Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2019

Open Access 01-12-2019 | Acute Coronary Syndrome | Research article

Association between plasma lipid levels during acute coronary syndrome and long-term malignancy risk. The ABC-4* study on heart disease

Authors: Giuseppe Berton, Rocco Cordiano, Fiorella Cavuto, Francesco Bagato, Heba Talat Mahmoud, Mattia Pasquinucci

Published in: BMC Cardiovascular Disorders | Issue 1/2019

Login to get access

Abstract

Background

Emerging evidence suggests that patients with coronary artery disease carry an increased risk of developing malignancy, with deleterious effects on long-term prognosis. Our aim was to ascertain whether baseline plasma lipid levels during acute coronary syndrome (ACS) are associated with malignancy in long-term.

Methods

This study included 589 patients admitted with ACS to three centers and discharged alive. Plasma lipid levels were assessed on the first morning after admission. Patients were followed for 17 years or until death.

Results

Five hundred seventy-one patients were free from malignancy at enrollment, of them 99 (17.3%) developed the disease during follow-up and 75 (13.1%) died due to it. Compared to patients without malignancy, those with malignancy showed lower plasma levels of total cholesterol (TC), low-density lipoprotein (LDL), and triglycerides (TG). The groups showed similar statin use rates at any time in follow-up. The incidence rate of neoplasia and neoplastic mortality was higher in patients with baseline TC or LDL values ≤ median; they showed 85 and 72% increased incidence rate of developing malignancy and 133 and 122% increased incidence rate of neoplastic death respectively. No differences were observed relative to HDL and TG levels. In survival analysis using Cox regression with parsimonious models, patients with baseline TC or LDL values > median, respectively, showed risks of 0.6(95% CI 0.4–0.9; p = 0.01) and 0.6(95%CI 0.4–0.9; p = 0.02) for malignancy onset, and 0.5(95% CI 0.3–0.8; p = 0.005) and 0.5(95% CI 0.3–0.8; p = 0.004) for neoplastic death. Similar results were obtained using competitive risk analysis with parsimonious models.

Conclusions

This long-term prospective study of an unselected real-world patient sample showed that neoplasia onset and mortality are independently associated with low plasma TC and LDL levels at admission for ACS.
Literature
1.
go back to reference Benjamin EJ, Blaha MJ, Chiuve SE, et al. American Heart Association statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics—2017 update a report from the American Heart Association. Circulation. 2017;135:e146–603.PubMedPubMedCentralCrossRef Benjamin EJ, Blaha MJ, Chiuve SE, et al. American Heart Association statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics—2017 update a report from the American Heart Association. Circulation. 2017;135:e146–603.PubMedPubMedCentralCrossRef
2.
go back to reference Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomark Prev. 2016;25(1):16–27.CrossRef Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomark Prev. 2016;25(1):16–27.CrossRef
3.
go back to reference Fox KA, Carruthers KF, Dunbar DR, et al. Underestimated and under-recognized: the late consequences of acute coronary syndrome (GRACE UK-Belgian study). Eur Heart J. 2010;31(22):2755–64.PubMedCrossRef Fox KA, Carruthers KF, Dunbar DR, et al. Underestimated and under-recognized: the late consequences of acute coronary syndrome (GRACE UK-Belgian study). Eur Heart J. 2010;31(22):2755–64.PubMedCrossRef
4.
go back to reference Berton G, Cordiano R, Palmieri R, Cavuto F, Pellegrinet M, Palatin P. Prospective history of long-term mortality and modes of death in patients discharged after acute coronary syndrome: the ABC-2* study on acute coronary syndrome. Int J Cardiovasc Res. 2014;3(2):1–10. Berton G, Cordiano R, Palmieri R, Cavuto F, Pellegrinet M, Palatin P. Prospective history of long-term mortality and modes of death in patients discharged after acute coronary syndrome: the ABC-2* study on acute coronary syndrome. Int J Cardiovasc Res. 2014;3(2):1–10.
5.
go back to reference Cordero A, López-Palop R, Carrillo P, et al. Prevalence and post discharge incidence of malignancies in patients with acute coronary syndrome. Rev EspCardiol (Engl Ed). 2018;71(4):267–73.CrossRef Cordero A, López-Palop R, Carrillo P, et al. Prevalence and post discharge incidence of malignancies in patients with acute coronary syndrome. Rev EspCardiol (Engl Ed). 2018;71(4):267–73.CrossRef
6.
go back to reference Iannaccone M, D'Ascenzo F, Vadalà P, et al. Prevalence and outcome of patients with cancer and acute coronary syndrome undergoing percutaneous coronary intervention: a BleeMACS substudy. Eur Heart J Acute Cardiovasc Care. 2018;7:631–8. Iannaccone M, D'Ascenzo F, Vadalà P, et al. Prevalence and outcome of patients with cancer and acute coronary syndrome undergoing percutaneous coronary intervention: a BleeMACS substudy. Eur Heart J Acute Cardiovasc Care. 2018;7:631–8.
7.
go back to reference Eichholzer M, Stähelin HB, Gutzwiller F, Lüdin E, Bernasconi F. Association of low plasma cholesterol with mortality for cancer at various sites in men: 17-y follow-up of the prospective Basel study. Am J Clin Nutr. 2000;71(2):569–74.PubMedCrossRef Eichholzer M, Stähelin HB, Gutzwiller F, Lüdin E, Bernasconi F. Association of low plasma cholesterol with mortality for cancer at various sites in men: 17-y follow-up of the prospective Basel study. Am J Clin Nutr. 2000;71(2):569–74.PubMedCrossRef
8.
go back to reference Palmier J, Lanzrath BJ. Laboratory and biometric predictors of cancer-related mortality in an insured population. J Insur Med. 2012;43(3):162–8.PubMed Palmier J, Lanzrath BJ. Laboratory and biometric predictors of cancer-related mortality in an insured population. J Insur Med. 2012;43(3):162–8.PubMed
9.
go back to reference Isles CG, Hole DJ, Gillis CR, Hawthorne VM, Lever AF. Plasma cholesterol, coronary heart disease, and cancer in the Renfrew and Paisley survey. BMJ. 1989;298(6678):920–4.PubMedPubMedCentralCrossRef Isles CG, Hole DJ, Gillis CR, Hawthorne VM, Lever AF. Plasma cholesterol, coronary heart disease, and cancer in the Renfrew and Paisley survey. BMJ. 1989;298(6678):920–4.PubMedPubMedCentralCrossRef
10.
go back to reference Kitahara CM, Berrington de González A, Freedman ND, et al. Total cholesterol and cancer risk in a large prospective study in Korea. J Clin Oncol. 2011;29(12):1592–8.PubMedPubMedCentralCrossRef Kitahara CM, Berrington de González A, Freedman ND, et al. Total cholesterol and cancer risk in a large prospective study in Korea. J Clin Oncol. 2011;29(12):1592–8.PubMedPubMedCentralCrossRef
11.
go back to reference Ahn J, Lim U, Weinstein SJ, et al. Prediagnostic total and high-density lipoprotein cholesterol and risk of cancer. Cancer Epidemiol Biomark Prev. 2009;18(11):2814–21.CrossRef Ahn J, Lim U, Weinstein SJ, et al. Prediagnostic total and high-density lipoprotein cholesterol and risk of cancer. Cancer Epidemiol Biomark Prev. 2009;18(11):2814–21.CrossRef
12.
go back to reference Shor R, Wainstein J, Oz D, et al. Low Serum LDL Cholesterol Levels and the Risk ofFever, Sepsis, and Malignancy. Ann Clin Lab Sci. 2007;37(4):343–8.PubMed Shor R, Wainstein J, Oz D, et al. Low Serum LDL Cholesterol Levels and the Risk ofFever, Sepsis, and Malignancy. Ann Clin Lab Sci. 2007;37(4):343–8.PubMed
13.
go back to reference Benn M, Tybjærg-Hansen A, Stender S, Frikke-Schmidt R, Nordestgaard BG. Low-density lipoprotein cholesterol and the risk of cancer: a mendelian randomization study. J Natl Cancer Inst. 2011;103(6):508–19.PubMedCrossRef Benn M, Tybjærg-Hansen A, Stender S, Frikke-Schmidt R, Nordestgaard BG. Low-density lipoprotein cholesterol and the risk of cancer: a mendelian randomization study. J Natl Cancer Inst. 2011;103(6):508–19.PubMedCrossRef
14.
go back to reference Khan HA, Alhomida AS, Sobki SH. Lipid profile of patients with acute myocardial infarction and its correlation with systemic inflammation. Biomark Insights. 2013;8:1–7.PubMedPubMedCentralCrossRef Khan HA, Alhomida AS, Sobki SH. Lipid profile of patients with acute myocardial infarction and its correlation with systemic inflammation. Biomark Insights. 2013;8:1–7.PubMedPubMedCentralCrossRef
15.
go back to reference Barth JH, Jackson BM, Farrin AJ, et al. SPACE ROCKET trial group change in serum lipids after acute coronary syndromes: secondary analysis of SPACE ROCKET study data and a comparative literature review. Clin Chem. 2010;56(10):1592–8.PubMedCrossRef Barth JH, Jackson BM, Farrin AJ, et al. SPACE ROCKET trial group change in serum lipids after acute coronary syndromes: secondary analysis of SPACE ROCKET study data and a comparative literature review. Clin Chem. 2010;56(10):1592–8.PubMedCrossRef
16.
go back to reference Berton G, Citro T, Palmieri R, Petucco S, De Toni R, Palatini P. Albumin excretion rate increases during acute myocardial infarction and strongly predicts early mortality. Circulation. 1997;96(10):3338–45.PubMedCrossRef Berton G, Citro T, Palmieri R, Petucco S, De Toni R, Palatini P. Albumin excretion rate increases during acute myocardial infarction and strongly predicts early mortality. Circulation. 1997;96(10):3338–45.PubMedCrossRef
17.
go back to reference Berton G, Cordiano R, Cavuto F, Giacomini G, De Toni R, Palatini P. Predictors of ten-year event-free survival in patients with acute myocardial infarction (from the Adria, Bassano, Conegliano, and Padova hospitals [ABC] study on myocardial infarction). Am J Cardiol. 2012;109(7):966–75.PubMedCrossRef Berton G, Cordiano R, Cavuto F, Giacomini G, De Toni R, Palatini P. Predictors of ten-year event-free survival in patients with acute myocardial infarction (from the Adria, Bassano, Conegliano, and Padova hospitals [ABC] study on myocardial infarction). Am J Cardiol. 2012;109(7):966–75.PubMedCrossRef
18.
go back to reference Pasternak RC, Braunwald E, Sobel BE. Acute myocardial infarction. In: Braunwald E, editor. Heart disease. 5th ed. Philadelphia: WB Saunders; 1997. p. 1198–207. Pasternak RC, Braunwald E, Sobel BE. Acute myocardial infarction. In: Braunwald E, editor. Heart disease. 5th ed. Philadelphia: WB Saunders; 1997. p. 1198–207.
19.
20.
go back to reference Mizoguchi T, Edano T, Koshi T. A method of direct measurement for the enzymatic determination of cholesteryl esters. J Lipid Res. 2004;45(2):396–401.PubMedCrossRef Mizoguchi T, Edano T, Koshi T. A method of direct measurement for the enzymatic determination of cholesteryl esters. J Lipid Res. 2004;45(2):396–401.PubMedCrossRef
21.
22.
go back to reference Pepe MS, Mori M. Kaplan-Meier, marginal or conditional probability curves in summarizing competing risks failure time data? Stat Med. 1993;12(8):737–51.PubMedCrossRef Pepe MS, Mori M. Kaplan-Meier, marginal or conditional probability curves in summarizing competing risks failure time data? Stat Med. 1993;12(8):737–51.PubMedCrossRef
23.
go back to reference Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.CrossRef Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.CrossRef
24.
go back to reference Bayliss EA, Reifler LM, Zeng C, McQuillan DB, Ellis JL, Steiner JF. Competing risks of cancer mortality and cardiovascular events in individuals with multimorbidity. J Comorb. 2014;4:29–36.PubMedPubMedCentralCrossRef Bayliss EA, Reifler LM, Zeng C, McQuillan DB, Ellis JL, Steiner JF. Competing risks of cancer mortality and cardiovascular events in individuals with multimorbidity. J Comorb. 2014;4:29–36.PubMedPubMedCentralCrossRef
25.
go back to reference Masoudkabir F, Sarrafzadegan N, Gotay C, et al. Cardiovascular disease and cancer: Evidence for shared disease pathways and pharmacologic prevention. Atherosclerosis. 2017;263:343–51. Masoudkabir F, Sarrafzadegan N, Gotay C, et al. Cardiovascular disease and cancer: Evidence for shared disease pathways and pharmacologic prevention. Atherosclerosis. 2017;263:343–51.
26.
go back to reference Berton G, Cordiano R, Cavuto F, Bagato F, Segafredo B, Pasquinucci M. Neoplastic disease after acute coronary syndrome: incidence, duration, and features: the ABC-4* Study on Heart Disease. J Cardiovasc Med. 2018;19:546–53.CrossRef Berton G, Cordiano R, Cavuto F, Bagato F, Segafredo B, Pasquinucci M. Neoplastic disease after acute coronary syndrome: incidence, duration, and features: the ABC-4* Study on Heart Disease. J Cardiovasc Med. 2018;19:546–53.CrossRef
28.
go back to reference Pursnani A, Massaro JM, D'Agostino RB Sr, O'Donnell CJ, Hoffmann U. Guideline-based statin eligibility, Cancer events, and noncardiovascular mortality in the Framingham heart study. J Clin Oncol. 2017;35(25):2927–33.PubMedPubMedCentralCrossRef Pursnani A, Massaro JM, D'Agostino RB Sr, O'Donnell CJ, Hoffmann U. Guideline-based statin eligibility, Cancer events, and noncardiovascular mortality in the Framingham heart study. J Clin Oncol. 2017;35(25):2927–33.PubMedPubMedCentralCrossRef
29.
go back to reference Iso H, Ikeda A, Inoue M, Sato S, Tsugane S, JPHC Study Group. Serum cholesterol levels in relation to the incidence of cancer: the JPHC study cohorts. Int J Cancer. 2009;125:2679–86.PubMedCrossRef Iso H, Ikeda A, Inoue M, Sato S, Tsugane S, JPHC Study Group. Serum cholesterol levels in relation to the incidence of cancer: the JPHC study cohorts. Int J Cancer. 2009;125:2679–86.PubMedCrossRef
30.
go back to reference Meilahn EN, Ferrell RE. ‘Naturally occurring’ low blood cholesterol and excess mortality. Coron Artery Dis. 1993;4:843–53.PubMedCrossRef Meilahn EN, Ferrell RE. ‘Naturally occurring’ low blood cholesterol and excess mortality. Coron Artery Dis. 1993;4:843–53.PubMedCrossRef
31.
go back to reference Kritchevsky SB, Kritchevsky D. Serum cholesterol and cancer risk: an epidemiologic perspective. Annu Rev Nutr. 1992;12(1):391–416.PubMedCrossRef Kritchevsky SB, Kritchevsky D. Serum cholesterol and cancer risk: an epidemiologic perspective. Annu Rev Nutr. 1992;12(1):391–416.PubMedCrossRef
32.
go back to reference Alsheikh-Ali AA, Maddukuri PV, Han H, Karas RH. Effect of the magnitude of lipid lowering on risk of elevated liver enzymes, rhabdomyolysis, and cancer: insights from large randomized statin trials. J Am Coll Cardiol. 2007;50(5):409–18.PubMedCrossRef Alsheikh-Ali AA, Maddukuri PV, Han H, Karas RH. Effect of the magnitude of lipid lowering on risk of elevated liver enzymes, rhabdomyolysis, and cancer: insights from large randomized statin trials. J Am Coll Cardiol. 2007;50(5):409–18.PubMedCrossRef
34.
go back to reference Ford I, Murray H, Packard CJ, Shepherd J, Macfarlane PW, Cobbe SM, on behalf of the west of Scotland coronary prevention study group. Long-term follow-up of the west of Scotland coronary prevention study. N Engl J Med. 2007;357:1477–86.PubMedCrossRef Ford I, Murray H, Packard CJ, Shepherd J, Macfarlane PW, Cobbe SM, on behalf of the west of Scotland coronary prevention study group. Long-term follow-up of the west of Scotland coronary prevention study. N Engl J Med. 2007;357:1477–86.PubMedCrossRef
35.
go back to reference Neil A, Cooper J, Betteridge J, et al. Reductions in all-cause, cancer, and coronary mortality in statin-treated patients with heterozygous familial hypercholesterolemia: a prospective registry study. Eur Heart J. 2008;29(21):2625–33.PubMedPubMedCentralCrossRef Neil A, Cooper J, Betteridge J, et al. Reductions in all-cause, cancer, and coronary mortality in statin-treated patients with heterozygous familial hypercholesterolemia: a prospective registry study. Eur Heart J. 2008;29(21):2625–33.PubMedPubMedCentralCrossRef
36.
go back to reference Friis S, Poulsen AH, Johnsen SP, et al. Cancer risk among statin users: a population-based cohort study. Int J Cancer. 2005;114(4):643–7.PubMedCrossRef Friis S, Poulsen AH, Johnsen SP, et al. Cancer risk among statin users: a population-based cohort study. Int J Cancer. 2005;114(4):643–7.PubMedCrossRef
37.
go back to reference Bjerre LM, LeLorier J. Do statins cause cancer? A meta-analysis of large randomized clinical trials. Am J Med. 2001;110(9):716–23.PubMedCrossRef Bjerre LM, LeLorier J. Do statins cause cancer? A meta-analysis of large randomized clinical trials. Am J Med. 2001;110(9):716–23.PubMedCrossRef
39.
go back to reference Dale KM, Coleman CI, Henyan NN, Kluger J, White CM. Statins and cancer risk: a meta-analysis. JAMA. 2006;295(1):74–80.PubMedCrossRef Dale KM, Coleman CI, Henyan NN, Kluger J, White CM. Statins and cancer risk: a meta-analysis. JAMA. 2006;295(1):74–80.PubMedCrossRef
40.
go back to reference Kuoppala J, Lamminpaa A, Pukkala E. Statins and cancer: a systematic review and meta-analysis. Eur J Cancer. 2008;44(15):2122–32.PubMedCrossRef Kuoppala J, Lamminpaa A, Pukkala E. Statins and cancer: a systematic review and meta-analysis. Eur J Cancer. 2008;44(15):2122–32.PubMedCrossRef
41.
go back to reference Alsheikh-Ali AA, Trikalinos TA, Kent DM, Karas RH. Statins, low-density lipoprotein cholesterol, and risk of cancer. J Am Coll Cardiol. 2008;52(14):1141–7.PubMedCrossRef Alsheikh-Ali AA, Trikalinos TA, Kent DM, Karas RH. Statins, low-density lipoprotein cholesterol, and risk of cancer. J Am Coll Cardiol. 2008;52(14):1141–7.PubMedCrossRef
42.
go back to reference Browning DR, Martin RM. Statins and risk of cancer: a systematic review and meta analysis. Int J Cancer. 2007;120(4):833–43.PubMedCrossRef Browning DR, Martin RM. Statins and risk of cancer: a systematic review and meta analysis. Int J Cancer. 2007;120(4):833–43.PubMedCrossRef
43.
go back to reference Bonovas S, Filioussi K, Tsavaris N, Sitaras NM. Statins and Cancer risk: a literature-based Meta-analysis and Meta-regression analysis of 35 randomized controlled trials. J Clin Oncol. 2006;24(30):4808–17.PubMedCrossRef Bonovas S, Filioussi K, Tsavaris N, Sitaras NM. Statins and Cancer risk: a literature-based Meta-analysis and Meta-regression analysis of 35 randomized controlled trials. J Clin Oncol. 2006;24(30):4808–17.PubMedCrossRef
Metadata
Title
Association between plasma lipid levels during acute coronary syndrome and long-term malignancy risk. The ABC-4* study on heart disease
Authors
Giuseppe Berton
Rocco Cordiano
Fiorella Cavuto
Francesco Bagato
Heba Talat Mahmoud
Mattia Pasquinucci
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2019
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-019-1092-5

Other articles of this Issue 1/2019

BMC Cardiovascular Disorders 1/2019 Go to the issue