Skip to main content
Top
Published in: BMC Geriatrics 1/2018

Open Access 01-12-2018 | Research article

Relationship of muscle function to circulating myostatin, follistatin and GDF11 in older women and men

Authors: Elizaveta Fife, Joanna Kostka, Łukasz Kroc, Agnieszka Guligowska, Małgorzata Pigłowska, Bartłomiej Sołtysik, Agnieszka Kaufman-Szymczyk, Krystyna Fabianowska-Majewska, Tomasz Kostka

Published in: BMC Geriatrics | Issue 1/2018

Login to get access

Abstract

Background

Myostatin, its inhibitor follistatin, and growth/differentiation factor 11 (GDF11) have been proposed as factors that could potentially modify biological aging. The study aimed to test whether there is a relationship between these plasma circulating proteins and muscle strength, power and optimal shortening velocity (υopt) of older adults.

Methods

The cross-sectional study included 56 women and 45 men aged 60 years and older. Every participant underwent examination which included anthropometric and bioimpedance analysis measurements, functional and cognitive performance tests, muscle strength of upper and lower extremities, muscle power testing with two different methods and blood analyses.

Results

Women had higher plasma levels of myostatin and GDF11 than men. Men had higher plasma level of follistatin than women. In women, plasma level of myostatin was negatively correlated with left handgrip strength and υopt. Follistatin was negatively correlated with maximum power output (Pmax), power relative to kg of body mass (Pmax∙kg− 1) (friction-loaded cycle ergometer) and power at 70% of the 1-repetition maximum (1RM) strength value (P70%) of leg press (Keiser pneumatic resistance training equipment), and positively correlated with the Timed Up & Go (TUG) test. GDF11 was negatively correlated with body mass, body mass index, waist circumference, fat mass and the percentage of body fat. In men, there were no significant correlations observed between circulating plasma proteins and muscle function measures.

Conclusions

The circulating plasma myostatin and follistatin are negatively associated with muscle function in older women. There is stronger relationship between these proteins and muscle power than muscle strength. GDF11 has a higher association with the body mass and composition than muscle function in older women.
Literature
1.
go back to reference Schafer MJ, Atkinson EJ, Vanderboom PM, Kotajarvi B, White TA, et al. Quantification of GDF11 and Myostatin in human aging and cardiovascular disease. Cell Metab. 2016;23(6):1207–15.CrossRefPubMedPubMedCentral Schafer MJ, Atkinson EJ, Vanderboom PM, Kotajarvi B, White TA, et al. Quantification of GDF11 and Myostatin in human aging and cardiovascular disease. Cell Metab. 2016;23(6):1207–15.CrossRefPubMedPubMedCentral
2.
go back to reference Hofmann M, Halper B, Oesen S, Franzke B, Stuparits P, et al. Serum concentrations of insulin-like growth factor-1, members of the TGF-beta superfamily and follistatin do not reflect different stages of dynapenia and sarcopenia in elderly women. Exp Gerontol. 2015;64:35–45.CrossRefPubMed Hofmann M, Halper B, Oesen S, Franzke B, Stuparits P, et al. Serum concentrations of insulin-like growth factor-1, members of the TGF-beta superfamily and follistatin do not reflect different stages of dynapenia and sarcopenia in elderly women. Exp Gerontol. 2015;64:35–45.CrossRefPubMed
3.
go back to reference Harper SC, Brack A, MacDonnell S, Franti M, Olwin BB, et al. Is growth differentiation factor 11 a realistic therapeutic for aging-dependent muscle defects? Circulat Res. 2016;118(7):1143–50.CrossRefPubMed Harper SC, Brack A, MacDonnell S, Franti M, Olwin BB, et al. Is growth differentiation factor 11 a realistic therapeutic for aging-dependent muscle defects? Circulat Res. 2016;118(7):1143–50.CrossRefPubMed
4.
go back to reference Hittel DS, Axelson M, Sarna N, Shearer J, Huffman KM, et al. Myostatin decreases with aerobic exercise and associates with insulin resistance. Med Sci Sports Exerc. 2010;42(11):2023–9.CrossRefPubMedPubMedCentral Hittel DS, Axelson M, Sarna N, Shearer J, Huffman KM, et al. Myostatin decreases with aerobic exercise and associates with insulin resistance. Med Sci Sports Exerc. 2010;42(11):2023–9.CrossRefPubMedPubMedCentral
5.
go back to reference White TA, LeBrasseur NK. Myostatin and sarcopenia: opportunities and challenges - a mini-review. Gerontology. 2014;60(4):289–93.CrossRefPubMed White TA, LeBrasseur NK. Myostatin and sarcopenia: opportunities and challenges - a mini-review. Gerontology. 2014;60(4):289–93.CrossRefPubMed
6.
go back to reference Hansen J, Rinnov A, Krogh-Madsen R, Fischer CP, Andreasen AS, et al. Plasma follistatin is elevated in patients with type 2 diabetes: relationship to hyperglycemia, hyperinsulinemia, and systemic low-grade inflammation. Diabetes Metab Res Rev. 2013;29(6):463–72.CrossRefPubMed Hansen J, Rinnov A, Krogh-Madsen R, Fischer CP, Andreasen AS, et al. Plasma follistatin is elevated in patients with type 2 diabetes: relationship to hyperglycemia, hyperinsulinemia, and systemic low-grade inflammation. Diabetes Metab Res Rev. 2013;29(6):463–72.CrossRefPubMed
7.
go back to reference Hansen J, Brandt C, Nielsen AR, Hojman P, Whitham M, et al. Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. Endocrinology. 2011;152(1):164–71.CrossRefPubMed Hansen J, Brandt C, Nielsen AR, Hojman P, Whitham M, et al. Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. Endocrinology. 2011;152(1):164–71.CrossRefPubMed
8.
go back to reference Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN, et al. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab. 2015;22(1):164–74.CrossRefPubMedPubMedCentral Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN, et al. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab. 2015;22(1):164–74.CrossRefPubMedPubMedCentral
10.
go back to reference Ivey FM, Roth SM, Ferrell RE, Tracy BL, Lemmer JT, et al. Effects of age, gender, and myostatin genotype on the hypertrophic response to heavy resistance strength training. J Gerontol A Biol Sci Med Sci. 2000;55(11):M641–8.CrossRefPubMed Ivey FM, Roth SM, Ferrell RE, Tracy BL, Lemmer JT, et al. Effects of age, gender, and myostatin genotype on the hypertrophic response to heavy resistance strength training. J Gerontol A Biol Sci Med Sci. 2000;55(11):M641–8.CrossRefPubMed
11.
go back to reference Pua YH, Ong PH, Clark RA, Matcher DB, Lim EC. Falls efficacy, postural balance, and risk for falls in older adults with falls-related emergency department visits: prospective cohort study. BMC Geriatr. 2017;17(1):291.CrossRefPubMedPubMedCentral Pua YH, Ong PH, Clark RA, Matcher DB, Lim EC. Falls efficacy, postural balance, and risk for falls in older adults with falls-related emergency department visits: prospective cohort study. BMC Geriatr. 2017;17(1):291.CrossRefPubMedPubMedCentral
12.
go back to reference Fielding RA, LeBrasseur NK, Cuoco A, Bean J, Mizer K, et al. High-velocity resistance training increases skeletal muscle peak power in older women. J Am Geriatr Soc. 2002;50(4):655–62.CrossRefPubMed Fielding RA, LeBrasseur NK, Cuoco A, Bean J, Mizer K, et al. High-velocity resistance training increases skeletal muscle peak power in older women. J Am Geriatr Soc. 2002;50(4):655–62.CrossRefPubMed
13.
go back to reference Herman S, Kiely DK, Leveille S, O'Neill E, Cyberey S, et al. Upper and lower limb muscle power relationships in mobility-limited older adults. J Gerontol A Biol Sci Med Sci. 2005;60(4):476–80.CrossRefPubMed Herman S, Kiely DK, Leveille S, O'Neill E, Cyberey S, et al. Upper and lower limb muscle power relationships in mobility-limited older adults. J Gerontol A Biol Sci Med Sci. 2005;60(4):476–80.CrossRefPubMed
14.
go back to reference Bean JF, Kiely DK, Herman S, Leveille SG, Mizer K, et al. The relationship between leg power and physical performance in mobility-limited older people. J Am Geriatr Soc. 2002;50(3):461–7.CrossRefPubMed Bean JF, Kiely DK, Herman S, Leveille SG, Mizer K, et al. The relationship between leg power and physical performance in mobility-limited older people. J Am Geriatr Soc. 2002;50(3):461–7.CrossRefPubMed
15.
16.
go back to reference Clémençon M, Hautier CA, Rahmani A, Cornu C, Bonnefoy M. Potential role of optimal velocity as a qualitative factor of physical functional performance in women aged 72 to 96 years. Arch Phys Med Rehabil. 2008;89:1594–9.CrossRefPubMed Clémençon M, Hautier CA, Rahmani A, Cornu C, Bonnefoy M. Potential role of optimal velocity as a qualitative factor of physical functional performance in women aged 72 to 96 years. Arch Phys Med Rehabil. 2008;89:1594–9.CrossRefPubMed
17.
go back to reference Kostka JS, Czernicki JW, Kostka TJ. Association of muscle strength, power, and optimal shortening velocity with functional abilities of women with chronic osteoarthritis participating in a multi-modal exercise program. J Aging Phys Act. 2014;22(4):564–70.CrossRefPubMed Kostka JS, Czernicki JW, Kostka TJ. Association of muscle strength, power, and optimal shortening velocity with functional abilities of women with chronic osteoarthritis participating in a multi-modal exercise program. J Aging Phys Act. 2014;22(4):564–70.CrossRefPubMed
18.
go back to reference de Vos NJ, Singh NA, Ross DA, Stavrinos TM, Orr R, et al. Optimal load for increasing muscle power during explosive resistance training in older adults. J Gerontol A Biol Sci Med Sci. 2005;60(5):638–47.CrossRefPubMed de Vos NJ, Singh NA, Ross DA, Stavrinos TM, Orr R, et al. Optimal load for increasing muscle power during explosive resistance training in older adults. J Gerontol A Biol Sci Med Sci. 2005;60(5):638–47.CrossRefPubMed
19.
go back to reference Durnin J, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Brit J Nutr. 1974;32(01):77–97.CrossRefPubMed Durnin J, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Brit J Nutr. 1974;32(01):77–97.CrossRefPubMed
20.
go back to reference Katz S, Ford AB, Moskowitz RW, Jackson BA, Jaffe MW. Studies of illness in the aged. The index of Adl: a standardized measure of biological and psychosocial function. JAMA. 1963;185:914–9.CrossRefPubMed Katz S, Ford AB, Moskowitz RW, Jackson BA, Jaffe MW. Studies of illness in the aged. The index of Adl: a standardized measure of biological and psychosocial function. JAMA. 1963;185:914–9.CrossRefPubMed
21.
go back to reference Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9(3):179–86.CrossRefPubMed Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9(3):179–86.CrossRefPubMed
22.
go back to reference Podsiadlo D, Richardson S. The timed “up & go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8.CrossRefPubMed Podsiadlo D, Richardson S. The timed “up & go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8.CrossRefPubMed
23.
go back to reference Tinetti ME. Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc. 1986;34(2):119–26.CrossRefPubMed Tinetti ME. Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc. 1986;34(2):119–26.CrossRefPubMed
24.
go back to reference Folstein MF, Robins LN, Helzer JE. The mini-mental state examination. Arch Gen Psychiatry. 1983;40(7):812.CrossRefPubMed Folstein MF, Robins LN, Helzer JE. The mini-mental state examination. Arch Gen Psychiatry. 1983;40(7):812.CrossRefPubMed
25.
go back to reference Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res. 1982;17(1):37–49.CrossRefPubMed Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res. 1982;17(1):37–49.CrossRefPubMed
26.
go back to reference Cuoco A, Callahan DM, Sayers S, Frontera WR, Bean J, et al. Impact of muscle power and force on gait speed in disabled older men and women. J Gerontol A Biol Sci Med Sci. 2004;59(11):1200–6.CrossRefPubMed Cuoco A, Callahan DM, Sayers S, Frontera WR, Bean J, et al. Impact of muscle power and force on gait speed in disabled older men and women. J Gerontol A Biol Sci Med Sci. 2004;59(11):1200–6.CrossRefPubMed
27.
go back to reference Hautier CA, Linossier MT, Belli A, Lacour JR, Arsac LM. Optimal velocity for maximal power production in non-isokinetic cycling is related to muscle fibre type composition. Eur J Appl Physiol Occup Physiol. 1996;74:114–8.CrossRefPubMed Hautier CA, Linossier MT, Belli A, Lacour JR, Arsac LM. Optimal velocity for maximal power production in non-isokinetic cycling is related to muscle fibre type composition. Eur J Appl Physiol Occup Physiol. 1996;74:114–8.CrossRefPubMed
28.
go back to reference Becker C, Lord SR, Studenski SA, Warden SJ, Fielding RA, et al. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised. phase 2 trial Lancet Diabetes Endocrinol. 2015;3(12):948–57.CrossRefPubMed Becker C, Lord SR, Studenski SA, Warden SJ, Fielding RA, et al. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised. phase 2 trial Lancet Diabetes Endocrinol. 2015;3(12):948–57.CrossRefPubMed
29.
30.
go back to reference Yarasheski KE, Bhasin S, Sinha-Hikim I, Pak-Loduca J, Gonzalez-Cadavid NF. Serum myostatin-immunoreactive protein is increased in 60-92 year old women and men with muscle wasting. J Nutr Health Aging. 2002;6(5):343–8.PubMed Yarasheski KE, Bhasin S, Sinha-Hikim I, Pak-Loduca J, Gonzalez-Cadavid NF. Serum myostatin-immunoreactive protein is increased in 60-92 year old women and men with muscle wasting. J Nutr Health Aging. 2002;6(5):343–8.PubMed
31.
go back to reference Ratkevicius A, Joyson A, Selmer I, Dhanani T, Grierson C, et al. Serum concentrations of myostatin and myostatin-interacting proteins do not differ between young and sarcopenic elderly men. J Gerontol A Biol Sci Med Sci. 2011;66(6):620–6.CrossRefPubMed Ratkevicius A, Joyson A, Selmer I, Dhanani T, Grierson C, et al. Serum concentrations of myostatin and myostatin-interacting proteins do not differ between young and sarcopenic elderly men. J Gerontol A Biol Sci Med Sci. 2011;66(6):620–6.CrossRefPubMed
32.
go back to reference Han DS, Chen YM, Lin SY, Chang HH, Huang TM, et al. Serum myostatin levels and grip strength in normal subjects and patients on maintenance haemodialysis. Clin Endocrinol. 2011s;75(6):857–63.CrossRef Han DS, Chen YM, Lin SY, Chang HH, Huang TM, et al. Serum myostatin levels and grip strength in normal subjects and patients on maintenance haemodialysis. Clin Endocrinol. 2011s;75(6):857–63.CrossRef
33.
go back to reference Bergen HRIII, Farr JN, Vanderboom PM, Atkinson EJ, White TA, et al. Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: insights using a new mass spectrometry-based assay. Skelet Muscle. 2015;5:21.CrossRefPubMedPubMedCentral Bergen HRIII, Farr JN, Vanderboom PM, Atkinson EJ, White TA, et al. Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: insights using a new mass spectrometry-based assay. Skelet Muscle. 2015;5:21.CrossRefPubMedPubMedCentral
34.
go back to reference Bowser M, Herberg S, Arounleut P, Shi X, Fulzele S, et al. Effects of the activin A-myostatin-follistatin system on aging bone and muscle progenitor cells. Exp Gerontol. 2013;48(2):290–7.CrossRefPubMed Bowser M, Herberg S, Arounleut P, Shi X, Fulzele S, et al. Effects of the activin A-myostatin-follistatin system on aging bone and muscle progenitor cells. Exp Gerontol. 2013;48(2):290–7.CrossRefPubMed
35.
go back to reference Liaw FY, Kao TW, Fang WH, Han DS, Chi YC, et al. Increased follistatin associated with decreased gait speed among old adults. Eur J Clin Investig. 2016;46(4):321–7.CrossRef Liaw FY, Kao TW, Fang WH, Han DS, Chi YC, et al. Increased follistatin associated with decreased gait speed among old adults. Eur J Clin Investig. 2016;46(4):321–7.CrossRef
36.
go back to reference Binns A, Gray M, Henson AC, Fort IL. Changes in lean mass and serum myostatin with habitual protein intake and high-velocity resistance training. J Nutr Health Aging. 2017;21(10):1111-7. Binns A, Gray M, Henson AC, Fort IL. Changes in lean mass and serum myostatin with habitual protein intake and high-velocity resistance training. J Nutr Health Aging. 2017;21(10):1111-7.
37.
go back to reference Han DS, Chu-Su Y, Chiang CK, Tseng FY, Tseng PH, et al. Serum Myostatin is reduced in individuals with metabolic syndrome. PLoS One. 2014;9(9):e108230.CrossRefPubMedPubMedCentral Han DS, Chu-Su Y, Chiang CK, Tseng FY, Tseng PH, et al. Serum Myostatin is reduced in individuals with metabolic syndrome. PLoS One. 2014;9(9):e108230.CrossRefPubMedPubMedCentral
38.
go back to reference Miyamoto T, Carrero JJ, Qureshi AR, Anderstam B, Heimburger O, et al. Circulating follistatin in patients with chronic kidney disease: implications for muscle strength, bone mineral density, inflammation and survival. Clin J Am Soc Nephrol. 2011;6(5):1001–8.CrossRefPubMedPubMedCentral Miyamoto T, Carrero JJ, Qureshi AR, Anderstam B, Heimburger O, et al. Circulating follistatin in patients with chronic kidney disease: implications for muscle strength, bone mineral density, inflammation and survival. Clin J Am Soc Nephrol. 2011;6(5):1001–8.CrossRefPubMedPubMedCentral
39.
go back to reference Mak RH, Rotwein P. Myostatin and insulin-like growth factors in uremic sarcopenia: the yin and yang in muscle mass regulation. Kidney Int. 2006;70(3):410–2.CrossRefPubMed Mak RH, Rotwein P. Myostatin and insulin-like growth factors in uremic sarcopenia: the yin and yang in muscle mass regulation. Kidney Int. 2006;70(3):410–2.CrossRefPubMed
40.
go back to reference Smith GI, Yoshino J, Reeds DN, Bradley D, Burrows RE, et al. Testosterone and progesterone, but not estradiol, stimulate muscle protein synthesis in postmenopausal women. J Clin Endocrinol Metab. 2014;99(1):256–65.CrossRefPubMed Smith GI, Yoshino J, Reeds DN, Bradley D, Burrows RE, et al. Testosterone and progesterone, but not estradiol, stimulate muscle protein synthesis in postmenopausal women. J Clin Endocrinol Metab. 2014;99(1):256–65.CrossRefPubMed
41.
go back to reference Lakshman KM, Bhasin S, Corcoran C, Collins-Racie LA, Tchistiakova L, et al. Measurement of myostatin concentrations in human serum: circulating concentrations in young and older men and effects of testosterone administration. Mol Cell Endocrinol. 2009;302(1):26–32.CrossRefPubMed Lakshman KM, Bhasin S, Corcoran C, Collins-Racie LA, Tchistiakova L, et al. Measurement of myostatin concentrations in human serum: circulating concentrations in young and older men and effects of testosterone administration. Mol Cell Endocrinol. 2009;302(1):26–32.CrossRefPubMed
42.
go back to reference Willoughby DS, Wilborn CD. Estradiol in females may negate skeletal muscle myostatin mRNA expression and serum myostatin propeptide levels after eccentric muscle contractions. J Sports Sci Med. 2006;5(4):672–81.PubMedPubMedCentral Willoughby DS, Wilborn CD. Estradiol in females may negate skeletal muscle myostatin mRNA expression and serum myostatin propeptide levels after eccentric muscle contractions. J Sports Sci Med. 2006;5(4):672–81.PubMedPubMedCentral
43.
go back to reference Gilson H, Schakman O, Kalista S, Lause P, Tsuchida K, et al. Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. Am J Physiol Endocrinol Metab. 2009;297(1):E157–64.CrossRefPubMed Gilson H, Schakman O, Kalista S, Lause P, Tsuchida K, et al. Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. Am J Physiol Endocrinol Metab. 2009;297(1):E157–64.CrossRefPubMed
44.
go back to reference Lach-Trifilieff E, Minetti GC, Sheppard K, Ibebunjo C, Feige JN, et al. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. Mol Cell Biol. 2014;34(4):606–18.CrossRefPubMedPubMedCentral Lach-Trifilieff E, Minetti GC, Sheppard K, Ibebunjo C, Feige JN, et al. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. Mol Cell Biol. 2014;34(4):606–18.CrossRefPubMedPubMedCentral
45.
go back to reference Loumaye A, de Barsy M, Nachit M, Lause P, Frateur L, et al. Role of Activin a and myostatin in human cancer cachexia. J Clin Endocrinol Metab. 2015;100(5):2030–8.CrossRefPubMed Loumaye A, de Barsy M, Nachit M, Lause P, Frateur L, et al. Role of Activin a and myostatin in human cancer cachexia. J Clin Endocrinol Metab. 2015;100(5):2030–8.CrossRefPubMed
46.
go back to reference Baccarelli A, Morpurgo PS, Corsi A, Vaghi I, Fanelli M, et al. Activin a serum levels and aging of the pituitary-gonadal axis: a cross-sectional study in middle-aged and elderly healthy subjects. Exp Gerontol. 2001;36(8):1403–12.CrossRefPubMed Baccarelli A, Morpurgo PS, Corsi A, Vaghi I, Fanelli M, et al. Activin a serum levels and aging of the pituitary-gonadal axis: a cross-sectional study in middle-aged and elderly healthy subjects. Exp Gerontol. 2001;36(8):1403–12.CrossRefPubMed
47.
go back to reference Hofmann M, Schober-Halper B, Oesen S, Franzke B, Tschan H, et al. Effects of elastic band resistance training and nutritional supplementation on muscle quality and circulating muscle growth and degradation factors of institutionalized elderly women: the Vienna active ageing study (VAAS). Eur J Appl Physiol. 2016;116(5):885–97.CrossRefPubMedPubMedCentral Hofmann M, Schober-Halper B, Oesen S, Franzke B, Tschan H, et al. Effects of elastic band resistance training and nutritional supplementation on muscle quality and circulating muscle growth and degradation factors of institutionalized elderly women: the Vienna active ageing study (VAAS). Eur J Appl Physiol. 2016;116(5):885–97.CrossRefPubMedPubMedCentral
48.
go back to reference Walker RG, Poggioli T, Katsimpardi L, Buchanan SM, Oh J, et al. Biochemistry and biology of GDF11 and Myostatin: similarities, differences and questions for future investigation. Circulat Res. 2016;118(7):1125–42.CrossRefPubMed Walker RG, Poggioli T, Katsimpardi L, Buchanan SM, Oh J, et al. Biochemistry and biology of GDF11 and Myostatin: similarities, differences and questions for future investigation. Circulat Res. 2016;118(7):1125–42.CrossRefPubMed
50.
go back to reference Sinha M, Jang YC, Oh J, Khong D, Wu EY, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014;344(6184):649–52.CrossRefPubMedPubMedCentral Sinha M, Jang YC, Oh J, Khong D, Wu EY, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014;344(6184):649–52.CrossRefPubMedPubMedCentral
51.
go back to reference Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013;153(4):828–39.CrossRefPubMedPubMedCentral Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013;153(4):828–39.CrossRefPubMedPubMedCentral
52.
go back to reference Glass DJ. Elevated GDF11 Is a Risk Factor for Age-Related Frailty and Disease in Humans. Cell Metab. 2016;24(1):7–8.CrossRefPubMed Glass DJ. Elevated GDF11 Is a Risk Factor for Age-Related Frailty and Disease in Humans. Cell Metab. 2016;24(1):7–8.CrossRefPubMed
53.
go back to reference Santiago C, Ruiz JR, Rodriguez-Romo G, Fiuza-Luces C, Yvert T, et al. The K153R polymorphism in the myostatin gene and muscle power phenotypes in young, non-athletic men. PLoS One. 2011;6(1):e16323.CrossRefPubMedPubMedCentral Santiago C, Ruiz JR, Rodriguez-Romo G, Fiuza-Luces C, Yvert T, et al. The K153R polymorphism in the myostatin gene and muscle power phenotypes in young, non-athletic men. PLoS One. 2011;6(1):e16323.CrossRefPubMedPubMedCentral
54.
go back to reference Schirwis E, Agbulut O, Vadrot N, Mouisel E, Hourdé C, et al. The beneficial effect of myostatin deficiency on maximal muscle force and power is attenuated with age. Exp Gerontol. 2013;48(2):183–90.CrossRefPubMed Schirwis E, Agbulut O, Vadrot N, Mouisel E, Hourdé C, et al. The beneficial effect of myostatin deficiency on maximal muscle force and power is attenuated with age. Exp Gerontol. 2013;48(2):183–90.CrossRefPubMed
Metadata
Title
Relationship of muscle function to circulating myostatin, follistatin and GDF11 in older women and men
Authors
Elizaveta Fife
Joanna Kostka
Łukasz Kroc
Agnieszka Guligowska
Małgorzata Pigłowska
Bartłomiej Sołtysik
Agnieszka Kaufman-Szymczyk
Krystyna Fabianowska-Majewska
Tomasz Kostka
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Geriatrics / Issue 1/2018
Electronic ISSN: 1471-2318
DOI
https://doi.org/10.1186/s12877-018-0888-y

Other articles of this Issue 1/2018

BMC Geriatrics 1/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.