Skip to main content
Top
Published in: Journal of Neurodevelopmental Disorders 1/2020

Open Access 01-12-2020 | Electroencephalography | Review

Developmental studies in fragile X syndrome

Authors: Khaleel A. Razak, Kelli C. Dominick, Craig A. Erickson

Published in: Journal of Neurodevelopmental Disorders | Issue 1/2020

Login to get access

Abstract

Fragile X syndrome (FXS) is the most common single gene cause of autism and intellectual disabilities. Humans with FXS exhibit increased anxiety, sensory hypersensitivity, seizures, repetitive behaviors, cognitive inflexibility, and social behavioral impairments. The main purpose of this review is to summarize developmental studies of FXS in humans and in the mouse model, the Fmr1 knockout mouse. The literature presents considerable evidence that a number of early developmental deficits can be identified and that these early deficits chart a course of altered developmental experience leading to symptoms well characterized in adolescents and adults. Nevertheless, a number of critical issues remain unclear or untested regarding the development of symptomology and underlying mechanisms. First, what is the role of FMRP, the protein product of Fmr1 gene, during different developmental ages? Does the absence of FMRP during early development lead to irreversible changes, or could reintroduction of FMRP or therapeutics aimed at FMRP-interacting proteins/pathways hold promise when provided in adults? These questions have implications for clinical trial designs in terms of optimal treatment windows, but few studies have systematically addressed these issues in preclinical and clinical work. Published studies also point to complex trajectories of symptom development, leading to the conclusion that single developmental time point studies are unlikely to disambiguate effects of genetic mutation from effects of altered developmental experience and compensatory plasticity. We conclude by suggesting a number of experiments needed to address these major gaps in the field.
Literature
3.
go back to reference Aman MG, Singh NN, Stewart AW, Field CJ. The aberrant behavior checklist: a behavior rating scale for the assessment of treatment effects. Am J Ment Defic. 1985;89(5):485–91.PubMed Aman MG, Singh NN, Stewart AW, Field CJ. The aberrant behavior checklist: a behavior rating scale for the assessment of treatment effects. Am J Ment Defic. 1985;89(5):485–91.PubMed
6.
go back to reference Bailey DB Jr, Hatton DD, Mesibov G, Ament N, Skinner M. Early development, temperament, and functional impairment in autism and fragile X syndrome. J Autism Dev Disord. 2000;30(1):49–59.PubMedCrossRef Bailey DB Jr, Hatton DD, Mesibov G, Ament N, Skinner M. Early development, temperament, and functional impairment in autism and fragile X syndrome. J Autism Dev Disord. 2000;30(1):49–59.PubMedCrossRef
7.
go back to reference Bailey DB Jr, Hatton DD, Skinner M, Mesibov G. Autistic behavior, FMR1 protein, and developmental trajectories in young males with fragile X syndrome. J Autism Dev Disord. 2001a;31(2):165–74.PubMedCrossRef Bailey DB Jr, Hatton DD, Skinner M, Mesibov G. Autistic behavior, FMR1 protein, and developmental trajectories in young males with fragile X syndrome. J Autism Dev Disord. 2001a;31(2):165–74.PubMedCrossRef
9.
go back to reference Bailey DB Jr, Mesibov GB, Hatton DD, Clark RD, Roberts JE, Mayhew L. Autistic behavior in young boys with fragile X syndrome. J Autism Dev Disord. 1998;28(6):499–508.PubMedCrossRef Bailey DB Jr, Mesibov GB, Hatton DD, Clark RD, Roberts JE, Mayhew L. Autistic behavior in young boys with fragile X syndrome. J Autism Dev Disord. 1998;28(6):499–508.PubMedCrossRef
10.
go back to reference Barnea-Goraly N, Eliez S, Hedeus M, et al. White matter tract alterations in fragile X syndrome: preliminary evidence from diffusion tensor imaging. Am J Med Genet B Neuropsychiatr Genet. 2003;118B(1):81–8.PubMedCrossRef Barnea-Goraly N, Eliez S, Hedeus M, et al. White matter tract alterations in fragile X syndrome: preliminary evidence from diffusion tensor imaging. Am J Med Genet B Neuropsychiatr Genet. 2003;118B(1):81–8.PubMedCrossRef
12.
go back to reference Berry-Kravis EM, Lindemann L, Jønch AE, Apostol G, Bear MF, Carpenter RL, Crawley JN, Curie A, Des Portes V, Hossain F, Gasparini F. Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat Rev Drug Discov. 2018;17(4):280.PubMedCrossRef Berry-Kravis EM, Lindemann L, Jønch AE, Apostol G, Bear MF, Carpenter RL, Crawley JN, Curie A, Des Portes V, Hossain F, Gasparini F. Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat Rev Drug Discov. 2018;17(4):280.PubMedCrossRef
15.
go back to reference Brown MR, Kronengold J, Gazula VR, et al. Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nat Neurosci. 2010;13(7):819–21.PubMedPubMedCentralCrossRef Brown MR, Kronengold J, Gazula VR, et al. Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nat Neurosci. 2010;13(7):819–21.PubMedPubMedCentralCrossRef
16.
go back to reference Brown V, Jin P, Ceman S, et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell. 2001;107(4):477–87.PubMedCrossRef Brown V, Jin P, Ceman S, et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell. 2001;107(4):477–87.PubMedCrossRef
19.
go back to reference Bruno JL, Romano D, Mazaika P, et al. Longitudinal identification of clinically distinct neurophenotypes in young children with fragile X syndrome. Proc Natl Acad Sci U S A. 2017. Bruno JL, Romano D, Mazaika P, et al. Longitudinal identification of clinically distinct neurophenotypes in young children with fragile X syndrome. Proc Natl Acad Sci U S A. 2017.
22.
go back to reference Cash RF, Noda Y, Zomorrodi R, Radhu N, Farzan F, Rajji TK, Fitzgerald PB, Chen R, Daskalakis ZJ, Blumberger DM. Characterization of glutamatergic and GABA A-mediated neurotransmission in motor and dorsolateral prefrontal cortex using paired-pulse TMS–EEG. Neuropsychopharmacology. 2017;42(2):502.PubMedCrossRef Cash RF, Noda Y, Zomorrodi R, Radhu N, Farzan F, Rajji TK, Fitzgerald PB, Chen R, Daskalakis ZJ, Blumberger DM. Characterization of glutamatergic and GABA A-mediated neurotransmission in motor and dorsolateral prefrontal cortex using paired-pulse TMS–EEG. Neuropsychopharmacology. 2017;42(2):502.PubMedCrossRef
23.
go back to reference Chao HT, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, Neul JL, Gong S, Lu HC, Heintz N, Ekker M. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature. 2010;468(7321):263.PubMedPubMedCentralCrossRef Chao HT, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, Neul JL, Gong S, Lu HC, Heintz N, Ekker M. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature. 2010;468(7321):263.PubMedPubMedCentralCrossRef
26.
go back to reference D’Hulst C, Heulens I, Van der Aa N, et al. Positron emission tomography (PET) quantification of GABAA receptors in the brain of fragile X patients. PloS one. 2015;10(7):e0131486.PubMedPubMedCentralCrossRef D’Hulst C, Heulens I, Van der Aa N, et al. Positron emission tomography (PET) quantification of GABAA receptors in the brain of fragile X patients. PloS one. 2015;10(7):e0131486.PubMedPubMedCentralCrossRef
29.
go back to reference Deng PY, Rotman Z, Blundon JA, et al. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels. Neuron. 2013;77(4):696–711.PubMedPubMedCentralCrossRef Deng PY, Rotman Z, Blundon JA, et al. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels. Neuron. 2013;77(4):696–711.PubMedPubMedCentralCrossRef
30.
go back to reference Devys D, Lutz Y, Rouyer N, Bellocq J-P, Mandel J-LJ. The FMR–1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat Genet. 1993;4(4):335.PubMedCrossRef Devys D, Lutz Y, Rouyer N, Bellocq J-P, Mandel J-LJ. The FMR–1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat Genet. 1993;4(4):335.PubMedCrossRef
31.
go back to reference Doll CA, Vita DJ, Broadie K. Fragile X mental retardation protein requirements in activity-dependent critical period neural circuit refinement. Curr Biol. 2017;27(15):2318–2330 e2313.PubMedPubMedCentralCrossRef Doll CA, Vita DJ, Broadie K. Fragile X mental retardation protein requirements in activity-dependent critical period neural circuit refinement. Curr Biol. 2017;27(15):2318–2330 e2313.PubMedPubMedCentralCrossRef
32.
go back to reference Durand S, Patrizi A, Quast KB, Hachigian L, Pavlyuk R, Saxena A, Carninci P, Hensch TK, Fagiolini M. NMDA receptor regulation prevents regression of visual cortical function in the absence of Mecp2. Neuron. 2012;76(6):1078–90.PubMedPubMedCentralCrossRef Durand S, Patrizi A, Quast KB, Hachigian L, Pavlyuk R, Saxena A, Carninci P, Hensch TK, Fagiolini M. NMDA receptor regulation prevents regression of visual cortical function in the absence of Mecp2. Neuron. 2012;76(6):1078–90.PubMedPubMedCentralCrossRef
33.
go back to reference Dykens E, Ort S, Cohen I, Finucane B, Spiridigliozzi G, Lachiewicz A, et al. Trajectories and profiles of adaptive behavior in males with fragile X syndrome: multicenter studies. J Autism Dev Disord. 1996;26(3):287–301.PubMedCrossRef Dykens E, Ort S, Cohen I, Finucane B, Spiridigliozzi G, Lachiewicz A, et al. Trajectories and profiles of adaptive behavior in males with fragile X syndrome: multicenter studies. J Autism Dev Disord. 1996;26(3):287–301.PubMedCrossRef
34.
go back to reference Einfeld S, Tonge B, Turner G, Parmenter T, Smith A. Longitudinal course of behavioural and emotional problems of young persons with Prader-Willi, fragile X, Williams and Down syndromes. J Intellect Develop Disabil. 1999;24(4):349–54.CrossRef Einfeld S, Tonge B, Turner G, Parmenter T, Smith A. Longitudinal course of behavioural and emotional problems of young persons with Prader-Willi, fragile X, Williams and Down syndromes. J Intellect Develop Disabil. 1999;24(4):349–54.CrossRef
35.
go back to reference Eliez S, Blasey CM, Freund LS, Hastie T, Reiss AL. Brain anatomy, gender and IQ in children and adolescents with fragile X syndrome. Brain. 2001;124(Pt 8):1610–8.PubMedCrossRef Eliez S, Blasey CM, Freund LS, Hastie T, Reiss AL. Brain anatomy, gender and IQ in children and adolescents with fragile X syndrome. Brain. 2001;124(Pt 8):1610–8.PubMedCrossRef
40.
go back to reference Fisch GS, Carpenter N, Howard-Peebles PN, Holden JJ, Tarleton J, Simensen R. The course of cognitive-behavioral development in children with the FMR1 mutation, Williams-Beuren syndrome, and neurofibromatosis type 1: the effect of gender. Am J Med Genet A. 2010;152A(6):1498–509 https://doi.org/10.1002/ajmg.a.33412.PubMed Fisch GS, Carpenter N, Howard-Peebles PN, Holden JJ, Tarleton J, Simensen R. The course of cognitive-behavioral development in children with the FMR1 mutation, Williams-Beuren syndrome, and neurofibromatosis type 1: the effect of gender. Am J Med Genet A. 2010;152A(6):1498–509 https://​doi.​org/​10.​1002/​ajmg.​a.​33412.PubMed
43.
go back to reference Gao W, Alcauter S, Smith JK, Gilmore JH, Lin W. Development of human brain cortical network architecture during infancy. Brain Struct Funct. 2015;220(2):1173–86.PubMedCrossRef Gao W, Alcauter S, Smith JK, Gilmore JH, Lin W. Development of human brain cortical network architecture during infancy. Brain Struct Funct. 2015;220(2):1173–86.PubMedCrossRef
44.
go back to reference Gatto CL, Broadie K. Temporal requirements of the fragile x mental retardation protein in modulating circadian clock circuit synaptic architecture. Front Neural Circuits. 2009;3:8.PubMedPubMedCentralCrossRef Gatto CL, Broadie K. Temporal requirements of the fragile x mental retardation protein in modulating circadian clock circuit synaptic architecture. Front Neural Circuits. 2009;3:8.PubMedPubMedCentralCrossRef
48.
go back to reference Goel A, Cantu DA, Guilfoyle J, et al. Impaired perceptual learning in a mouse model of Fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible. Nat Neurosci. 2018;21(10):1404–11.PubMedPubMedCentralCrossRef Goel A, Cantu DA, Guilfoyle J, et al. Impaired perceptual learning in a mouse model of Fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible. Nat Neurosci. 2018;21(10):1404–11.PubMedPubMedCentralCrossRef
52.
go back to reference Green T, Barnea-Goraly N, Raman M, et al. Specific effect of the fragile-X mental retardation-1 gene (FMR1) on white matter microstructure. Br J Psychiatry. 2015;207(2):143–8.PubMedPubMedCentralCrossRef Green T, Barnea-Goraly N, Raman M, et al. Specific effect of the fragile-X mental retardation-1 gene (FMR1) on white matter microstructure. Br J Psychiatry. 2015;207(2):143–8.PubMedPubMedCentralCrossRef
53.
go back to reference Gu B, Carstens KE, Judson MC, Dalton KA, Rougié M, Clark EP, Dudek SM, Philpot BD. Ube3a reinstatement mitigates epileptogenesis in Angelman syndrome model mice. J Clin Invest. 2018;129(1):163–8.PubMedPubMedCentralCrossRef Gu B, Carstens KE, Judson MC, Dalton KA, Rougié M, Clark EP, Dudek SM, Philpot BD. Ube3a reinstatement mitigates epileptogenesis in Angelman syndrome model mice. J Clin Invest. 2018;129(1):163–8.PubMedPubMedCentralCrossRef
54.
go back to reference Guerreiro MM, Camargo EE, Kato M, Marques-de-Faria AP, Ciasca SM, Guerreiro CA, et al. Fragile X syndrome. Clinical, electroencephalographic and neuroimaging characteristics. Arq Neuropsiquiatr. 1998;56(1):18–23.PubMedCrossRef Guerreiro MM, Camargo EE, Kato M, Marques-de-Faria AP, Ciasca SM, Guerreiro CA, et al. Fragile X syndrome. Clinical, electroencephalographic and neuroimaging characteristics. Arq Neuropsiquiatr. 1998;56(1):18–23.PubMedCrossRef
55.
go back to reference Guy J, Gan J, Selfridge J, Cobb S, Bird A. Reversal of neurological defects in a mouse model of Rett syndrome. Science. 2007;315(5815):1143–7.PubMedCrossRef Guy J, Gan J, Selfridge J, Cobb S, Bird A. Reversal of neurological defects in a mouse model of Rett syndrome. Science. 2007;315(5815):1143–7.PubMedCrossRef
64.
go back to reference Hatton DD, Hooper SR, Bailey DB, Skinner ML, Sullivan KM, Wheeler A. Problem behavior in boys with fragile X syndrome. Am J Med Genet. 2002;108(2):105–16.PubMedCrossRef Hatton DD, Hooper SR, Bailey DB, Skinner ML, Sullivan KM, Wheeler A. Problem behavior in boys with fragile X syndrome. Am J Med Genet. 2002;108(2):105–16.PubMedCrossRef
69.
go back to reference He Q, Arroyo ED, Smukowski SN, Xu J, Piochon C, Savas JN, et al. Critical period inhibition of NKCC1 rectifies synapse plasticity in the somatosensory cortex and restores adult tactile response maps in fragile X mice. Mol Psychiatry. 2018; https://doi.org/10.1038/s41380-018-0048-y. He Q, Arroyo ED, Smukowski SN, Xu J, Piochon C, Savas JN, et al. Critical period inhibition of NKCC1 rectifies synapse plasticity in the somatosensory cortex and restores adult tactile response maps in fragile X mice. Mol Psychiatry. 2018; https://​doi.​org/​10.​1038/​s41380-018-0048-y.
70.
go back to reference Hessl D, Dyer-Friedman J, Glaser B, Wisbeck J, Barajas RG, Taylor A, Reiss AL. The influence of environmental and genetic factors on behavior problems and autistic symptoms in boys and girls with fragile X syndrome. Pediatrics. 2001;108(5):E88.PubMedCrossRef Hessl D, Dyer-Friedman J, Glaser B, Wisbeck J, Barajas RG, Taylor A, Reiss AL. The influence of environmental and genetic factors on behavior problems and autistic symptoms in boys and girls with fragile X syndrome. Pediatrics. 2001;108(5):E88.PubMedCrossRef
71.
go back to reference Hodges SL, Reynolds CD, Nolan SO, Huebschman JL, Okoh JT, Binder MS, Lugo JN. A single early-life seizure results in long-term behavioral changes in the adult Fmr1 knockout mouse. Epilepsy Res. 2019;157:106193.PubMedCrossRef Hodges SL, Reynolds CD, Nolan SO, Huebschman JL, Okoh JT, Binder MS, Lugo JN. A single early-life seizure results in long-term behavioral changes in the adult Fmr1 knockout mouse. Epilepsy Res. 2019;157:106193.PubMedCrossRef
78.
go back to reference Irwin SA, Galvez R, Greenough WT. Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb Cortex. 2000;10(10):1038–44.PubMedCrossRef Irwin SA, Galvez R, Greenough WT. Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb Cortex. 2000;10(10):1038–44.PubMedCrossRef
80.
go back to reference Irwin SA, Patel B, Idupulapati M, Harris JB, Crisostomo RA, Larsen BP, et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet. 2001;98(2):161–7.PubMedCrossRef Irwin SA, Patel B, Idupulapati M, Harris JB, Crisostomo RA, Larsen BP, et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet. 2001;98(2):161–7.PubMedCrossRef
81.
go back to reference Jacquemont S, Pacini L, Jonch AE, et al. Protein synthesis levels are increased in a subset of individuals with fragile X syndrome. Hum Mol Genet. 2018;27(12):2039–51.PubMedPubMedCentralCrossRef Jacquemont S, Pacini L, Jonch AE, et al. Protein synthesis levels are increased in a subset of individuals with fragile X syndrome. Hum Mol Genet. 2018;27(12):2039–51.PubMedPubMedCentralCrossRef
82.
go back to reference Kates WR, Abrams MT, Kaufmann WE, Breiter SN, Reiss AL. Reliability and validity of MRI measurement of the amygdala and hippocampus in children with fragile X syndrome. Psychiatry Res. 1997;75(1):31–48.PubMedCrossRef Kates WR, Abrams MT, Kaufmann WE, Breiter SN, Reiss AL. Reliability and validity of MRI measurement of the amygdala and hippocampus in children with fragile X syndrome. Psychiatry Res. 1997;75(1):31–48.PubMedCrossRef
83.
go back to reference Kim H, Gibboni R, Kirkhart C, Bao S. Impaired critical period plasticity in primary auditory cortex of fragile X model mice. J Neurosci. 2013;33(40):15686–92.PubMedPubMedCentralCrossRef Kim H, Gibboni R, Kirkhart C, Bao S. Impaired critical period plasticity in primary auditory cortex of fragile X model mice. J Neurosci. 2013;33(40):15686–92.PubMedPubMedCentralCrossRef
84.
go back to reference Kitzerow J, Teufel K, Wilker C, Freitag CM. Using the brief observation of social communication change (BOSCC) to measure autism-specific development. Autism Res. 2016;9(9):940–50.PubMedCrossRef Kitzerow J, Teufel K, Wilker C, Freitag CM. Using the brief observation of social communication change (BOSCC) to measure autism-specific development. Autism Res. 2016;9(9):940–50.PubMedCrossRef
87.
go back to reference Kulinich AO, Reinhard SM, Rais M, Lovelace JW, Scott V, Binder DK, Razak KA, Ethell IM. Beneficial effects of sound exposure on auditory cortex development in a mouse model of fragile X syndrome. Neurobiol Dis. 2019;134:104622.PubMedCrossRef Kulinich AO, Reinhard SM, Rais M, Lovelace JW, Scott V, Binder DK, Razak KA, Ethell IM. Beneficial effects of sound exposure on auditory cortex development in a mouse model of fragile X syndrome. Neurobiol Dis. 2019;134:104622.PubMedCrossRef
88.
go back to reference Kwon H, Menon V, Eliez S, Warsofsky IS, White CD, Dyer-Friedman J, et al. Functional neuroanatomy of visuospatial working memory in fragile X syndrome: relation to behavioral and molecular measures. Am J Psychiatry. 2001;158(7):1040–51.PubMedCrossRef Kwon H, Menon V, Eliez S, Warsofsky IS, White CD, Dyer-Friedman J, et al. Functional neuroanatomy of visuospatial working memory in fragile X syndrome: relation to behavioral and molecular measures. Am J Psychiatry. 2001;158(7):1040–51.PubMedCrossRef
93.
go back to reference Liu ZH, Huang T, Smith CB. Lithium reverses increased rates of cerebral protein synthesis in a mouse model of fragile X syndrome. Neurobiol Dis. 2012;45(3):1145–52.PubMedCrossRef Liu ZH, Huang T, Smith CB. Lithium reverses increased rates of cerebral protein synthesis in a mouse model of fragile X syndrome. Neurobiol Dis. 2012;45(3):1145–52.PubMedCrossRef
95.
go back to reference Loesch DZ, Huggins RM, Bui QM, Epstein JL, Taylor AK, Hagerman RJ. Effect of the deficits of fragile X mental retardation protein on cognitive status of fragile x males and females assessed by robust pedigree analysis. J Dev Behav Pediatr. 2002;23(6):416–23.PubMedCrossRef Loesch DZ, Huggins RM, Bui QM, Epstein JL, Taylor AK, Hagerman RJ. Effect of the deficits of fragile X mental retardation protein on cognitive status of fragile x males and females assessed by robust pedigree analysis. J Dev Behav Pediatr. 2002;23(6):416–23.PubMedCrossRef
100.
go back to reference Lovelace JW, Wen TH, Reinhard S, et al. Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of fragile X syndrome. Neurobiol Dis. 2016;89:126–35.PubMedPubMedCentralCrossRef Lovelace JW, Wen TH, Reinhard S, et al. Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of fragile X syndrome. Neurobiol Dis. 2016;89:126–35.PubMedPubMedCentralCrossRef
103.
go back to reference Meredith RM, Dawitz J, Kramvis I. Sensitive time-windows for susceptibility in neurodevelopmental disorders. Trends Neurosci. 2012;35(6):335–44.PubMedCrossRef Meredith RM, Dawitz J, Kramvis I. Sensitive time-windows for susceptibility in neurodevelopmental disorders. Trends Neurosci. 2012;35(6):335–44.PubMedCrossRef
104.
go back to reference Morin-Parent F, Champigny C, Lacroix A, Corbin F, Lepage J-FJ. Hyperexcitability and impaired intracortical inhibition in patients with fragile-X syndrome. Transl Psychiatry. 2019;9(1):1–9.CrossRef Morin-Parent F, Champigny C, Lacroix A, Corbin F, Lepage J-FJ. Hyperexcitability and impaired intracortical inhibition in patients with fragile-X syndrome. Transl Psychiatry. 2019;9(1):1–9.CrossRef
105.
go back to reference Mostofsky SH, Mazzocco MM, Aakalu G, Warsofsky IS, Denckla MB, Reiss AL. Decreased cerebellar posterior vermis size in fragile X syndrome: correlation with neurocognitive performance. Neurology. 1998;50(1):121–30.PubMedCrossRef Mostofsky SH, Mazzocco MM, Aakalu G, Warsofsky IS, Denckla MB, Reiss AL. Decreased cerebellar posterior vermis size in fragile X syndrome: correlation with neurocognitive performance. Neurology. 1998;50(1):121–30.PubMedCrossRef
106.
go back to reference Mullen EM. Mullen scales of early learning: AGS edition manual. Circle Pines: AGS; 1995. Mullen EM. Mullen scales of early learning: AGS edition manual. Circle Pines: AGS; 1995.
107.
go back to reference Nomura T, Musial TF, Marshall JJ, et al. Delayed maturation of fast-spiking interneurons is rectified by activation of the TrkB receptor in the mouse model of fragile X syndrome. J Neurosci. 2017;37(47):11298–310.PubMedPubMedCentralCrossRef Nomura T, Musial TF, Marshall JJ, et al. Delayed maturation of fast-spiking interneurons is rectified by activation of the TrkB receptor in the mouse model of fragile X syndrome. J Neurosci. 2017;37(47):11298–310.PubMedPubMedCentralCrossRef
108.
go back to reference O'Donnell WT, Warren ST. A decade of molecular studies of fragile X syndrome. Annu Rev Neurosci. 2002;25:315–38.PubMedCrossRef O'Donnell WT, Warren ST. A decade of molecular studies of fragile X syndrome. Annu Rev Neurosci. 2002;25:315–38.PubMedCrossRef
109.
go back to reference Osterweil EK, Krueger DD, Reinhold K, Bear MF. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J Neurosci. 2010;30(46):15616–27.PubMedPubMedCentralCrossRef Osterweil EK, Krueger DD, Reinhold K, Bear MF. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J Neurosci. 2010;30(46):15616–27.PubMedPubMedCentralCrossRef
111.
go back to reference Patrizi A, Picard N, Simon AJ, Gunner G, Centofante E, Andrews NA, Fagiolini M. Chronic administration of the N-methyl-D-aspartate receptor antagonist ketamine improves Rett syndrome phenotype. Biol Psychiatry. 2016;79(9):755–64.PubMedCrossRef Patrizi A, Picard N, Simon AJ, Gunner G, Centofante E, Andrews NA, Fagiolini M. Chronic administration of the N-methyl-D-aspartate receptor antagonist ketamine improves Rett syndrome phenotype. Biol Psychiatry. 2016;79(9):755–64.PubMedCrossRef
113.
go back to reference Premoli I, Rivolta D, Espenhahn S, Castellanos N, Belardinelli P, Ziemann U, Müller-Dahlhaus F. Characterization of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS–EEG. Neuroimage. 2014;103:152–62.PubMedCrossRef Premoli I, Rivolta D, Espenhahn S, Castellanos N, Belardinelli P, Ziemann U, Müller-Dahlhaus F. Characterization of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS–EEG. Neuroimage. 2014;103:152–62.PubMedCrossRef
114.
go back to reference Qin M, Schmidt KC, Zametkin AJ, et al. Altered cerebral protein synthesis in fragile X syndrome: studies in human subjects and knockout mice. J Cereb Blood Flow Metab. 2013;33(4):499–507.PubMedPubMedCentralCrossRef Qin M, Schmidt KC, Zametkin AJ, et al. Altered cerebral protein synthesis in fragile X syndrome: studies in human subjects and knockout mice. J Cereb Blood Flow Metab. 2013;33(4):499–507.PubMedPubMedCentralCrossRef
116.
go back to reference Reisinger DL, Shaffer RC, Pedapati EV, Dominick KC, Erickson CA. A pilot quantitative evaluation of early life language development in fragile X syndrome. Brain Sci. 2019;9(2). Reisinger DL, Shaffer RC, Pedapati EV, Dominick KC, Erickson CA. A pilot quantitative evaluation of early life language development in fragile X syndrome. Brain Sci. 2019;9(2).
124.
go back to reference Schneider A, Leigh MJ, Adams P, et al. Electrocortical changes associated with minocycline treatment in fragile X syndrome. J Psychopharmacol. 2013;27(10):956–63.PubMedCrossRef Schneider A, Leigh MJ, Adams P, et al. Electrocortical changes associated with minocycline treatment in fragile X syndrome. J Psychopharmacol. 2013;27(10):956–63.PubMedCrossRef
127.
go back to reference Siegel JJ, Chitwood RA, Ding JM, Payne C, Taylor W, Gray R, Zemelman BV, Johnston D. Prefrontal cortex dysfunction in fragile X mice depends on the continued absence of fragile X mental retardation protein in the adult brain. J Neurosci. 2017;37(31):7305–17.PubMedPubMedCentralCrossRef Siegel JJ, Chitwood RA, Ding JM, Payne C, Taylor W, Gray R, Zemelman BV, Johnston D. Prefrontal cortex dysfunction in fragile X mice depends on the continued absence of fragile X mental retardation protein in the adult brain. J Neurosci. 2017;37(31):7305–17.PubMedPubMedCentralCrossRef
128.
go back to reference Silva-Santos S, Van Woerden GM, Bruinsma CF, Mientjes E, Jolfaei MA, Distel B, et al. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model. J Clin Invest. 2015;125(5):2069–76.PubMedPubMedCentralCrossRef Silva-Santos S, Van Woerden GM, Bruinsma CF, Mientjes E, Jolfaei MA, Distel B, et al. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model. J Clin Invest. 2015;125(5):2069–76.PubMedPubMedCentralCrossRef
129.
go back to reference Sinclair D, Featherstone R, Naschek M, et al. GABA-B agonist baclofen normalizes auditory-evoked neural oscillations and behavioral deficits in the Fmr1 knockout mouse model of fragile X syndrome. Eneuro. 2017;4(1). Sinclair D, Featherstone R, Naschek M, et al. GABA-B agonist baclofen normalizes auditory-evoked neural oscillations and behavioral deficits in the Fmr1 knockout mouse model of fragile X syndrome. Eneuro. 2017;4(1).
134.
go back to reference Tassone F, Hagerman RJ, Ikle DN, Dyer PN, Lampe M, Willemsen R, et al. FMRP expression as a potential prognostic indicator in fragile X syndrome. Am J Med Genet. 1999;84(3):250–61.PubMedCrossRef Tassone F, Hagerman RJ, Ikle DN, Dyer PN, Lampe M, Willemsen R, et al. FMRP expression as a potential prognostic indicator in fragile X syndrome. Am J Med Genet. 1999;84(3):250–61.PubMedCrossRef
139.
go back to reference Wechsler D. Wechsler intelligence scale for children in. 3rd ed ed. San Antonio: Psychological Corporation; 1991. Wechsler D. Wechsler intelligence scale for children in. 3rd ed ed. San Antonio: Psychological Corporation; 1991.
140.
go back to reference Wen TH, Afroz S, Reinhard SM, Palacios AR, Tapia K, Binder DK, Razak KA, Ethell IM. Genetic reduction of matrix metalloproteinase-9 promotes formation of perineuronal nets around parvalbumin-expressing interneurons and normalizes auditory cortex responses in developing Fmr1 knock-out mice. Cereb Cortex. 2017;13:1–14. Wen TH, Afroz S, Reinhard SM, Palacios AR, Tapia K, Binder DK, Razak KA, Ethell IM. Genetic reduction of matrix metalloproteinase-9 promotes formation of perineuronal nets around parvalbumin-expressing interneurons and normalizes auditory cortex responses in developing Fmr1 knock-out mice. Cereb Cortex. 2017;13:1–14.
141.
go back to reference Wen TH, Afroz S, Reinhard SM, et al. Genetic reduction of matrix metalloproteinase-9 promotes formation of perineuronal nets around parvalbumin-expressing interneurons and normalizes auditory cortex responses in developing Fmr1 knock-out mice. Cereb Cortex. 2018a;28(11):3951–64.PubMedCrossRef Wen TH, Afroz S, Reinhard SM, et al. Genetic reduction of matrix metalloproteinase-9 promotes formation of perineuronal nets around parvalbumin-expressing interneurons and normalizes auditory cortex responses in developing Fmr1 knock-out mice. Cereb Cortex. 2018a;28(11):3951–64.PubMedCrossRef
142.
go back to reference Wen TH, Lovelace JW, Ethell IM, Binder DK, Razak KA. Developmental changes in EEG phenotypes in a mouse model of fragile X syndrome. Neuroscience. 2019;398:126–43.PubMedCrossRef Wen TH, Lovelace JW, Ethell IM, Binder DK, Razak KA. Developmental changes in EEG phenotypes in a mouse model of fragile X syndrome. Neuroscience. 2019;398:126–43.PubMedCrossRef
147.
go back to reference Yu S, Pritchard M, Kremer E, et al. Fragile X genotype characterized by an unstable region of DNA. Science. 1991;252(5009):1179–81.PubMedCrossRef Yu S, Pritchard M, Kremer E, et al. Fragile X genotype characterized by an unstable region of DNA. Science. 1991;252(5009):1179–81.PubMedCrossRef
148.
go back to reference Zalfa F, Giorgi M, Primerano B, Moro A, Di Penta A, Reis S, Oostra B, Bagni C. The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell. 2003;112(3):317–27.PubMedCrossRef Zalfa F, Giorgi M, Primerano B, Moro A, Di Penta A, Reis S, Oostra B, Bagni C. The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell. 2003;112(3):317–27.PubMedCrossRef
149.
go back to reference Zeier Z, Kumar A, Bodhinathan K, Feller JA, Foster TC, Bloom DC. Fragile X mental retardation protein replacement restores hippocampal synaptic function in a mouse model of fragile X syndrome. Gene Ther. 2009;16(9):1122.PubMedPubMedCentralCrossRef Zeier Z, Kumar A, Bodhinathan K, Feller JA, Foster TC, Bloom DC. Fragile X mental retardation protein replacement restores hippocampal synaptic function in a mouse model of fragile X syndrome. Gene Ther. 2009;16(9):1122.PubMedPubMedCentralCrossRef
Metadata
Title
Developmental studies in fragile X syndrome
Authors
Khaleel A. Razak
Kelli C. Dominick
Craig A. Erickson
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Neurodevelopmental Disorders / Issue 1/2020
Print ISSN: 1866-1947
Electronic ISSN: 1866-1955
DOI
https://doi.org/10.1186/s11689-020-09310-9

Other articles of this Issue 1/2020

Journal of Neurodevelopmental Disorders 1/2020 Go to the issue