Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2018

Open Access 01-12-2018 | Research article

Comparing performance between log-binomial and robust Poisson regression models for estimating risk ratios under model misspecification

Authors: Wansu Chen, Lei Qian, Jiaxiao Shi, Meredith Franklin

Published in: BMC Medical Research Methodology | Issue 1/2018

Login to get access

Abstract

Background

Log-binomial and robust (modified) Poisson regression models are popular approaches to estimate risk ratios for binary response variables. Previous studies have shown that comparatively they produce similar point estimates and standard errors. However, their performance under model misspecification is poorly understood.

Methods

In this simulation study, the statistical performance of the two models was compared when the log link function was misspecified or the response depended on predictors through a non-linear relationship (i.e. truncated response).

Results

Point estimates from log-binomial models were biased when the link function was misspecified or when the probability distribution of the response variable was truncated at the right tail. The percentage of truncated observations was positively associated with the presence of bias, and the bias was larger if the observations came from a population with a lower response rate given that the other parameters being examined were fixed. In contrast, point estimates from the robust Poisson models were unbiased.

Conclusion

Under model misspecification, the robust Poisson model was generally preferable because it provided unbiased estimates of risk ratios.
Appendix
Available only for authorised users
Literature
1.
go back to reference Greenland S. Interpretation and choice of effect measures in epidemiologic analyses. Am J Epidemiol. 1987;125(5):761–8.CrossRefPubMed Greenland S. Interpretation and choice of effect measures in epidemiologic analyses. Am J Epidemiol. 1987;125(5):761–8.CrossRefPubMed
2.
go back to reference Zhang J, Yu KF. What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA. 1998;280(19):1690–1.CrossRefPubMed Zhang J, Yu KF. What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA. 1998;280(19):1690–1.CrossRefPubMed
3.
go back to reference McNutt LA, Wu C, Xue X, Hafner JP. Estimating the relative risk in cohort studies and clinical trials of common outcomes. Am J Epidemiol. 2003;157(10):940–3.CrossRefPubMed McNutt LA, Wu C, Xue X, Hafner JP. Estimating the relative risk in cohort studies and clinical trials of common outcomes. Am J Epidemiol. 2003;157(10):940–3.CrossRefPubMed
4.
go back to reference Schouten EG, Dekker JM, Kok FJ, Le Cessie S, Van Houwelingen HC, Pool J, Vanderbroucke JP. Risk ratio and rate ratio estimation in case-cohort designs: hypertension and cardiovascular mortality. Stat Med. 1993;12(18):1733–45.CrossRefPubMed Schouten EG, Dekker JM, Kok FJ, Le Cessie S, Van Houwelingen HC, Pool J, Vanderbroucke JP. Risk ratio and rate ratio estimation in case-cohort designs: hypertension and cardiovascular mortality. Stat Med. 1993;12(18):1733–45.CrossRefPubMed
5.
go back to reference Skov T, Deddens J, Petersen MR, Endahl L. Prevalence proportion ratios: estimation and hypothesis testing. Int J Epidemiol. 1998;27(1):91–5.CrossRefPubMed Skov T, Deddens J, Petersen MR, Endahl L. Prevalence proportion ratios: estimation and hypothesis testing. Int J Epidemiol. 1998;27(1):91–5.CrossRefPubMed
6.
go back to reference Greenland S. Model-based estimation of relative risks and other epidemiologic measures in studies of common outcomes and in case-control studies. Am J Epidemiol. 2004;160(4):301–5.CrossRefPubMed Greenland S. Model-based estimation of relative risks and other epidemiologic measures in studies of common outcomes and in case-control studies. Am J Epidemiol. 2004;160(4):301–5.CrossRefPubMed
7.
go back to reference Barros AJ, Hirakata VN. Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodol. 2003;3:21.CrossRefPubMedPubMedCentral Barros AJ, Hirakata VN. Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodol. 2003;3:21.CrossRefPubMedPubMedCentral
8.
go back to reference Wacholder S. Binomial regression in GLIM: estimating risk ratios and risk differences. Am J Epidemiol. 1986;123(1):174–84.CrossRefPubMed Wacholder S. Binomial regression in GLIM: estimating risk ratios and risk differences. Am J Epidemiol. 1986;123(1):174–84.CrossRefPubMed
9.
go back to reference Zou G. A modified poisson regression approach to prospective studies with binary data. Am J Epidemiol. 2004;159(7):702–6.CrossRefPubMed Zou G. A modified poisson regression approach to prospective studies with binary data. Am J Epidemiol. 2004;159(7):702–6.CrossRefPubMed
10.
go back to reference Blizzard L, Hosmer DW. Parameter estimation and goodness-of-fit in log binomial regression. Biom J. 2006;48(1):5–22.CrossRefPubMed Blizzard L, Hosmer DW. Parameter estimation and goodness-of-fit in log binomial regression. Biom J. 2006;48(1):5–22.CrossRefPubMed
12.
go back to reference Knol MJ, Le Cessie S, Algra A, Vandenbroucke JP, Groenwold RH. Overestimation of risk ratios by odds ratios in trials and cohort studies: alternatives to logistic regression. CMAJ. 2012;184(8):895–9.CrossRefPubMedPubMedCentral Knol MJ, Le Cessie S, Algra A, Vandenbroucke JP, Groenwold RH. Overestimation of risk ratios by odds ratios in trials and cohort studies: alternatives to logistic regression. CMAJ. 2012;184(8):895–9.CrossRefPubMedPubMedCentral
13.
go back to reference Schatz M, Nakahiro R, Crawford W, Mendoza G, Mosen D, Stibolt TB. Asthma quality-of-care markers using administrative data. Chest. 2005;128(4):1968–73.CrossRefPubMed Schatz M, Nakahiro R, Crawford W, Mendoza G, Mosen D, Stibolt TB. Asthma quality-of-care markers using administrative data. Chest. 2005;128(4):1968–73.CrossRefPubMed
14.
go back to reference McCullagh P, Nelder JA. Generalized linear models. Second ed. Boca Raton: Chapman and Hall/CRC; 1989. McCullagh P, Nelder JA. Generalized linear models. Second ed. Boca Raton: Chapman and Hall/CRC; 1989.
15.
go back to reference Green PJ. Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. J R Stat Soc Series B Stat Methodol. 1984;46(2):149–92. Green PJ. Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. J R Stat Soc Series B Stat Methodol. 1984;46(2):149–92.
16.
go back to reference Agresti A. Foundations of linear and generalized linear models. Hoboken: Wiley; 2015. Agresti A. Foundations of linear and generalized linear models. Hoboken: Wiley; 2015.
17.
18.
go back to reference Wedderburn RW. Quasi-likelihood functions, generalized linear models, and the gauss—Newton method. Biometrika. 1974;61(3):439–47. Wedderburn RW. Quasi-likelihood functions, generalized linear models, and the gauss—Newton method. Biometrika. 1974;61(3):439–47.
19.
go back to reference Huber PJ. The behavior of maximum likelihood estimates under non-standard conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. 1967;1:221–33. Huber PJ. The behavior of maximum likelihood estimates under non-standard conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. 1967;1:221–33.
20.
go back to reference White H. Maximum likelihood estimation of misspecified models. Econometrica. 1982:1–25. White H. Maximum likelihood estimation of misspecified models. Econometrica. 1982:1–25.
21.
go back to reference Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics. 1986;42(1):121–30.CrossRefPubMed Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics. 1986;42(1):121–30.CrossRefPubMed
22.
go back to reference Carter RE, Lipsitz SR, Tilley BC. Quasi-likelihood estimation for relative risk regression models. Biostatistics (Oxford, England). 2005;6(1):39–44.CrossRef Carter RE, Lipsitz SR, Tilley BC. Quasi-likelihood estimation for relative risk regression models. Biostatistics (Oxford, England). 2005;6(1):39–44.CrossRef
23.
go back to reference SAS. Software Version 9.3 of the SAS System for Unix. Cary: SAS Institute Inc; 2011. SAS. Software Version 9.3 of the SAS System for Unix. Cary: SAS Institute Inc; 2011.
24.
go back to reference Deddens JA, Petersen MR, Lei X. Estimation of prevalence ratios when PROC GENMOD does not converge. Proceedings of the 28th annual SAS users group international conference. 2003; Mar 30;30:270–28. Deddens JA, Petersen MR, Lei X. Estimation of prevalence ratios when PROC GENMOD does not converge. Proceedings of the 28th annual SAS users group international conference. 2003; Mar 30;30:270–28.
25.
go back to reference Petersen M, Deddens J. A revised SAS macro for maximum likelihood estimation of prevalence ratios using the COPY method. Occup Environ Med. 2009;66(9):639.CrossRefPubMed Petersen M, Deddens J. A revised SAS macro for maximum likelihood estimation of prevalence ratios using the COPY method. Occup Environ Med. 2009;66(9):639.CrossRefPubMed
26.
27.
go back to reference Chen W, Shi J, Qian L, Azen SP. Comparison of robustness to outliers between robust poisson models and log-binomial models when estimating relative risks for common binary outcomes: a simulation study. BMC Med Res Methodol. 2014;14:82.CrossRefPubMedPubMedCentral Chen W, Shi J, Qian L, Azen SP. Comparison of robustness to outliers between robust poisson models and log-binomial models when estimating relative risks for common binary outcomes: a simulation study. BMC Med Res Methodol. 2014;14:82.CrossRefPubMedPubMedCentral
28.
go back to reference Kauermann G, Carroll RJ. A note on the efficiency of sandwich covariance matrix estimation. J Am Stat Assoc. 2001;96(456):1387–96.CrossRef Kauermann G, Carroll RJ. A note on the efficiency of sandwich covariance matrix estimation. J Am Stat Assoc. 2001;96(456):1387–96.CrossRef
29.
go back to reference Presnell B, Boos DD. The IOS test for model misspecification. J Am Stat Assoc. 2004;99(465):216–27.CrossRef Presnell B, Boos DD. The IOS test for model misspecification. J Am Stat Assoc. 2004;99(465):216–27.CrossRef
30.
go back to reference Capanu M, Presnell B. Misspecification tests for binomial and beta-binomial models. Stat Med. 2008;27(14):2536–54.CrossRefPubMed Capanu M, Presnell B. Misspecification tests for binomial and beta-binomial models. Stat Med. 2008;27(14):2536–54.CrossRefPubMed
31.
go back to reference Richardson TS, Robins JM, Wang L. On modeling and estimation for the relative risk and risk difference. J Am Stat Assoc. 2017;112(519):1121–30.CrossRef Richardson TS, Robins JM, Wang L. On modeling and estimation for the relative risk and risk difference. J Am Stat Assoc. 2017;112(519):1121–30.CrossRef
32.
go back to reference Carroll R, Wang S, Simpson D, Stromberg A, Ruppert D. The sandwich (robust covariance matrix) estimator. Unpublished manuscript. 1998; Carroll R, Wang S, Simpson D, Stromberg A, Ruppert D. The sandwich (robust covariance matrix) estimator. Unpublished manuscript. 1998;
Metadata
Title
Comparing performance between log-binomial and robust Poisson regression models for estimating risk ratios under model misspecification
Authors
Wansu Chen
Lei Qian
Jiaxiao Shi
Meredith Franklin
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2018
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-018-0519-5

Other articles of this Issue 1/2018

BMC Medical Research Methodology 1/2018 Go to the issue