org/abs/https://doi.org/10.1021/acs.jmedchem.8b01040.PubMedCrossRef
15.
go back to reference Wylie AA, Schoepfer J, Jahnke W, Cowan-Jacob SW, Loo A, Furet P, Marzinzik AL, Pelle X, Donovan J, Zhu W, Buonamici S, Hassan AQ, Lombardo F, Iyer V, Palmer M, Berellini G, Dodd S, Thohan S, Bitter H, Branford S, Ross DM, Hughes TP, Petruzzelli L, Vanasse KG, Warmuth M, Hofmann F, Keen NJ, Sellers WR. The allosteric inhibitor ABL001 enables dual targeting of BCR–ABL1. Nature. 2017; 543(7647):733–7. https://doi.org/10.1038/nature21702.PubMedCrossRef Wylie AA, Schoepfer J, Jahnke W, Cowan-Jacob SW, Loo A, Furet P, Marzinzik AL, Pelle X, Donovan J, Zhu W, Buonamici S, Hassan AQ, Lombardo F, Iyer V, Palmer M, Berellini G, Dodd S, Thohan S, Bitter H, Branford S, Ross DM, Hughes TP, Petruzzelli L, Vanasse KG, Warmuth M, Hofmann F, Keen NJ, Sellers WR. The allosteric inhibitor ABL001 enables dual targeting of BCR–ABL1. Nature. 2017; 543(7647):733–7. https://​doi.​org/​10.​1038/​nature21702.PubMedCrossRef
16.
go back to reference Eide CA, Zabriskie MS, Stevens SLS, Antelope O, Vellore NA, Than H, Schultz AR, Clair P, Bowler AD, Pomicter AD, Yan D, Senina AV, Qiang W, Kelley TW, Szankasi P, Heinrich MC, Tyner JW, Rea D, Cayuela J-M, Kim D-W, Tognon CE, O’Hare T, Druker BJ, Deininger MW. Combining the allosteric inhibitor asciminib with ponatinib suppresses emergence of and restores efficacy against highly resistant bcr-abl1 mutants. Cancer Cell. 2019; 36(4):431–4435. https://doi.org/10.1016/j.ccell.2019.08.004.PubMedPubMedCentralCrossRef Eide CA, Zabriskie MS, Stevens SLS, Antelope O, Vellore NA, Than H, Schultz AR, Clair P, Bowler AD, Pomicter AD, Yan D, Senina AV, Qiang W, Kelley TW, Szankasi P, Heinrich MC, Tyner JW, Rea D, Cayuela J-M, Kim D-W, Tognon CE, O’Hare T, Druker BJ, Deininger MW. Combining the allosteric inhibitor asciminib with ponatinib suppresses emergence of and restores efficacy against highly resistant bcr-abl1 mutants. Cancer Cell. 2019; 36(4):431–4435. https://​doi.​org/​10.​1016/​j.​ccell.​2019.​08.​004.PubMedPubMedCentralCrossRef
22.
24.
go back to reference Metzcar J, Wang Y, Heiland R, Macklin P. A review of cell-based computational modeling in cancer biology. JCO Clin Cancer Inform. 2019; 3:1–13. https://doi.org/10.1200/cci.18.00069. PMID: 30715927. http://arxiv.org/abs/https://doi.org/10.1200/CCI.18.00069.PubMedCrossRef Metzcar J, Wang Y, Heiland R, Macklin P. A review of cell-based computational modeling in cancer biology. JCO Clin Cancer Inform. 2019; 3:1–13. https://​doi.​org/​10.​1200/​cci.​18.​00069.​ PMID: 30715927. http://arxiv.org/abs/https://doi.org/10.1200/CCI.18.00069.PubMedCrossRef
27.
go back to reference Mumenthaler SM, Foo J, Leder K, Choi NC, Agus DB, Pao W, Mallick P, Michor F. Evolutionary modeling of combination treatment strategies to overcome resistance to tyrosine kinase inhibitors in non-small cell lung cancer. Mol Pharm. 2011; 8(6):2069–79. https://doi.org/10.1021/mp200270v. PMID: 21995722. http://arxiv.org/abs/https://doi.org/10.1021/mp200270v.PubMedPubMedCentralCrossRef Mumenthaler SM, Foo J, Leder K, Choi NC, Agus DB, Pao W, Mallick P, Michor F. Evolutionary modeling of combination treatment strategies to overcome resistance to tyrosine kinase inhibitors in non-small cell lung cancer. Mol Pharm. 2011; 8(6):2069–79. https://​doi.​org/​10.​1021/​mp200270v.​ PMID: 21995722. http://arxiv.org/abs/https://doi.org/10.1021/mp200270v.PubMedPubMedCentralCrossRef
32.
go back to reference Soverini S, Rosti G, Iacobucci I, Baccarani M, Martinelli G. Choosing the best second-line tyrosine kinase inhibitor in imatinib-resistant chronic myeloid leukemia patients harboring bcr-abl kinase domain mutations: How reliable is the IC 50 ?. Oncologist. 2011; 16(6):868–76. https://doi.org/10.1634/theoncologist.2010-0388. http://theoncologist.alphamedpress.org/content/16/6/868.full.pdf+html. Soverini S, Rosti G, Iacobucci I, Baccarani M, Martinelli G. Choosing the best second-line tyrosine kinase inhibitor in imatinib-resistant chronic myeloid leukemia patients harboring bcr-abl kinase domain mutations: How reliable is the IC 50 ?. Oncologist. 2011; 16(6):868–76. https://​doi.​org/​10.​1634/​theoncologist.​2010-0388.​ http://​theoncologist.​alphamedpress.​org/​content/​16/​6/​868.​full.​pdf+html.
34.
go back to reference Redaelli S, Mologni L, Rostagno R, Piazza R, Magistroni V, Ceccon M, Viltadi M, Flynn D, Gambacorti-Passerini C. Three novel patient-derived BCR/ABL mutants show different sensitivity to second and third generation tyrosine kinase inhibitors. Am J Hematol. 2012; 87(11):125–8. https://doi.org/10.1002/ajh.23338. http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ajh.23338.CrossRef Redaelli S, Mologni L, Rostagno R, Piazza R, Magistroni V, Ceccon M, Viltadi M, Flynn D, Gambacorti-Passerini C. Three novel patient-derived BCR/ABL mutants show different sensitivity to second and third generation tyrosine kinase inhibitors. Am J Hematol. 2012; 87(11):125–8. https://​doi.​org/​10.​1002/​ajh.​23338.​ http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ajh.23338.CrossRef
36.
go back to reference O’Hare T, Walters DK, Stoffregen EP, Jia T, Manley PW, Mestan J, Cowan-Jacob SW, Lee FY, Heinrich MC, Deininger MWN, Druker BJ. In vitroActivity of bcr-abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant abl kinase domain mutants. Cancer Res. 2005; 65(11):4500–5. https://doi.org/10.1158/0008-5472.can-05-0259. http://arxiv.org/abs/http://cancerres.aacrjournals.org/content/65/11/4500.full.pdf.PubMedCrossRef O’Hare T, Walters DK, Stoffregen EP, Jia T, Manley PW, Mestan J, Cowan-Jacob SW, Lee FY, Heinrich MC, Deininger MWN, Druker BJ. In vitroActivity of bcr-abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant abl kinase domain mutants. Cancer Res. 2005; 65(11):4500–5. https://​doi.​org/​10.​1158/​0008-5472.​can-05-0259.​ http://arxiv.org/abs/http://cancerres.aacrjournals.org/content/65/11/4500.full.pdf.PubMedCrossRef
37.
go back to reference O’Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, Adrian LT, Zhou T, Huang W-S, Xu Q, Metcalf CA, Tyner JW, Loriaux MM, Corbin AS, Wardwell S, Ning Y, Keats JA, Wang Y, Sundaramoorthi R, Thomas M, Zhou D, Snodgrass J, Commodore L, Sawyer TK, Dalgarno DC, Deininger MWN, Druker BJ, Clackson T. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009; 16(5):401–12. https://doi.org/10.1016/j.ccr.2009.09.028.PubMedPubMedCentralCrossRef O’Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, Adrian LT, Zhou T, Huang W-S, Xu Q, Metcalf CA, Tyner JW, Loriaux MM, Corbin AS, Wardwell S, Ning Y, Keats JA, Wang Y, Sundaramoorthi R, Thomas M, Zhou D, Snodgrass J, Commodore L, Sawyer TK, Dalgarno DC, Deininger MWN, Druker BJ, Clackson T. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009; 16(5):401–12. https://​doi.​org/​10.​1016/​j.​ccr.​2009.​09.​028.PubMedPubMedCentralCrossRef
40.
go back to reference Weisberg E, Manley PW, Breitenstein W, Brüggen J, Cowan-Jacob SW, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E, Kung AL, Mestan J, Daley GQ, Callahan L, Catley L, Cavazza C, Mohammed A, Neuberg D, Wright RD, Gilliland DG, Griffin JD. Characterization of AMN107, a selective inhibitor of native and mutant bcr-abl. Cancer Cell. 2005; 7(2):129–41. https://doi.org/10.1016/j.ccr.2005.01.007.PubMedCrossRef Weisberg E, Manley PW, Breitenstein W, Brüggen J, Cowan-Jacob SW, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E, Kung AL, Mestan J, Daley GQ, Callahan L, Catley L, Cavazza C, Mohammed A, Neuberg D, Wright RD, Gilliland DG, Griffin JD. Characterization of AMN107, a selective inhibitor of native and mutant bcr-abl. Cancer Cell. 2005; 7(2):129–41. https://​doi.​org/​10.​1016/​j.​ccr.​2005.​01.​007.PubMedCrossRef
41.
go back to reference Burgess MR, Skaggs BJ, Shah NP, Lee FY, Sawyers CL. Comparative analysis of two clinically active BCR-ABL kinase inhibitors reveals the role of conformation-specific binding in resistance. Proc Natl Acad Sci. 2005; 102(9):3395–400. https://doi.org/10.1073/pnas.0409770102. http://arxiv.org/abs/https://www.pnas.org/content/102/9/3395.full.pdf.PubMedCrossRefPubMedCentral Burgess MR, Skaggs BJ, Shah NP, Lee FY, Sawyers CL. Comparative analysis of two clinically active BCR-ABL kinase inhibitors reveals the role of conformation-specific binding in resistance. Proc Natl Acad Sci. 2005; 102(9):3395–400. https://​doi.​org/​10.​1073/​pnas.​0409770102.​ http://arxiv.org/abs/https://www.pnas.org/content/102/9/3395.full.pdf.PubMedCrossRefPubMedCentral
42.
go back to reference Manley PW, Cowan-Jacob SW, Mestan J. Advances in the structural biology, design and clinical development of bcr-abl kinase inhibitors for the treatment of chronic myeloid leukaemia. Biochim Biophys Acta (BBA) Proteins Proteomics. 2005; 1754(1-2):3–13. https://doi.org/10.1016/j.bbapap.2005.07.040. Inhibitors of Protein Kinases (4th International Conference, Inhibitors of Protein Kinases) and Associated Workshop: Modelling of Specific Molecular Recognition Processes (Warsaw, Poland, June 25-29, 2005).CrossRef Manley PW, Cowan-Jacob SW, Mestan J. Advances in the structural biology, design and clinical development of bcr-abl kinase inhibitors for the treatment of chronic myeloid leukaemia. Biochim Biophys Acta (BBA) Proteins Proteomics. 2005; 1754(1-2):3–13. https://​doi.​org/​10.​1016/​j.​bbapap.​2005.​07.​040.​ Inhibitors of Protein Kinases (4th International Conference, Inhibitors of Protein Kinases) and Associated Workshop: Modelling of Specific Molecular Recognition Processes (Warsaw, Poland, June 25-29, 2005).CrossRef
43.
go back to reference Ray A, Cowan-Jacob SW, Manley PW, Mestan J, Griffin JD. Identification of BCR-ABL point mutations conferring resistance to the abl kinase inhibitor AMN107 (nilotinib) by a random mutagenesis study. Blood. 2007; 109(11):5011–5. https://doi.org/10.1182/blood-2006-01-015347. http://arxiv.org/abs/http://www.bloodjournal.org/content/109/11/5011.full.pdf.PubMedCrossRef Ray A, Cowan-Jacob SW, Manley PW, Mestan J, Griffin JD. Identification of BCR-ABL point mutations conferring resistance to the abl kinase inhibitor AMN107 (nilotinib) by a random mutagenesis study. Blood. 2007; 109(11):5011–5. https://​doi.​org/​10.​1182/​blood-2006-01-015347.​ http://arxiv.org/abs/http://www.bloodjournal.org/content/109/11/5011.full.pdf.PubMedCrossRef
45.
go back to reference Dhillon S, Gill K. Basic pharmacokinetics. London: Clinical Phrmokinetics, Pharmaceutical Press; 2006. Dhillon S, Gill K. Basic pharmacokinetics. London: Clinical Phrmokinetics, Pharmaceutical Press; 2006.
53.
go back to reference Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Flinn I, O’Hare T, Hu S, Narasimhan NI, Rivera VM, Clackson T, Turner CD, Haluska FG, Druker BJ, Deininger MWN, Talpaz M. Ponatinib in refractory Philadelphia chromosome–positive leukemias. N Engl J Med. 2012; 367(22):2075–88. https://doi.org/10.1056/nejmoa1205127. PMID: 23190221. http://arxiv.org/abs/https://doi.org/10.1056/NEJMoa1205127.PubMedPubMedCentralCrossRef Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Flinn I, O’Hare T, Hu S, Narasimhan NI, Rivera VM, Clackson T, Turner CD, Haluska FG, Druker BJ, Deininger MWN, Talpaz M. Ponatinib in refractory Philadelphia chromosome–positive leukemias. N Engl J Med. 2012; 367(22):2075–88. https://​doi.​org/​10.​1056/​nejmoa1205127.​ PMID: 23190221. http://arxiv.org/abs/https://doi.org/10.1056/NEJMoa1205127.PubMedPubMedCentralCrossRef
54.
go back to reference Smith BJ, Pithavala Y, Bu H-Z, Kang P, Hee B, Deese AJ, Pool WF, Klamerus KJ, Wu EY, Dalvie DK. Pharmacokinetics, metabolism, and excretion of [14C]Axitinib, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in humans. Drug Metab Dispos. 2014; 42(5):918–31. https://doi.org/10.1124/dmd.113.056531. http://arxiv.org/abs/http://dmd.aspetjournals.org/content/42/5/918.full.pdf.PubMedCrossRef Smith BJ, Pithavala Y, Bu H-Z, Kang P, Hee B, Deese AJ, Pool WF, Klamerus KJ, Wu EY, Dalvie DK. Pharmacokinetics, metabolism, and excretion of [14C]Axitinib, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in humans. Drug Metab Dispos. 2014; 42(5):918–31. https://​doi.​org/​10.​1124/​dmd.​113.​056531.​ http://arxiv.org/abs/http://dmd.aspetjournals.org/content/42/5/918.full.pdf.PubMedCrossRef
55.
go back to reference Menssen HD, Quinlan M, Kemp C, Tian X. Relative bioavailability and food effect evaluation for 2 tablet formulations of asciminib in a 2-arm, crossover, randomized, open-label study in healthy volunteers. Clin Pharmacol Drug Dev. 2018; 8(3):385–94. https://doi.org/10.1002/cpdd.602. http://arxiv.org/abs/https://accp1.onlinelibrary.wiley.com/doi/pdf/10.1002/cpdd.602.PubMedCrossRef Menssen HD, Quinlan M, Kemp C, Tian X. Relative bioavailability and food effect evaluation for 2 tablet formulations of asciminib in a 2-arm, crossover, randomized, open-label study in healthy volunteers. Clin Pharmacol Drug Dev. 2018; 8(3):385–94. https://​doi.​org/​10.​1002/​cpdd.​602.​ http://arxiv.org/abs/https://accp1.onlinelibrary.wiley.com/doi/pdf/10.1002/cpdd.602.PubMedCrossRef
58.
go back to reference Molica M, Scalzulli E, Colafigli G, Foà R, Breccia M. Insights into the optimal use of ponatinib in patients with chronic phase chronic myeloid leukaemia. Ther Adv Hematol. 2019; 10:204062071982644. https://doi.org/10.1177/2040620719826444. http://arxiv.org/abs/https://doi.org/10.1177/2040620719826444.CrossRef Molica M, Scalzulli E, Colafigli G, Foà R, Breccia M. Insights into the optimal use of ponatinib in patients with chronic phase chronic myeloid leukaemia. Ther Adv Hematol. 2019; 10:204062071982644. https://​doi.​org/​10.​1177/​2040620719826444​.​ http://arxiv.org/abs/https://doi.org/10.1177/2040620719826444.CrossRef
60.
go back to reference Sen R, Natarajan K, Bhullar J, Shukla S, Fang H-B, Cai L, Chen Z-S, Ambudkar SV, Baer MR. The novel BCR-ABL and FLT3 inhibitor ponatinib is a potent inhibitor of the MDR-associated ATP-binding cassette transporter ABCG2. Mol Cancer Ther. 2012; 11(9):2033–44. https://doi.org/10.1158/1535-7163.mct-12-0302. http://arxiv.org/abs/http://mct.aacrjournals.org/content/11/9/2033.full.pdf.PubMedPubMedCentralCrossRef Sen R, Natarajan K, Bhullar J, Shukla S, Fang H-B, Cai L, Chen Z-S, Ambudkar SV, Baer MR. The novel BCR-ABL and FLT3 inhibitor ponatinib is a potent inhibitor of the MDR-associated ATP-binding cassette transporter ABCG2. Mol Cancer Ther. 2012; 11(9):2033–44. https://​doi.​org/​10.​1158/​1535-7163.​mct-12-0302.​ http://arxiv.org/abs/http://mct.aacrjournals.org/content/11/9/2033.full.pdf.PubMedPubMedCentralCrossRef
61.
go back to reference Sampah MES, Shen L, Jilek BL, Siliciano RF. Dose-response curve slope is a missing dimension in the analysis of HIV-1 drug resistance. Proc Natl Acad Sci. 2011; 108(18):7613–8. https://doi.org/10.1073/pnas.1018360108. http://arxiv.org/abs/https://www.pnas.org/content/108/18/7613.full.pdf.PubMedCrossRefPubMedCentral Sampah MES, Shen L, Jilek BL, Siliciano RF. Dose-response curve slope is a missing dimension in the analysis of HIV-1 drug resistance. Proc Natl Acad Sci. 2011; 108(18):7613–8. https://​doi.​org/​10.​1073/​pnas.​1018360108.​ http://arxiv.org/abs/https://www.pnas.org/content/108/18/7613.full.pdf.PubMedCrossRefPubMedCentral
Metadata
Title
The effects of combination treatments on drug resistance in chronic myeloid leukaemia: an evaluation of the tyrosine kinase inhibitors axitinib and asciminib
Authors
H. Jonathan G. Lindström
Ran Friedman
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2020
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-020-06782-9

Other articles of this Issue 1/2020

BMC Cancer 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine