Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2019

Open Access 01-12-2019 | Obesity | Research article

Evaluation of alterations in serum immunoglobulin concentrations in components of metabolic syndrome, obesity, diabetes, and dyslipidemia

Authors: Dee Lin, Mary Barna Bridgeman, Luigi Brunetti

Published in: BMC Cardiovascular Disorders | Issue 1/2019

Login to get access

Abstract

Purpose

Serum immunoglobulins (Igs) play a critical role in modulating the immune response by neutralizing pathogens, although little is known about the effect of Igs in development of atherosclerotic cardiovascular disease (ASCVD). Elevated serum Immunoglobulin A (IgA) concentrations have been identified in previous studies in populations with obesity and hypertriglyceridemia, whereas variable concentrations of Immunoglobulin M (IgM) have been observed in the setting of dyslipidemia.

Methods

In this cross-sectional study, investigators examined the association of serum Ig concentrations with components of metabolic syndrome, including obesity, diabetes, and dyslipidemia. All consecutive adult patients aged 18 years or older discharged from two academic teaching hospitals with serum Immunoglobulin G (IgG) concentration measured during their admission were evaluated, with a total of 1809 individuals included and stratified into two groups: those with and those without dyslipidemia.

Results

Mean IgG concentration in individuals with and without dyslipidemia was 997 ± 485 mg/dL and 1144 ± 677 mg/dL, respectively (P <  0.0001). After controlling for confounders in the generalized linear model (GLM), the least square mean IgG concentration in individuals with and without dyslipidemia was 1095 and 1239 mg/dL, respectively (P <  0.0001). The mean IgA and IgM concentrations were not significantly different in individuals with and without dyslipidemia both before and after adjusting covariates. After controlling for confounding variables, all three serum Ig concentrations were not significantly different in individuals with and without diabetes.

Conclusion

Dyslipidemia was associated with a lower mean serum IgG concentration. No association with any serum Ig was indentified in individuals with diabetes. Exploration of the association between alterations in serum Igs and metabolic syndrome and the role of alterations of Ig concentrations in disease progression represents an important step in identification of appropriate targeted treatment options for reducing cardiovascular risk.
Appendix
Available only for authorised users
Literature
1.
go back to reference Abubakar II, Tillmann T, Banerjee A. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the global burden of disease study 2013. Lancet. 2015;385:117–71.CrossRef Abubakar II, Tillmann T, Banerjee A. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the global burden of disease study 2013. Lancet. 2015;385:117–71.CrossRef
2.
go back to reference Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke Statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–360.PubMed Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke Statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–360.PubMed
4.
go back to reference Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S, et al. 2013 acc/aha guideline on the assessment of cardiovascular risk: a report of the american college of cardiology/american heart association task force on practice guidelines. Circulation. 2014;129:S49–73.CrossRef Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S, et al. 2013 acc/aha guideline on the assessment of cardiovascular risk: a report of the american college of cardiology/american heart association task force on practice guidelines. Circulation. 2014;129:S49–73.CrossRef
5.
go back to reference Karalis DG, Victor B, Ahedor L, Liu L. Use of lipid-lowering medications and the likelihood of achieving optimal LDL-cholesterol goals in coronary artery disease patients. Cholesterol. 2012;2012:861924.CrossRef Karalis DG, Victor B, Ahedor L, Liu L. Use of lipid-lowering medications and the likelihood of achieving optimal LDL-cholesterol goals in coronary artery disease patients. Cholesterol. 2012;2012:861924.CrossRef
6.
go back to reference Litman GW, Rast JP, Shamblott MJ, et al. Phylogenetic diversification of immunoglobulin genes and the antibody repertoire. Mol Biol Evol. 1993;10:60–72.PubMed Litman GW, Rast JP, Shamblott MJ, et al. Phylogenetic diversification of immunoglobulin genes and the antibody repertoire. Mol Biol Evol. 1993;10:60–72.PubMed
7.
go back to reference Gonzalez-Quintela A, Alende R, Gude F, et al. Serum levels of immunoglobulins (IgG, IgA, IgM) in a general adult population and their relationship with alcohol consumption, smoking and common metabolic abnormalities. Clin Exp Immunol. 2008;151:42–50.CrossRef Gonzalez-Quintela A, Alende R, Gude F, et al. Serum levels of immunoglobulins (IgG, IgA, IgM) in a general adult population and their relationship with alcohol consumption, smoking and common metabolic abnormalities. Clin Exp Immunol. 2008;151:42–50.CrossRef
8.
go back to reference Song K, Du H, Zhang Q, et al. Serum immunoglobulin M concentration is positively related to metabolic syndrome in an adult population: Tianjin chronic low-grade systemic inflammation and health (TCLSIH) cohort study. PLoS One. 2014;9:e88701.CrossRef Song K, Du H, Zhang Q, et al. Serum immunoglobulin M concentration is positively related to metabolic syndrome in an adult population: Tianjin chronic low-grade systemic inflammation and health (TCLSIH) cohort study. PLoS One. 2014;9:e88701.CrossRef
9.
go back to reference Concato J, Feinstein AR, Holford TR. The risk of determining risk with multivariable models. Ann Intern Med. 1993;118:201–10.CrossRef Concato J, Feinstein AR, Holford TR. The risk of determining risk with multivariable models. Ann Intern Med. 1993;118:201–10.CrossRef
10.
go back to reference Irie M, Nakanishi R, Yasuda M, Fujino Y, Hamada K, Hyodo M. Riks factors for short-term outcomes after thoracoscopic lobectomy for lung cancer. Eur Respir J. 2016;48(2):495–503.CrossRef Irie M, Nakanishi R, Yasuda M, Fujino Y, Hamada K, Hyodo M. Riks factors for short-term outcomes after thoracoscopic lobectomy for lung cancer. Eur Respir J. 2016;48(2):495–503.CrossRef
11.
go back to reference Milewski R, Milewska AJ, Wiesak T, Morgan A. Comparison of artificial neural networks and logistic regression analysis in pregnancy prediction using the in vitro fertilization treatment. Grammar Rhetoric. 2013;35(1):39–48.CrossRef Milewski R, Milewska AJ, Wiesak T, Morgan A. Comparison of artificial neural networks and logistic regression analysis in pregnancy prediction using the in vitro fertilization treatment. Grammar Rhetoric. 2013;35(1):39–48.CrossRef
12.
go back to reference Sherrod BA, Johnston JM, Rocque BG. Risk factors for unplanned readmission within 30 days after pediatric neurosurgery: a nationwide analysis of 9799 procedures from the American College of Surgeons National Surgical Quality Improvement Program. J Neurosurg Pediatr. 2016;18(3):350–62.CrossRef Sherrod BA, Johnston JM, Rocque BG. Risk factors for unplanned readmission within 30 days after pediatric neurosurgery: a nationwide analysis of 9799 procedures from the American College of Surgeons National Surgical Quality Improvement Program. J Neurosurg Pediatr. 2016;18(3):350–62.CrossRef
13.
go back to reference Tsiantoulas D, Diehl CJ, Wilztum JL, Binder CJ. B cells and humoral immunity in atherosclerosis. Circ Res. 2014;114:1743–56.CrossRef Tsiantoulas D, Diehl CJ, Wilztum JL, Binder CJ. B cells and humoral immunity in atherosclerosis. Circ Res. 2014;114:1743–56.CrossRef
14.
go back to reference Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014;9:181–218.CrossRef Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014;9:181–218.CrossRef
15.
go back to reference Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol. 2009;27:165–97.CrossRef Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol. 2009;27:165–97.CrossRef
16.
go back to reference Khamis RY, Hughes AD, Caga-Anan M, et al. High serum immunoglobulin G and M levels predict freedom from adverse cardiovascular events in hypertension: a nested case-control substudy of the Anglo-Scandinavian cardiac outcomes trial. EBioMedicine. 2016;9:372–80.CrossRef Khamis RY, Hughes AD, Caga-Anan M, et al. High serum immunoglobulin G and M levels predict freedom from adverse cardiovascular events in hypertension: a nested case-control substudy of the Anglo-Scandinavian cardiac outcomes trial. EBioMedicine. 2016;9:372–80.CrossRef
17.
go back to reference Sadanand S, Paul BJ, Thachil EJ, et al. Dyslipidemia and its relationship with antiphospholipid antibodies in APS patients in North Kerala. Eur J Rheumatol. 2016;3:161–4.CrossRef Sadanand S, Paul BJ, Thachil EJ, et al. Dyslipidemia and its relationship with antiphospholipid antibodies in APS patients in North Kerala. Eur J Rheumatol. 2016;3:161–4.CrossRef
18.
go back to reference Turkoglu C, Sonmez E, Aydinli A. Relationship between dyslipidemia, C-reactive protein and serological evidence of chlamydia pneumoniae in Turkish patients with coronary artery diseases. New Microbiol. 2004;27:229–34.PubMed Turkoglu C, Sonmez E, Aydinli A. Relationship between dyslipidemia, C-reactive protein and serological evidence of chlamydia pneumoniae in Turkish patients with coronary artery diseases. New Microbiol. 2004;27:229–34.PubMed
19.
go back to reference Miller M. Dyslipidemia and cardiovascular risk: the importance of early prevention. QJM. 2009;102:657–67.CrossRef Miller M. Dyslipidemia and cardiovascular risk: the importance of early prevention. QJM. 2009;102:657–67.CrossRef
20.
go back to reference Guo X, Meng G, Liu F, et al. Serum levels of immunoglobulins in an adult population and their relationship with type 2 diabetes. Diabetes Res Clin Pract. 2016;115:76–82.CrossRef Guo X, Meng G, Liu F, et al. Serum levels of immunoglobulins in an adult population and their relationship with type 2 diabetes. Diabetes Res Clin Pract. 2016;115:76–82.CrossRef
21.
go back to reference Ravandi A, Boekholdt SM, Mallat Z, et al. Relationship of IgG and IgM autoantibodies and immune complexes to oxidized LDL with markers of oxidation and inflammation and cardiovascular events: results from the EPIC-Norfolk study. J Lipid Res. 2011;52:1829–36.CrossRef Ravandi A, Boekholdt SM, Mallat Z, et al. Relationship of IgG and IgM autoantibodies and immune complexes to oxidized LDL with markers of oxidation and inflammation and cardiovascular events: results from the EPIC-Norfolk study. J Lipid Res. 2011;52:1829–36.CrossRef
22.
go back to reference Johnson ML, Pietz K, Battleman DS, et al. Prevalence of comorbid hypertension and dyslipidemia and associated cardiovascular disease. Am J Manag Care. 2004;10:926–32.PubMed Johnson ML, Pietz K, Battleman DS, et al. Prevalence of comorbid hypertension and dyslipidemia and associated cardiovascular disease. Am J Manag Care. 2004;10:926–32.PubMed
23.
go back to reference Austin SR, Wong YN, Uzzo RG, et al. Why summary comorbidity measures such as the Charlson comorbidity index and Elixhauser score work. Med Care. 2015;53:e65–72.CrossRef Austin SR, Wong YN, Uzzo RG, et al. Why summary comorbidity measures such as the Charlson comorbidity index and Elixhauser score work. Med Care. 2015;53:e65–72.CrossRef
24.
go back to reference Nicoletti A, Kaveri S, Caligiuri G, Bariéty J, Hansson GK. Immunoglobulin treatment reduces atherosclerosis in apo E knockout mice. J Clin Invest. 1998;102:910–8.CrossRef Nicoletti A, Kaveri S, Caligiuri G, Bariéty J, Hansson GK. Immunoglobulin treatment reduces atherosclerosis in apo E knockout mice. J Clin Invest. 1998;102:910–8.CrossRef
Metadata
Title
Evaluation of alterations in serum immunoglobulin concentrations in components of metabolic syndrome, obesity, diabetes, and dyslipidemia
Authors
Dee Lin
Mary Barna Bridgeman
Luigi Brunetti
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2019
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-019-01296-0

Other articles of this Issue 1/2019

BMC Cardiovascular Disorders 1/2019 Go to the issue