Skip to main content
Top
Published in: BMC Infectious Diseases 1/2024

Open Access 01-12-2024 | COVID-19 | Research

Polymorphisms of IFN signaling genes and FOXP4 influence the severity of COVID-19

Authors: Feng Zhang, Pingping Zhou, Liangliang Wang, Xinzhong Liao, Xuejie Liu, Changwen Ke, Simin Wen, Yuelong Shu

Published in: BMC Infectious Diseases | Issue 1/2024

Login to get access

Abstract

Background

The clinical manifestations of COVID-19 range from asymptomatic, mild to moderate, severe, and critical disease. Host genetic variants were recognized to affect the disease severity. However, the genetic landscape differs among various populations. Therefore, we explored the variants associated with COVID-19 severity in the Guangdong population.

Methods

A total of 314 subjects were selected, of which the severe and critical COVID-19 patients were defined as “cases”, and the mild and moderate patients were defined as “control”. Twenty-two variants in interferon-related genes and FOXP4 were genotyped using the MassARRAY technology platform.

Results

IFN signaling gene MX1 rs17000900 CA + AA genotype was correlated with a reduced risk of severe COVID-19 in males (P = 0.001, OR = 0.050, 95%CI = 0.008–0.316). The AT haplotype comprised of MX1 rs17000900 and rs2071430 was more likely to protect against COVID-19 severity (P = 6.3E-03). FOXP4 rs1886814 CC genotype (P = 0.001, OR = 3.747, 95%CI = 1.746–8.043) and rs2894439 GA + AA genotype (P = 0.001, OR = 5.703, 95% CI = 2.045–15.903) were correlated with increased risk of severe COVID-19. Haplotype CA comprised of rs1886814 and rs2894439 was found to be correlated with adverse outcomes (P = 7.0E-04). FOXP4 rs1886814 CC (P = 0.0004) and rs2894439 GA + AA carriers had higher neutralizing antibody titers (P = 0.0018). The CA + AA genotype of MX1 rs17000900 tended to be correlated with lower neutralizing antibody titers than CC genotype (P = 0.0663), but the difference was not statistically significant.

Conclusion

Our study found a possible association between MX1 and FOXP4 polymorphisms and the severity of COVID-19. Distinguishing high-risk patients who develop severe COVID-19 will provide clues for early intervention and individual treatment strategies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.CrossRefPubMedPubMedCentral Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.CrossRefPubMedPubMedCentral
2.
go back to reference Scully EP, Haverfield J, Ursin RL, Tannenbaum C, Klein SL. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat Rev Immunol. 2020;20(7):442–7.CrossRefPubMedPubMedCentral Scully EP, Haverfield J, Ursin RL, Tannenbaum C, Klein SL. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat Rev Immunol. 2020;20(7):442–7.CrossRefPubMedPubMedCentral
3.
go back to reference Gasmi A, Peana M, Pivina L, Srinath S, Gasmi Benahmed A, Semenova Y, Menzel A, Dadar M, Bjørklund G. Interrelations between COVID-19 and other disorders. Clin Immunol. 2021;224:108651.CrossRefPubMed Gasmi A, Peana M, Pivina L, Srinath S, Gasmi Benahmed A, Semenova Y, Menzel A, Dadar M, Bjørklund G. Interrelations between COVID-19 and other disorders. Clin Immunol. 2021;224:108651.CrossRefPubMed
4.
go back to reference Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P, Fernández J, Prati D, Baselli G, Asselta R, et al. Genomewide association study of severe Covid-19 with respiratory failure. N Engl J Med. 2020;383(16):1522–34.CrossRefPubMed Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P, Fernández J, Prati D, Baselli G, Asselta R, et al. Genomewide association study of severe Covid-19 with respiratory failure. N Engl J Med. 2020;383(16):1522–34.CrossRefPubMed
5.
go back to reference Initiative TC-HG. Mapping the human genetic architecture of COVID-19. Nature. 2021;600(7889):472–7.CrossRef Initiative TC-HG. Mapping the human genetic architecture of COVID-19. Nature. 2021;600(7889):472–7.CrossRef
6.
go back to reference Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, Walker S, Parkinson N, Fourman MH, Russell CD, et al. Genetic mechanisms of critical illness in COVID-19. Nature. 2021;591(7848):92–8.CrossRefPubMed Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, Walker S, Parkinson N, Fourman MH, Russell CD, et al. Genetic mechanisms of critical illness in COVID-19. Nature. 2021;591(7848):92–8.CrossRefPubMed
7.
go back to reference Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, Ogishi M, Sabli IKD, Hodeib S, Korol C, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570.CrossRefPubMedPubMedCentral Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, Ogishi M, Sabli IKD, Hodeib S, Korol C, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570.CrossRefPubMedPubMedCentral
9.
go back to reference China NHCotPsRo. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7). Chin Med J (Engl). 2020;133(9):1087–95.CrossRef China NHCotPsRo. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7). Chin Med J (Engl). 2020;133(9):1087–95.CrossRef
10.
go back to reference Zeberg H, Pääbo S. A genomic region associated with protection against severe COVID-19 is inherited from Neandertals. Proc Natl Acad Sci U S A. 2021;118(9):e2026309118.CrossRefPubMedPubMedCentral Zeberg H, Pääbo S. A genomic region associated with protection against severe COVID-19 is inherited from Neandertals. Proc Natl Acad Sci U S A. 2021;118(9):e2026309118.CrossRefPubMedPubMedCentral
11.
go back to reference Haller O, Staeheli P, Schwemmle M, Kochs G. Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends Microbiol. 2015;23(3):154–63.CrossRefPubMed Haller O, Staeheli P, Schwemmle M, Kochs G. Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends Microbiol. 2015;23(3):154–63.CrossRefPubMed
12.
go back to reference Graf L, Dick A, Sendker F, Barth E, Marz M, Daumke O, Kochs G. Effects of allelic variations in the human myxovirus resistance protein A on its antiviral activity. J Biol Chem. 2018;293(9):3056–72.CrossRefPubMedPubMedCentral Graf L, Dick A, Sendker F, Barth E, Marz M, Daumke O, Kochs G. Effects of allelic variations in the human myxovirus resistance protein A on its antiviral activity. J Biol Chem. 2018;293(9):3056–72.CrossRefPubMedPubMedCentral
13.
go back to reference Chen Y, Graf L, Chen T, Liao Q, Bai T, Petric PP, Zhu W, Yang L, Dong J, Lu J, et al. Rare variant MX1 alleles increase human susceptibility to zoonotic H7N9 influenza virus. Science. 2021;373(6557):918–22.ADSCrossRefPubMed Chen Y, Graf L, Chen T, Liao Q, Bai T, Petric PP, Zhu W, Yang L, Dong J, Lu J, et al. Rare variant MX1 alleles increase human susceptibility to zoonotic H7N9 influenza virus. Science. 2021;373(6557):918–22.ADSCrossRefPubMed
14.
go back to reference Hijikata M, Mishiro S, Miyamoto C, Furuichi Y, Hashimoto M, Ohta Y. Genetic polymorphism of the MxA gene promoter and interferon responsiveness of hepatitis C patients: revisited by analyzing two SNP sites (-123 and -88) in vivo and in vitro. Intervirology. 2001;44(6):379–82.CrossRefPubMed Hijikata M, Mishiro S, Miyamoto C, Furuichi Y, Hashimoto M, Ohta Y. Genetic polymorphism of the MxA gene promoter and interferon responsiveness of hepatitis C patients: revisited by analyzing two SNP sites (-123 and -88) in vivo and in vitro. Intervirology. 2001;44(6):379–82.CrossRefPubMed
15.
go back to reference Zhang X, Xu H, Chen X, Li X, Wang X, Ding S, Zhang R, Liu L, He C, Zhuang L, et al. Association of functional polymorphisms in the MxA gene with susceptibility to enterovirus 71 infection. Hum Genet. 2014;133(2):187–97.CrossRefPubMed Zhang X, Xu H, Chen X, Li X, Wang X, Ding S, Zhang R, Liu L, He C, Zhuang L, et al. Association of functional polymorphisms in the MxA gene with susceptibility to enterovirus 71 infection. Hum Genet. 2014;133(2):187–97.CrossRefPubMed
16.
go back to reference Hamano E, Hijikata M, Itoyama S, Quy T, Phi NC, Long HT, Ha LD, Ban VV, Matsushita I, Yanai H, et al. Polymorphisms of interferon-inducible genes OAS-1 and MxA associated with SARS in the Vietnamese population. Biochem Biophys Res Commun. 2005;329(4):1234–9.CrossRefPubMedPubMedCentral Hamano E, Hijikata M, Itoyama S, Quy T, Phi NC, Long HT, Ha LD, Ban VV, Matsushita I, Yanai H, et al. Polymorphisms of interferon-inducible genes OAS-1 and MxA associated with SARS in the Vietnamese population. Biochem Biophys Res Commun. 2005;329(4):1234–9.CrossRefPubMedPubMedCentral
17.
go back to reference He J, Feng D, de Vlas SJ, Wang H, Fontanet A, Zhang P, Plancoulaine S, Tang F, Zhan L, Yang H, et al. Association of SARS susceptibility with single nucleic acid polymorphisms of OAS1 and MxA genes: a case-control study. BMC Infect Dis. 2006;6:106.CrossRefPubMedPubMedCentral He J, Feng D, de Vlas SJ, Wang H, Fontanet A, Zhang P, Plancoulaine S, Tang F, Zhan L, Yang H, et al. Association of SARS susceptibility with single nucleic acid polymorphisms of OAS1 and MxA genes: a case-control study. BMC Infect Dis. 2006;6:106.CrossRefPubMedPubMedCentral
18.
go back to reference Ching JC, Chan KY, Lee EH, Xu MS, Ting CK, So TM, Sham PC, Leung GM, Peiris JS, Khoo US. Significance of the myxovirus resistance A (MxA) gene -123C>a single-nucleotide polymorphism in suppressed interferon beta induction of severe acute respiratory syndrome coronavirus infection. J Infect Dis. 2010;201(12):1899–908.CrossRefPubMed Ching JC, Chan KY, Lee EH, Xu MS, Ting CK, So TM, Sham PC, Leung GM, Peiris JS, Khoo US. Significance of the myxovirus resistance A (MxA) gene -123C>a single-nucleotide polymorphism in suppressed interferon beta induction of severe acute respiratory syndrome coronavirus infection. J Infect Dis. 2010;201(12):1899–908.CrossRefPubMed
19.
go back to reference Verhelst J, Parthoens E, Schepens B, Fiers W, Saelens X. Interferon-inducible protein Mx1 inhibits influenza virus by interfering with functional viral ribonucleoprotein complex assembly. J Virol. 2012;86(24):13445–55.CrossRefPubMedPubMedCentral Verhelst J, Parthoens E, Schepens B, Fiers W, Saelens X. Interferon-inducible protein Mx1 inhibits influenza virus by interfering with functional viral ribonucleoprotein complex assembly. J Virol. 2012;86(24):13445–55.CrossRefPubMedPubMedCentral
20.
go back to reference Bizzotto J, Sanchis P, Abbate M, Lage-Vickers S, Lavignolle R, Toro A, Olszevicki S, Sabater A, Cascardo F, Vazquez E, et al. SARS-CoV-2 infection boosts MX1 antiviral effector in COVID-19 patients. iScience. 2020;23(10):101585.ADSCrossRefPubMedPubMedCentral Bizzotto J, Sanchis P, Abbate M, Lage-Vickers S, Lavignolle R, Toro A, Olszevicki S, Sabater A, Cascardo F, Vazquez E, et al. SARS-CoV-2 infection boosts MX1 antiviral effector in COVID-19 patients. iScience. 2020;23(10):101585.ADSCrossRefPubMedPubMedCentral
21.
go back to reference Andolfo I, Russo R, Lasorsa VA, Cantalupo S, Rosato BE, Bonfiglio F, Frisso G, Abete P, Cassese GM, Servillo G, et al. Common variants at 21q22.3 locus influence MX1 and TMPRSS2 gene expression and susceptibility to severe COVID-19. Science. 2021;24(4):102322. Andolfo I, Russo R, Lasorsa VA, Cantalupo S, Rosato BE, Bonfiglio F, Frisso G, Abete P, Cassese GM, Servillo G, et al. Common variants at 21q22.3 locus influence MX1 and TMPRSS2 gene expression and susceptibility to severe COVID-19. Science. 2021;24(4):102322.
22.
go back to reference Snijders Blok L, Vino A, den Hoed J, Underhill HR, Monteil D, Li H, Reynoso Santos FJ, Chung WK, Amaral MD, Schnur RE, et al. Heterozygous variants that disturb the transcriptional repressor activity of FOXP4 cause a developmental disorder with speech/language delays and multiple congenital abnormalities. Genet Med. 2021;23(3):534–42.CrossRefPubMed Snijders Blok L, Vino A, den Hoed J, Underhill HR, Monteil D, Li H, Reynoso Santos FJ, Chung WK, Amaral MD, Schnur RE, et al. Heterozygous variants that disturb the transcriptional repressor activity of FOXP4 cause a developmental disorder with speech/language delays and multiple congenital abnormalities. Genet Med. 2021;23(3):534–42.CrossRefPubMed
23.
go back to reference Yang T, Li H, Thakur A, Chen T, Xue J, Li D, Chen M. FOXP4 modulates tumor growth and independently associates with miR-138 in non-small cell lung cancer cells. Tumour Biol. 2015;36(10):8185–91.CrossRefPubMed Yang T, Li H, Thakur A, Chen T, Xue J, Li D, Chen M. FOXP4 modulates tumor growth and independently associates with miR-138 in non-small cell lung cancer cells. Tumour Biol. 2015;36(10):8185–91.CrossRefPubMed
24.
go back to reference Lu MM, Li S, Yang H, Morrisey EE. Foxp4: a novel member of the Foxp subfamily of winged-helix genes co-expressed with Foxp1 and Foxp2 in pulmonary and gut tissues. Mech Dev. 2002;119(Suppl 1):S197-202.CrossRefPubMed Lu MM, Li S, Yang H, Morrisey EE. Foxp4: a novel member of the Foxp subfamily of winged-helix genes co-expressed with Foxp1 and Foxp2 in pulmonary and gut tissues. Mech Dev. 2002;119(Suppl 1):S197-202.CrossRefPubMed
25.
go back to reference Li S, Wang Y, Zhang Y, Lu MM, DeMayo FJ, Dekker JD, Tucker PW, Morrisey EE. Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2. Development. 2012;139(14):2500–9.CrossRefPubMedPubMedCentral Li S, Wang Y, Zhang Y, Lu MM, DeMayo FJ, Dekker JD, Tucker PW, Morrisey EE. Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2. Development. 2012;139(14):2500–9.CrossRefPubMedPubMedCentral
26.
go back to reference Wiehagen KR, Corbo-Rodgers E, Li S, Staub ES, Hunter CA, Morrisey EE, Maltzman JS. Foxp4 is dispensable for T cell development, but required for robust recall responses. PLoS One. 2012;7(8):e42273.ADSCrossRefPubMedPubMedCentral Wiehagen KR, Corbo-Rodgers E, Li S, Staub ES, Hunter CA, Morrisey EE, Maltzman JS. Foxp4 is dispensable for T cell development, but required for robust recall responses. PLoS One. 2012;7(8):e42273.ADSCrossRefPubMedPubMedCentral
27.
go back to reference Braun J, Loyal L, Frentsch M, Wendisch D, Georg P, Kurth F, Hippenstiel S, Dingeldey M, Kruse B, Fauchere F, et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature. 2020;587(7833):270–4.ADSCrossRefPubMed Braun J, Loyal L, Frentsch M, Wendisch D, Georg P, Kurth F, Hippenstiel S, Dingeldey M, Kruse B, Fauchere F, et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature. 2020;587(7833):270–4.ADSCrossRefPubMed
28.
go back to reference Wu X, Xiao Y, Zhou Y, Zhou Z, Yan W. LncRNA FOXP4-AS1 is activated by PAX5 and promotes the growth of prostate cancer by sequestering miR-3184-5p to upregulate FOXP4. Cell Death Dis. 2019;10(7):472.CrossRefPubMedPubMedCentral Wu X, Xiao Y, Zhou Y, Zhou Z, Yan W. LncRNA FOXP4-AS1 is activated by PAX5 and promotes the growth of prostate cancer by sequestering miR-3184-5p to upregulate FOXP4. Cell Death Dis. 2019;10(7):472.CrossRefPubMedPubMedCentral
29.
go back to reference D’Antonio M, Nguyen JP, Arthur TD, Matsui H, D’Antonio-Chronowska A, Frazer KA. SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues. Cell Rep. 2021;37(7):110020.CrossRefPubMedPubMedCentral D’Antonio M, Nguyen JP, Arthur TD, Matsui H, D’Antonio-Chronowska A, Frazer KA. SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues. Cell Rep. 2021;37(7):110020.CrossRefPubMedPubMedCentral
30.
go back to reference Manichaikul A, Wang XQ, Sun L, Dupuis J, Borczuk AC, Nguyen JN, Raghu G, Hoffman EA, Onengut-Gumuscu S, Farber EA, et al. Genome-wide association study of subclinical interstitial lung disease in MESA. Respir Res. 2017;18(1):97.CrossRefPubMedPubMedCentral Manichaikul A, Wang XQ, Sun L, Dupuis J, Borczuk AC, Nguyen JN, Raghu G, Hoffman EA, Onengut-Gumuscu S, Farber EA, et al. Genome-wide association study of subclinical interstitial lung disease in MESA. Respir Res. 2017;18(1):97.CrossRefPubMedPubMedCentral
31.
go back to reference Wu P, Ding L, Li X, Liu S, Cheng F, He Q, Xiao M, Wu P, Hou H, Jiang M, et al. Trans-ethnic genome-wide association study of severe COVID-19. Commun Biol. 2021;4(1):1034.CrossRefPubMedPubMedCentral Wu P, Ding L, Li X, Liu S, Cheng F, He Q, Xiao M, Wu P, Hou H, Jiang M, et al. Trans-ethnic genome-wide association study of severe COVID-19. Commun Biol. 2021;4(1):1034.CrossRefPubMedPubMedCentral
32.
go back to reference Tea F, Ospina Stella A, Aggarwal A, Ross Darley D, Pilli D, Vitale D, Merheb V, Lee FXZ, Cunningham P, Walker GJ, et al. SARS-CoV-2 neutralizing antibodies: longevity, breadth, and evasion by emerging viral variants. PLoS Med. 2021;18(7):e1003656.CrossRefPubMedPubMedCentral Tea F, Ospina Stella A, Aggarwal A, Ross Darley D, Pilli D, Vitale D, Merheb V, Lee FXZ, Cunningham P, Walker GJ, et al. SARS-CoV-2 neutralizing antibodies: longevity, breadth, and evasion by emerging viral variants. PLoS Med. 2021;18(7):e1003656.CrossRefPubMedPubMedCentral
33.
go back to reference Garcia-Beltran WF, Lam EC, Astudillo MG, Yang D, Miller TE, Feldman J, Hauser BM, Caradonna TM, Clayton KL, Nitido AD, et al. COVID-19-neutralizing antibodies predict disease severity and survival. Cell. 2021;184(2):476-488.e411.CrossRefPubMed Garcia-Beltran WF, Lam EC, Astudillo MG, Yang D, Miller TE, Feldman J, Hauser BM, Caradonna TM, Clayton KL, Nitido AD, et al. COVID-19-neutralizing antibodies predict disease severity and survival. Cell. 2021;184(2):476-488.e411.CrossRefPubMed
34.
go back to reference Zhou S, Butler-Laporte G, Nakanishi T, Morrison DR, Afilalo J, Afilalo M, Laurent L, Pietzner M, Kerrison N, Zhao K, et al. A Neanderthal OAS1 isoform protects individuals of European ancestry against COVID-19 susceptibility and severity. Nat Med. 2021;27(4):659–67.CrossRefPubMed Zhou S, Butler-Laporte G, Nakanishi T, Morrison DR, Afilalo J, Afilalo M, Laurent L, Pietzner M, Kerrison N, Zhao K, et al. A Neanderthal OAS1 isoform protects individuals of European ancestry against COVID-19 susceptibility and severity. Nat Med. 2021;27(4):659–67.CrossRefPubMed
35.
go back to reference Banday AR, Stanifer ML, Florez-Vargas O, Onabajo OO, Papenberg BW, Zahoor MA, Mirabello L, Ring TJ, Lee CH, Albert PS, et al. Genetic regulation of OAS1 nonsense-mediated decay underlies association with COVID-19 hospitalization in patients of European and African ancestries. Nat Genet. 2022;54(8):1103–16.CrossRefPubMedPubMedCentral Banday AR, Stanifer ML, Florez-Vargas O, Onabajo OO, Papenberg BW, Zahoor MA, Mirabello L, Ring TJ, Lee CH, Albert PS, et al. Genetic regulation of OAS1 nonsense-mediated decay underlies association with COVID-19 hospitalization in patients of European and African ancestries. Nat Genet. 2022;54(8):1103–16.CrossRefPubMedPubMedCentral
37.
go back to reference Ho JQ, Sepand MR, Bigdelou B, Shekarian T, Esfandyarpour R, Chauhan P, Serpooshan V, Beura LK, Hutter G, Zanganeh S. The immune response to COVID-19: does sex matter? Immunology. 2022;166(4):429–43.CrossRefPubMed Ho JQ, Sepand MR, Bigdelou B, Shekarian T, Esfandyarpour R, Chauhan P, Serpooshan V, Beura LK, Hutter G, Zanganeh S. The immune response to COVID-19: does sex matter? Immunology. 2022;166(4):429–43.CrossRefPubMed
38.
go back to reference Souyris M, Cenac C, Azar P, Daviaud D, Canivet A, Grunenwald S, Pienkowski C, Chaumeil J, Mejía JE, Guéry JC. TLR7 escapes X chromosome inactivation in immune cells. Sci Immunol. 2018;3(19):eaap8855.CrossRefPubMed Souyris M, Cenac C, Azar P, Daviaud D, Canivet A, Grunenwald S, Pienkowski C, Chaumeil J, Mejía JE, Guéry JC. TLR7 escapes X chromosome inactivation in immune cells. Sci Immunol. 2018;3(19):eaap8855.CrossRefPubMed
39.
go back to reference Wu Z, McGoogan JM. Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for disease control and prevention. JAMA. 2020;323(13):1239–42.CrossRefPubMed Wu Z, McGoogan JM. Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for disease control and prevention. JAMA. 2020;323(13):1239–42.CrossRefPubMed
Metadata
Title
Polymorphisms of IFN signaling genes and FOXP4 influence the severity of COVID-19
Authors
Feng Zhang
Pingping Zhou
Liangliang Wang
Xinzhong Liao
Xuejie Liu
Changwen Ke
Simin Wen
Yuelong Shu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2024
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-024-09040-6

Other articles of this Issue 1/2024

BMC Infectious Diseases 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine