Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2024

Open Access 01-12-2024 | Dyslipidemia | Research

Impacts of ABCG2 loss of function variant (p. Gln141Lys, c.421 C > A, rs2231142) on lipid levels and statin efficiency: a systematic review and meta-analysis

Authors: Yang Liu, Yuan Chen, Baozhu Wei, Hang Li, Yuanyuan Peng, Zhi Luo

Published in: BMC Cardiovascular Disorders | Issue 1/2024

Login to get access

Abstract

Background

The latest evidence indicates that ATP-binding cassette superfamily G member 2 (ABCG2) is critical in regulating lipid metabolism and mediating statin or cholesterol efflux. This study investigates whether the function variant loss within ABCG2 (rs2231142) impacts lipid levels and statin efficiency.

Methods

PubMed, Cochrane Library, Central, CINAHL, and ClinicalTrials.gov were searched until November 18, 2023.

Results

Fifteen studies (34,150 individuals) were included in the analysis. The A allele [Glu141Lys amino acid substitution was formed by a transversion from cytosine (C) to adenine (A)] of rs2231142 was linked to lower levels of high-density lipoprotein cholesterol (HDL-C), and higher levels of low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC). In addition, the A allele of rs2231142 substantially increased the lipid-lowering efficiency of rosuvastatin in Asian individuals with dyslipidemia. Subgroup analysis indicated that the impacts of rs2231142 on lipid levels and statin response were primarily in Asian individuals.

Conclusions

The ABCG2 rs2231142 loss of function variant significantly impacts lipid levels and statin efficiency. Preventive use of rosuvastatin may prevent the onset of coronary artery disease (CAD) in Asian individuals with dyslipidemia.
Appendix
Available only for authorised users
Literature
1.
go back to reference Deng F, Tuomi SK, Neuvonen M, Hirvensalo P, Kulju S, Wenzel C, et al. Comparative hepatic and Intestinal Efflux Transport of Statins. Drug Metab Dispos. 2021;49:750–9.CrossRefPubMed Deng F, Tuomi SK, Neuvonen M, Hirvensalo P, Kulju S, Wenzel C, et al. Comparative hepatic and Intestinal Efflux Transport of Statins. Drug Metab Dispos. 2021;49:750–9.CrossRefPubMed
2.
go back to reference Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2009;86:197–203.CrossRefPubMed Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2009;86:197–203.CrossRefPubMed
3.
go back to reference Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998;95:15665–70.CrossRefPubMedPubMedCentral Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998;95:15665–70.CrossRefPubMedPubMedCentral
4.
go back to reference Morisaki K, Robey RW, Ozvegy-Laczka C, Honjo Y, Polgar O, Steadman K, et al. Single nucleotide polymorphisms modify the transporter activity of ABCG2. Cancer Chemother Pharmacol. 2005;56:161–72.CrossRefPubMed Morisaki K, Robey RW, Ozvegy-Laczka C, Honjo Y, Polgar O, Steadman K, et al. Single nucleotide polymorphisms modify the transporter activity of ABCG2. Cancer Chemother Pharmacol. 2005;56:161–72.CrossRefPubMed
5.
go back to reference Kasza I, Várady G, Andrikovics H, Koszarska M, Tordai A, Scheffer GL, et al. Expression levels of the ABCG2 multidrug transporter in human erythrocytes correspond to pharmacologically relevant genetic variations. PLoS ONE. 2012;7:e48423.CrossRefPubMedPubMedCentral Kasza I, Várady G, Andrikovics H, Koszarska M, Tordai A, Scheffer GL, et al. Expression levels of the ABCG2 multidrug transporter in human erythrocytes correspond to pharmacologically relevant genetic variations. PLoS ONE. 2012;7:e48423.CrossRefPubMedPubMedCentral
6.
go back to reference Taylor NMI, Manolaridis I, Jackson SM, Kowal J, Stahlberg H, Locher KP. Structure of the human multidrug transporter ABCG2. Nature. 2017;546:504–9.CrossRefPubMed Taylor NMI, Manolaridis I, Jackson SM, Kowal J, Stahlberg H, Locher KP. Structure of the human multidrug transporter ABCG2. Nature. 2017;546:504–9.CrossRefPubMed
7.
go back to reference Jackson SM, Manolaridis I, Kowal J, Zechner M, Taylor NMI, Bause M, et al. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat Struct Mol Biol. 2018;25(4):333–40.CrossRefPubMed Jackson SM, Manolaridis I, Kowal J, Zechner M, Taylor NMI, Bause M, et al. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat Struct Mol Biol. 2018;25(4):333–40.CrossRefPubMed
8.
go back to reference Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood. 2002;99:507–12.CrossRefPubMed Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood. 2002;99:507–12.CrossRefPubMed
9.
go back to reference Scharenberg C, Mannowetz N, Robey RW, Brendel C, Repges P, Sahrhage T, et al. ABCG2 is expressed in late spermatogenesis and is associated with the acrosome. Biochem Biophys Res Commun. 2009;378:302–7.CrossRefPubMed Scharenberg C, Mannowetz N, Robey RW, Brendel C, Repges P, Sahrhage T, et al. ABCG2 is expressed in late spermatogenesis and is associated with the acrosome. Biochem Biophys Res Commun. 2009;378:302–7.CrossRefPubMed
10.
go back to reference Szilagyi JT, Vetrano AM, Laskin JD, Aleksunes LM. Localization of the placental BCRP/ABCG2 transporter to lipid rafts: role for cholesterol in mediating efflux activity. Placenta. 2017;55:29–36.CrossRefPubMedPubMedCentral Szilagyi JT, Vetrano AM, Laskin JD, Aleksunes LM. Localization of the placental BCRP/ABCG2 transporter to lipid rafts: role for cholesterol in mediating efflux activity. Placenta. 2017;55:29–36.CrossRefPubMedPubMedCentral
11.
go back to reference Kobayashi D, Ieiri I, Hirota T, Takane H, Maegawa S, Kigawa J, et al. Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metab Dispos. 2005;33:94–101.CrossRefPubMed Kobayashi D, Ieiri I, Hirota T, Takane H, Maegawa S, Kigawa J, et al. Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metab Dispos. 2005;33:94–101.CrossRefPubMed
12.
go back to reference Pollex EK, Anger G, Hutson J, Koren G, Piquette-Miller M. Breast cancer resistance protein (BCRP)-mediated glyburide transport: effect of the C421A/Q141K BCRP single-nucleotide polymorphism. Drug Metab Dispos. 2010;38:740–4.CrossRefPubMed Pollex EK, Anger G, Hutson J, Koren G, Piquette-Miller M. Breast cancer resistance protein (BCRP)-mediated glyburide transport: effect of the C421A/Q141K BCRP single-nucleotide polymorphism. Drug Metab Dispos. 2010;38:740–4.CrossRefPubMed
13.
go back to reference Yanase K, Tsukahara S, Mitsuhashi J, Sugimoto Y. Functional SNPs of the breast cancer resistance protein-therapeutic effects and inhibitor development. Cancer Lett. 2006;234:73–80.CrossRefPubMed Yanase K, Tsukahara S, Mitsuhashi J, Sugimoto Y. Functional SNPs of the breast cancer resistance protein-therapeutic effects and inhibitor development. Cancer Lett. 2006;234:73–80.CrossRefPubMed
14.
go back to reference Keskitalo JE, Pasanen MK, Neuvonen PJ, Niemi M. Different effects of the ABCG2 c.421C > A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics. 2009;10:1617–24.CrossRefPubMed Keskitalo JE, Pasanen MK, Neuvonen PJ, Niemi M. Different effects of the ABCG2 c.421C > A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics. 2009;10:1617–24.CrossRefPubMed
15.
go back to reference Song Y, Lim HH, Yee J, Yoon HY, Gwak HS. The Association between ABCG2 421C > A (rs2231142) polymorphism and Rosuvastatin Pharmacokinetics: a systematic review and Meta-analysis. Pharmaceutics. 2022;14:501.CrossRefPubMedPubMedCentral Song Y, Lim HH, Yee J, Yoon HY, Gwak HS. The Association between ABCG2 421C > A (rs2231142) polymorphism and Rosuvastatin Pharmacokinetics: a systematic review and Meta-analysis. Pharmaceutics. 2022;14:501.CrossRefPubMedPubMedCentral
16.
go back to reference Hu M, To KK, Mak VW, Tomlinson B. The ABCG2 transporter and its relations with the pharmacokinetics, drug interaction and lipid-lowering effects of statins. Expert Opin Drug Metab Toxicol. 2011;7:49–62.CrossRefPubMed Hu M, To KK, Mak VW, Tomlinson B. The ABCG2 transporter and its relations with the pharmacokinetics, drug interaction and lipid-lowering effects of statins. Expert Opin Drug Metab Toxicol. 2011;7:49–62.CrossRefPubMed
17.
go back to reference Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.CrossRefPubMedPubMedCentral Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.CrossRefPubMedPubMedCentral
18.
go back to reference DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28:105–14.CrossRefPubMed DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28:105–14.CrossRefPubMed
19.
go back to reference Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.CrossRefPubMed Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.CrossRefPubMed
20.
go back to reference Hegedüs C, Telbisz Á, Hegedűs T, Sarkadi B, Özvegy-Laczka C. Lipid regulation of the ABCB1 and ABCG2 multidrug transporters. Adv Cancer Res. 2015;125:97–137.CrossRefPubMed Hegedüs C, Telbisz Á, Hegedűs T, Sarkadi B, Özvegy-Laczka C. Lipid regulation of the ABCB1 and ABCG2 multidrug transporters. Adv Cancer Res. 2015;125:97–137.CrossRefPubMed
21.
go back to reference Zhang W, Yu BN, He YJ, Fan L, Li Q, Liu ZQ, et al. Role of BCRP 421C > A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin Chim Acta. 2006;373:99–103.CrossRefPubMed Zhang W, Yu BN, He YJ, Fan L, Li Q, Liu ZQ, et al. Role of BCRP 421C > A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin Chim Acta. 2006;373:99–103.CrossRefPubMed
22.
go back to reference Lu Z, Luo Z, Jia A, Yu L, Muhammad I, Zeng W, et al. Associations of the ABCA1 gene polymorphisms with plasma lipid levels: a meta-analysis. Med (Baltim). 2018;97:e13521.CrossRef Lu Z, Luo Z, Jia A, Yu L, Muhammad I, Zeng W, et al. Associations of the ABCA1 gene polymorphisms with plasma lipid levels: a meta-analysis. Med (Baltim). 2018;97:e13521.CrossRef
23.
go back to reference Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937–52.CrossRefPubMed Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937–52.CrossRefPubMed
24.
go back to reference Kononov S, Mal G, Azarova I, Klyosova E, Bykanova M, Churnosov M, et al. Pharmacogenetic loci for rosuvastatin are associated with intima-media thickness change and coronary artery disease risk. Pharmacogenomics. 2022;23:15–34.CrossRefPubMed Kononov S, Mal G, Azarova I, Klyosova E, Bykanova M, Churnosov M, et al. Pharmacogenetic loci for rosuvastatin are associated with intima-media thickness change and coronary artery disease risk. Pharmacogenomics. 2022;23:15–34.CrossRefPubMed
25.
go back to reference Shek AB, Kurbanov RD, Abdullaeva GJ, Nagay AV, Hoshimov SU, Nizamov UI, et al. Simvastatin intolerance genetic determinants: some features in ethnic Uzbek patients with coronary artery disease. Arch Med Sci Atheroscler Dis. 2017;2:e68–e75.CrossRefPubMedPubMedCentral Shek AB, Kurbanov RD, Abdullaeva GJ, Nagay AV, Hoshimov SU, Nizamov UI, et al. Simvastatin intolerance genetic determinants: some features in ethnic Uzbek patients with coronary artery disease. Arch Med Sci Atheroscler Dis. 2017;2:e68–e75.CrossRefPubMedPubMedCentral
26.
go back to reference Luke MM, Kane JP, Liu DM, Rowland CM, Shiffman D, Cassano J, et al. A polymorphism in the protease-like domain of apolipoprotein(a) is associated with severe coronary artery disease. Arterioscler Thromb Vasc Biol. 2007;27:2030–6.CrossRefPubMed Luke MM, Kane JP, Liu DM, Rowland CM, Shiffman D, Cassano J, et al. A polymorphism in the protease-like domain of apolipoprotein(a) is associated with severe coronary artery disease. Arterioscler Thromb Vasc Biol. 2007;27:2030–6.CrossRefPubMed
27.
go back to reference Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA et al. /ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e1082-e143. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA et al. /ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e1082-e143.
28.
go back to reference Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41:111–88.CrossRefPubMed Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41:111–88.CrossRefPubMed
29.
go back to reference Third Report of the National Cholesterol Education Program (NCEP). Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–421.CrossRef Third Report of the National Cholesterol Education Program (NCEP). Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–421.CrossRef
30.
go back to reference Dehghan A, Köttgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008;372:1953–61.CrossRefPubMedPubMedCentral Dehghan A, Köttgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008;372:1953–61.CrossRefPubMedPubMedCentral
31.
go back to reference Li X, Meng X, He Y, Spiliopoulou A, Timofeeva M, Wei WQ, et al. Genetically determined serum urate levels and cardiovascular and other diseases in UK Biobank cohort: a phenome-wide mendelian randomization study. PLoS Med. 2019;16:e1002937.CrossRefPubMedPubMedCentral Li X, Meng X, He Y, Spiliopoulou A, Timofeeva M, Wei WQ, et al. Genetically determined serum urate levels and cardiovascular and other diseases in UK Biobank cohort: a phenome-wide mendelian randomization study. PLoS Med. 2019;16:e1002937.CrossRefPubMedPubMedCentral
32.
go back to reference Chasman DI, Giulianini F, MacFadyen J, Barratt BJ, Nyberg F, Ridker PM. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: the justification for the Use of statins in Prevention: an intervention trial evaluating Rosuvastatin (JUPITER) trial. Circ Cardiovasc Genet. 2012;5:257–64.CrossRefPubMed Chasman DI, Giulianini F, MacFadyen J, Barratt BJ, Nyberg F, Ridker PM. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: the justification for the Use of statins in Prevention: an intervention trial evaluating Rosuvastatin (JUPITER) trial. Circ Cardiovasc Genet. 2012;5:257–64.CrossRefPubMed
33.
go back to reference Chu AY, Guilianini F, Barratt BJ, Nyberg F, Chasman DI, Ridker PM. Pharmacogenetic determinants of statin-induced reductions in C-reactive protein. Circ Cardiovasc Genet. 2012;5:58–65.CrossRefPubMed Chu AY, Guilianini F, Barratt BJ, Nyberg F, Chasman DI, Ridker PM. Pharmacogenetic determinants of statin-induced reductions in C-reactive protein. Circ Cardiovasc Genet. 2012;5:58–65.CrossRefPubMed
34.
go back to reference Lehtisalo M, Taskinen S, Tarkiainen EK, Neuvonen M, Viinamäki J, Paile-Hyvärinen M, et al. A comprehensive pharmacogenomic study indicates roles for SLCO1B1, ABCG2 and SLCO2B1 in rosuvastatin pharmacokinetics. Br J Clin Pharmacol. 2023;89:242–52.CrossRefPubMed Lehtisalo M, Taskinen S, Tarkiainen EK, Neuvonen M, Viinamäki J, Paile-Hyvärinen M, et al. A comprehensive pharmacogenomic study indicates roles for SLCO1B1, ABCG2 and SLCO2B1 in rosuvastatin pharmacokinetics. Br J Clin Pharmacol. 2023;89:242–52.CrossRefPubMed
Metadata
Title
Impacts of ABCG2 loss of function variant (p. Gln141Lys, c.421 C > A, rs2231142) on lipid levels and statin efficiency: a systematic review and meta-analysis
Authors
Yang Liu
Yuan Chen
Baozhu Wei
Hang Li
Yuanyuan Peng
Zhi Luo
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2024
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-024-03821-2

Other articles of this Issue 1/2024

BMC Cardiovascular Disorders 1/2024 Go to the issue