Skip to main content
Top
Published in: BMC Cancer 1/2016

Open Access 01-12-2016 | Research article

Pre-treatment MRI minimum apparent diffusion coefficient value is a potential prognostic imaging biomarker in cervical cancer patients treated with definitive chemoradiation

Authors: Daniel Grossi Marconi, Jose Humberto Tavares Guerreiro Fregnani, Rodrigo Ribeiro Rossini, Ana Karina Borges Junqueira Netto, Fabiano Rubião Lucchesi, Audrey Tieko Tsunoda, Mitchell Kamrava

Published in: BMC Cancer | Issue 1/2016

Login to get access

Abstract

Background

Diffusion Weighted (DW) Magnetic Resonance Imaging (MRI) has been studed in several cancers including cervical cancer. This study was designed to investigate the association of DW-MRI parameters with baseline clinical features and clinical outcomes (local regional control (LRC), disease free survival (DFS) and disease specific survival (DSS)) in cervical cancer patients treated with definitive chemoradiation.

Methods

This was a retrospective study approved by an institutional review board that included 66 women with cervical cancer treated with definitive chemoradiation who underwent pre-treatment MRI at our institution between 2012 and 2013. A region of interest (ROI) was manually drawn by one of three radiologists with experience in pelvic imaging on a single axial CT slice encompassing the widest diameter of the cervical tumor while excluding areas of necrosis. The following apparent diffusion coefficient (ADC) values (×10−3 mm2/s) were extracted for each ROI: Minimum - ADCmin, Maximum - ADCmax, Mean - ADCmean, and Standard Deviation of the ADC - ADCdev. Receiver operating characteristic (ROC) curves were built to choose the most accurate cut off value for each ADC value. Correlation between imaging metrics and baseline clinical features were evaluated using the Mann Whitney test. Confirmatory multi-variate Cox modeling was used to test associations with LRC (adjusted by gross tumor volume – GTV), DFS and DSS (both adjusted by FIGO stage). Kaplan Meyer curves were built for DFS and DSS. A p-value < 0.05 was considered significant.
Women median age was 52 years (range 23–90). 67 % had FIGO stage I-II disease while 33 % had FIGO stage III-IV disease. Eighty-two percent had squamous cell cancer. Eighty-eight percent received concurrent cisplatin chemotherapy with radiation. Median EQD2 of external beam and brachytherapy was 82.2 Gy (range 74–84).

Results

Women with disease staged III-IV (FIGO) had significantly higher mean ADCmax values compared with those with stage I-II (1.806 (0.4) vs 1.485 (0.4), p = 0.01). Patients with imaging defined positive nodes also had significantly higher mean (±SD) ADCmax values compared with lymph node negative patients (1.995 (0.3) vs 1.551 (0.5), p = 0.03).
With a median follow-up of 32 months (range 5–43) 11 patients (17 %) have developed recurrent disease and 8 (12 %) have died because of cervical cancer. ROC curves based on DSS showed optimal cutoffs for ADCmin (0.488 × 10−3), ADCmean (0.827 × 10−3), ADCmax (1.838 × 10−3) and ADCdev (0.148 × 10−3). ADCmin higher than the cutoff was significantly associated with worse DFS (HR = 3.632–95 % CI: 1.094–12.054; p = 0.035) and DSS (HR = 4.401–95 % CI: 1.048–18.483; p = 0.043).

Conclusion

Pre-treatment ADCmax measured in the primary tumor may be associated with FIGO stage and lymph node status. Pre-treatment ADCmin may be a prognostic factor associated with disease-free survival and disease-specific survival in cervical cancer patients treated with definitive chemoradiation. Prospective validation of these findings is currently ongoing.
Literature
1.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRefPubMed Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRefPubMed
2.
go back to reference Schmid MP, Franckena M, Kirchheiner K, Sturdza A, Georg P, Dörr W, et al. Distant metastasis in patients with cervical cancer after primary radiotherapy with or without chemotherapy and image guided adaptive brachytherapy. Gynecol Oncol. 2014;133(2):256–62.CrossRefPubMed Schmid MP, Franckena M, Kirchheiner K, Sturdza A, Georg P, Dörr W, et al. Distant metastasis in patients with cervical cancer after primary radiotherapy with or without chemotherapy and image guided adaptive brachytherapy. Gynecol Oncol. 2014;133(2):256–62.CrossRefPubMed
3.
go back to reference Tewari KS, Sill MW, Long 3rd HJ, Penson RT, Huang H, Ramondetta LM, et al. Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med. 2014;370(8):734–43.CrossRefPubMedPubMedCentral Tewari KS, Sill MW, Long 3rd HJ, Penson RT, Huang H, Ramondetta LM, et al. Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med. 2014;370(8):734–43.CrossRefPubMedPubMedCentral
5.
go back to reference Kidd EA, Siegel BA, Dehdashti F, Grigsby PW. Pelvic lymph node F-18 fluorodeoxyglucose uptake as a prognostic biomarker in newly diagnosed patients with locally advanced cervical cancer. Cancer. 2010;116(6):1469–75.CrossRefPubMed Kidd EA, Siegel BA, Dehdashti F, Grigsby PW. Pelvic lymph node F-18 fluorodeoxyglucose uptake as a prognostic biomarker in newly diagnosed patients with locally advanced cervical cancer. Cancer. 2010;116(6):1469–75.CrossRefPubMed
6.
go back to reference Kidd EA, Siegel BA, Dehdashti F, Grigsby PW. The standardized uptake value for F-18 fluorodeoxyglucose is a sensitive predictive biomarker for cervical cancer treatment response and survival. Cancer. 2007;110(8):1738–44.CrossRefPubMed Kidd EA, Siegel BA, Dehdashti F, Grigsby PW. The standardized uptake value for F-18 fluorodeoxyglucose is a sensitive predictive biomarker for cervical cancer treatment response and survival. Cancer. 2007;110(8):1738–44.CrossRefPubMed
7.
go back to reference Siva S, Deb S, Young RJ, Hicks RJ, Callahan J, Bressel M, Mileshkin L, et al. F-FDG PET/CT following chemoradiation of uterine cervix cancer provides powerful prognostic stratification independent of HPV status: a prospective cohort of 105 women with mature survival data. Eur J Nucl Med Mol Imaging. 2015;42(12):1825–32.CrossRefPubMed Siva S, Deb S, Young RJ, Hicks RJ, Callahan J, Bressel M, Mileshkin L, et al. F-FDG PET/CT following chemoradiation of uterine cervix cancer provides powerful prognostic stratification independent of HPV status: a prospective cohort of 105 women with mature survival data. Eur J Nucl Med Mol Imaging. 2015;42(12):1825–32.CrossRefPubMed
8.
go back to reference Olsen JR, Esthappan J, DeWees T, Narra VR, Dehdashti F, Siegel BA, et al. Tumor volume and subvolume concordance between FDG-PET/CT and diffusion-weighted MRI for squamous cell carcinoma of the cervix. J Magn Reson Imaging. 2013;37(2):431–4.CrossRefPubMed Olsen JR, Esthappan J, DeWees T, Narra VR, Dehdashti F, Siegel BA, et al. Tumor volume and subvolume concordance between FDG-PET/CT and diffusion-weighted MRI for squamous cell carcinoma of the cervix. J Magn Reson Imaging. 2013;37(2):431–4.CrossRefPubMed
9.
go back to reference Matsushima N, Maeda M, Takamura M, Takeda K. Apparent diffusion coefficients of benign and malignant salivary gland tumors. Comparison to histopathological findings. J Neuroradiol. 2007;34:183–9.CrossRefPubMed Matsushima N, Maeda M, Takamura M, Takeda K. Apparent diffusion coefficients of benign and malignant salivary gland tumors. Comparison to histopathological findings. J Neuroradiol. 2007;34:183–9.CrossRefPubMed
10.
go back to reference Abdel Razek AA, Soliman NY, Elkhamary S, Alsharaway MK, Tawfik A. Role of diffusion-weighted MR imaging in cervical lymphadenopathy. Eur Radiol. 2006;16:1468–77.CrossRefPubMed Abdel Razek AA, Soliman NY, Elkhamary S, Alsharaway MK, Tawfik A. Role of diffusion-weighted MR imaging in cervical lymphadenopathy. Eur Radiol. 2006;16:1468–77.CrossRefPubMed
11.
go back to reference Sun H, Xin J, Zhang S, Guo Q, Lu Y, Zhai W, et al. Anatomical and functional volume concordance between FDG PET, and T2 and diffusion-weighted MRI for cervical cancer: a hybrid PET/MR study. Eur J Nucl Med Mol Imaging. 2014;41(5):898–905.CrossRefPubMed Sun H, Xin J, Zhang S, Guo Q, Lu Y, Zhai W, et al. Anatomical and functional volume concordance between FDG PET, and T2 and diffusion-weighted MRI for cervical cancer: a hybrid PET/MR study. Eur J Nucl Med Mol Imaging. 2014;41(5):898–905.CrossRefPubMed
12.
go back to reference McVeigh PZ, Syed AM, Milosevic M, Fyles A, Haider MA. Diffusion-weighted MRI in cervical cancer. Eur Radiol. 2008;18:1058–64.CrossRefPubMed McVeigh PZ, Syed AM, Milosevic M, Fyles A, Haider MA. Diffusion-weighted MRI in cervical cancer. Eur Radiol. 2008;18:1058–64.CrossRefPubMed
13.
go back to reference Rizzo S, Summers P, Raimondi S, Belmonte M, Maniglio M, Landoni F, et al. Diffusion-weighted MR imaging in assessing cervical tumour response to nonsurgical therapy. Radiol Med. 2011;116:766–80.CrossRefPubMed Rizzo S, Summers P, Raimondi S, Belmonte M, Maniglio M, Landoni F, et al. Diffusion-weighted MR imaging in assessing cervical tumour response to nonsurgical therapy. Radiol Med. 2011;116:766–80.CrossRefPubMed
14.
go back to reference Liu Y, Bai R, Sun H, Liu H, Wang D. Diffusion-weighted magnetic resonance imaging of uterine cervical cancer. J Comput Assist Tomogr. 2009;33:858–62.CrossRefPubMed Liu Y, Bai R, Sun H, Liu H, Wang D. Diffusion-weighted magnetic resonance imaging of uterine cervical cancer. J Comput Assist Tomogr. 2009;33:858–62.CrossRefPubMed
15.
go back to reference Miccò M, Vargas HA, Burger IA, Kollmeier MA, Goldman DA, Park KJ. Combined pre-treatment MRI and 18-FDG PET/CT parameters as prognostic biomarkers in patients with cervical cancer. Eur J Radiol. 2014;83:1169–76.CrossRefPubMed Miccò M, Vargas HA, Burger IA, Kollmeier MA, Goldman DA, Park KJ. Combined pre-treatment MRI and 18-FDG PET/CT parameters as prognostic biomarkers in patients with cervical cancer. Eur J Radiol. 2014;83:1169–76.CrossRefPubMed
16.
go back to reference Gladwish A, Milosevic M, Fyles A, Xie J, Halankar J, Metser U. Association of appartent diffusion coefficient with disease recurrence in patients with locally advanced cervical cancer treated with radical chemotherapy and radiation therapy. Radiology. 2016;279(1):158–66.CrossRefPubMed Gladwish A, Milosevic M, Fyles A, Xie J, Halankar J, Metser U. Association of appartent diffusion coefficient with disease recurrence in patients with locally advanced cervical cancer treated with radical chemotherapy and radiation therapy. Radiology. 2016;279(1):158–66.CrossRefPubMed
17.
go back to reference Lund KV, Simonsen TG, Hompland T, Kristensen GB, Rofstad EK. Short-term pretreatment DCE-MRI in prediction of outcome in locally advanced cervical cancer. Radiother Oncol. 2015;115(3):379–85.CrossRefPubMed Lund KV, Simonsen TG, Hompland T, Kristensen GB, Rofstad EK. Short-term pretreatment DCE-MRI in prediction of outcome in locally advanced cervical cancer. Radiother Oncol. 2015;115(3):379–85.CrossRefPubMed
18.
go back to reference Padhani AR, Liu G, Mu-Koh D, Chenevert TL, Toeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11:102–25.CrossRefPubMedPubMedCentral Padhani AR, Liu G, Mu-Koh D, Chenevert TL, Toeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11:102–25.CrossRefPubMedPubMedCentral
19.
go back to reference Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.CrossRefPubMed Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.CrossRefPubMed
20.
go back to reference Naganawa S, Sato C, Kumada H, Ishigaki T, Miura S, Takizawa O. Apparent diffusion coefficient in cervical cancer of the uterus: comparison with the normal uterine cervix. Eur Radiol. 2005;15:71–8.CrossRefPubMed Naganawa S, Sato C, Kumada H, Ishigaki T, Miura S, Takizawa O. Apparent diffusion coefficient in cervical cancer of the uterus: comparison with the normal uterine cervix. Eur Radiol. 2005;15:71–8.CrossRefPubMed
21.
go back to reference Frederick L, Greene David L, Page Irvin D, Fleming April G, Fritz Charles M, Balch Daniel G, et al. AJCC cancer staging manual. 6th ed. New York: Springer; 2002. Frederick L, Greene David L, Page Irvin D, Fleming April G, Fritz Charles M, Balch Daniel G, et al. AJCC cancer staging manual. 6th ed. New York: Springer; 2002.
22.
go back to reference Wright JD, Dehdashti F, Herzog TJ, Mutch DG, Huettner PC, Rader JS, et al. Preoperative lymph node staging of early-stage cervical carcinoma by [18F]-fluoro-2-deoxy-D-glucose-positron emission tomography. Cancer. 2005;104:2484–91.CrossRefPubMed Wright JD, Dehdashti F, Herzog TJ, Mutch DG, Huettner PC, Rader JS, et al. Preoperative lymph node staging of early-stage cervical carcinoma by [18F]-fluoro-2-deoxy-D-glucose-positron emission tomography. Cancer. 2005;104:2484–91.CrossRefPubMed
23.
go back to reference Koh DM, Padhani AR. Diffusion-weighted MRI: a new functional clinical technique for tumour imaging. Br J Radiol. 2006;79:633–5.CrossRefPubMed Koh DM, Padhani AR. Diffusion-weighted MRI: a new functional clinical technique for tumour imaging. Br J Radiol. 2006;79:633–5.CrossRefPubMed
24.
go back to reference Lemaire L, Howe FA, Rodrigues LM, Griffiths JR. Assessment of induced rat mammary tumour response to chemotherapy using the apparent diffusion coefficient of tissue water as determined by diffusion-weighted 1H-NMR spectroscopy in vivo. Magma. 1999;8:20–6.PubMed Lemaire L, Howe FA, Rodrigues LM, Griffiths JR. Assessment of induced rat mammary tumour response to chemotherapy using the apparent diffusion coefficient of tissue water as determined by diffusion-weighted 1H-NMR spectroscopy in vivo. Magma. 1999;8:20–6.PubMed
25.
go back to reference Dzik-Jurasz A, Domenig C, George M, Wolber J, Padhani A, Brown G, et al. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet. 2002;360:307–8.CrossRefPubMed Dzik-Jurasz A, Domenig C, George M, Wolber J, Padhani A, Brown G, et al. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet. 2002;360:307–8.CrossRefPubMed
26.
go back to reference DeVries AF, Kremser C, Hein PA, Griebel J, Krezcy A, Ofner D, et al. Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int J Radiat Oncol Biol Phys. 2003;56:958–65.CrossRefPubMed DeVries AF, Kremser C, Hein PA, Griebel J, Krezcy A, Ofner D, et al. Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int J Radiat Oncol Biol Phys. 2003;56:958–65.CrossRefPubMed
27.
go back to reference Cui Y, Zhang XP, Sun YS, Tang L, Shen L. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology. 2008;248:894–900.CrossRefPubMed Cui Y, Zhang XP, Sun YS, Tang L, Shen L. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology. 2008;248:894–900.CrossRefPubMed
28.
go back to reference Li SP, Padhani AR. Tumor response assessments with diffusion and perfusion. J Magn Reson Imaging. 2012;35(4):745–63.CrossRefPubMed Li SP, Padhani AR. Tumor response assessments with diffusion and perfusion. J Magn Reson Imaging. 2012;35(4):745–63.CrossRefPubMed
29.
go back to reference Nakamura K, Joja I, Kodama J, Hongo A, Hiramatsu Y. Measurement of SUVmax plus ADCmin of the primary tumor is a predictor of prognosis in patients with cervical cancer. Eur J Nucl Med Mol Imaging. 2012;39:283–90.CrossRefPubMed Nakamura K, Joja I, Kodama J, Hongo A, Hiramatsu Y. Measurement of SUVmax plus ADCmin of the primary tumor is a predictor of prognosis in patients with cervical cancer. Eur J Nucl Med Mol Imaging. 2012;39:283–90.CrossRefPubMed
30.
go back to reference Hoogendam JP, Klerkx WM, de Kort GA, Bipat S, Zweemer RP, Sie-Go DM, et al. The influence of the b-value combination on apparent diffusion coefficient based differentiation between malignant and benign tissue in cervical cancer. J Magn Reson Imaging. 2010;32:376–82.CrossRefPubMed Hoogendam JP, Klerkx WM, de Kort GA, Bipat S, Zweemer RP, Sie-Go DM, et al. The influence of the b-value combination on apparent diffusion coefficient based differentiation between malignant and benign tissue in cervical cancer. J Magn Reson Imaging. 2010;32:376–82.CrossRefPubMed
31.
go back to reference Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol. 2007;165(6):710–8.CrossRefPubMed Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol. 2007;165(6):710–8.CrossRefPubMed
32.
go back to reference Park JJ, Kim CK, Park SY, Simonetti AW, Kim E, Park BK, et al. Assessment of early response to concurrent chemoradiotherapy in cervical cancer: value of diffusion-weighted and dynamic contrast-enhanced MR imaging. Magn Reson Imaging. 2014;32:993–1000.CrossRefPubMed Park JJ, Kim CK, Park SY, Simonetti AW, Kim E, Park BK, et al. Assessment of early response to concurrent chemoradiotherapy in cervical cancer: value of diffusion-weighted and dynamic contrast-enhanced MR imaging. Magn Reson Imaging. 2014;32:993–1000.CrossRefPubMed
33.
go back to reference Nakamura K, Joja I, Nagasaka T, Fukushima C, Kusumoto T, Seki N, et al. The mean apparent diffusion coefficient value (ADCmean) on primary cervical cancer is a predictive marker for disease recurrence. Gynecol Oncol. 2012;127:478–83.CrossRefPubMed Nakamura K, Joja I, Nagasaka T, Fukushima C, Kusumoto T, Seki N, et al. The mean apparent diffusion coefficient value (ADCmean) on primary cervical cancer is a predictive marker for disease recurrence. Gynecol Oncol. 2012;127:478–83.CrossRefPubMed
Metadata
Title
Pre-treatment MRI minimum apparent diffusion coefficient value is a potential prognostic imaging biomarker in cervical cancer patients treated with definitive chemoradiation
Authors
Daniel Grossi Marconi
Jose Humberto Tavares Guerreiro Fregnani
Rodrigo Ribeiro Rossini
Ana Karina Borges Junqueira Netto
Fabiano Rubião Lucchesi
Audrey Tieko Tsunoda
Mitchell Kamrava
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2016
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2619-0

Other articles of this Issue 1/2016

BMC Cancer 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine