Skip to main content
Top
Published in: Vascular Cell 1/2012

Open Access 01-12-2012 | Review

Myeloid cells in tumor inflammation

Authors: Michael C Schmid, Judith A Varner

Published in: Vascular Cell | Issue 1/2012

Login to get access

Abstract

Bone marrow derived myeloid cells progressively accumulate in tumors, where they establish an inflammatory microenvironment that is favorable for tumor growth and spread. These cells are comprised primarily of monocytic and granulocytic myeloid derived suppressor cells (MDSCs) or tumor-associated macrophages (TAMs), which are generally associated with a poor clinical outcome. MDSCs and TAMs promote tumor progression by stimulating immunosuppression, neovascularization, metastasis and resistance to anti-cancer therapy. Strategies to target the tumor-promoting functions of myeloid cells could provide substantial therapeutic benefit to cancer patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Biswas SK, Mantovani A: Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010, 11 (10): 889-896. 10.1038/ni.1937.CrossRefPubMed Biswas SK, Mantovani A: Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010, 11 (10): 889-896. 10.1038/ni.1937.CrossRefPubMed
4.
5.
go back to reference Mantovani A, et al: Cancer-related inflammation. Nature. 2008, 454 (7203): 436-444. 10.1038/nature07205.CrossRefPubMed Mantovani A, et al: Cancer-related inflammation. Nature. 2008, 454 (7203): 436-444. 10.1038/nature07205.CrossRefPubMed
6.
go back to reference Mantovani A, Sica A: Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010, 22 (2): 231-237. 10.1016/j.coi.2010.01.009.CrossRefPubMed Mantovani A, Sica A: Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010, 22 (2): 231-237. 10.1016/j.coi.2010.01.009.CrossRefPubMed
7.
go back to reference Hanahan D, Coussens LM: Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012, 21 (3): 309-322. 10.1016/j.ccr.2012.02.022.CrossRefPubMed Hanahan D, Coussens LM: Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012, 21 (3): 309-322. 10.1016/j.ccr.2012.02.022.CrossRefPubMed
8.
go back to reference Gabrilovich DI, Ostrand-Rosenberg S, Bronte V: Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012, 12 (4): 253-268. 10.1038/nri3175.PubMedCentralCrossRefPubMed Gabrilovich DI, Ostrand-Rosenberg S, Bronte V: Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012, 12 (4): 253-268. 10.1038/nri3175.PubMedCentralCrossRefPubMed
11.
go back to reference Gordon S, Martinez FO: Alternative activation of macrophages: mechanism and functions. Immunity. 2010, 32 (5): 593-604. 10.1016/j.immuni.2010.05.007.CrossRefPubMed Gordon S, Martinez FO: Alternative activation of macrophages: mechanism and functions. Immunity. 2010, 32 (5): 593-604. 10.1016/j.immuni.2010.05.007.CrossRefPubMed
12.
go back to reference Greten FR, et al: IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004, 118 (3): 285-296. 10.1016/j.cell.2004.07.013.CrossRefPubMed Greten FR, et al: IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004, 118 (3): 285-296. 10.1016/j.cell.2004.07.013.CrossRefPubMed
13.
go back to reference Karin M, Greten FR: NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005, 5 (10): 749-759. 10.1038/nri1703.CrossRefPubMed Karin M, Greten FR: NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005, 5 (10): 749-759. 10.1038/nri1703.CrossRefPubMed
14.
go back to reference Lin EY, et al: Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006, 66 (23): 11238-11246. 10.1158/0008-5472.CAN-06-1278.CrossRefPubMed Lin EY, et al: Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006, 66 (23): 11238-11246. 10.1158/0008-5472.CAN-06-1278.CrossRefPubMed
15.
go back to reference Qian B, et al: A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One. 2009, 4 (8): e6562-10.1371/journal.pone.0006562.PubMedCentralCrossRefPubMed Qian B, et al: A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One. 2009, 4 (8): e6562-10.1371/journal.pone.0006562.PubMedCentralCrossRefPubMed
16.
go back to reference Ruffell B, Affara NI, Coussens LM: Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012, 33 (3): 119-126. 10.1016/j.it.2011.12.001.PubMedCentralCrossRefPubMed Ruffell B, Affara NI, Coussens LM: Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012, 33 (3): 119-126. 10.1016/j.it.2011.12.001.PubMedCentralCrossRefPubMed
17.
go back to reference Qian BZ, Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 2010, 141 (1): 39-51. 10.1016/j.cell.2010.03.014.CrossRefPubMed Qian BZ, Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 2010, 141 (1): 39-51. 10.1016/j.cell.2010.03.014.CrossRefPubMed
18.
go back to reference Rolny C, et al: HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell. 2011, 19 (1): 31-44. 10.1016/j.ccr.2010.11.009.CrossRefPubMed Rolny C, et al: HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell. 2011, 19 (1): 31-44. 10.1016/j.ccr.2010.11.009.CrossRefPubMed
19.
go back to reference Peranzoni E, et al: Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol. 2010, 22 (2): 238-244. 10.1016/j.coi.2010.01.021.CrossRefPubMed Peranzoni E, et al: Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol. 2010, 22 (2): 238-244. 10.1016/j.coi.2010.01.021.CrossRefPubMed
20.
go back to reference Bronte V, et al: Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood. 2000, 96 (12): 3838-3846.PubMedCentralPubMed Bronte V, et al: Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood. 2000, 96 (12): 3838-3846.PubMedCentralPubMed
21.
go back to reference Mandruzzato S, et al: IL4Ralpha + myeloid-derived suppressor cell expansion in cancer patients. J Immunol. 2009, 182 (10): 6562-6568. 10.4049/jimmunol.0803831.CrossRefPubMed Mandruzzato S, et al: IL4Ralpha + myeloid-derived suppressor cell expansion in cancer patients. J Immunol. 2009, 182 (10): 6562-6568. 10.4049/jimmunol.0803831.CrossRefPubMed
22.
go back to reference Corzo CA, et al: HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med. 2010, 207 (11): 2439-2453. 10.1084/jem.20100587.PubMedCentralCrossRefPubMed Corzo CA, et al: HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med. 2010, 207 (11): 2439-2453. 10.1084/jem.20100587.PubMedCentralCrossRefPubMed
23.
go back to reference Corzo CA, et al: Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol. 2009, 182 (9): 5693-5701. 10.4049/jimmunol.0900092.PubMedCentralCrossRefPubMed Corzo CA, et al: Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol. 2009, 182 (9): 5693-5701. 10.4049/jimmunol.0900092.PubMedCentralCrossRefPubMed
24.
go back to reference Diaz-Montero CM, et al: Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009, 58 (1): 49-59. 10.1007/s00262-008-0523-4.PubMedCentralCrossRefPubMed Diaz-Montero CM, et al: Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009, 58 (1): 49-59. 10.1007/s00262-008-0523-4.PubMedCentralCrossRefPubMed
25.
go back to reference Movahedi K, et al: Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008, 111 (8): 4233-4244. 10.1182/blood-2007-07-099226.CrossRefPubMed Movahedi K, et al: Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008, 111 (8): 4233-4244. 10.1182/blood-2007-07-099226.CrossRefPubMed
26.
go back to reference Yang R, et al: CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1 + CD11b + myeloid cells. Cancer Res. 2006, 66 (13): 6807-6815. 10.1158/0008-5472.CAN-05-3755.CrossRefPubMed Yang R, et al: CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1 + CD11b + myeloid cells. Cancer Res. 2006, 66 (13): 6807-6815. 10.1158/0008-5472.CAN-05-3755.CrossRefPubMed
27.
go back to reference Gallina G, et al: Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest. 2006, 116 (10): 2777-2790. 10.1172/JCI28828.PubMedCentralCrossRefPubMed Gallina G, et al: Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest. 2006, 116 (10): 2777-2790. 10.1172/JCI28828.PubMedCentralCrossRefPubMed
28.
go back to reference Sawanobori Y, et al: Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood. 2008, 111 (12): 5457-5466. 10.1182/blood-2008-01-136895.CrossRefPubMed Sawanobori Y, et al: Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood. 2008, 111 (12): 5457-5466. 10.1182/blood-2008-01-136895.CrossRefPubMed
30.
go back to reference Haile LA, et al: CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice. J Immunol. 2010, 185 (1): 203-210. 10.4049/jimmunol.0903573.CrossRefPubMed Haile LA, et al: CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice. J Immunol. 2010, 185 (1): 203-210. 10.4049/jimmunol.0903573.CrossRefPubMed
31.
go back to reference Van Ginderachter JA, et al: Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands reverse CTL suppression by alternatively activated (M2) macrophages in cancer. Blood. 2006, 108 (2): 525-535. 10.1182/blood-2005-09-3777.CrossRefPubMed Van Ginderachter JA, et al: Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands reverse CTL suppression by alternatively activated (M2) macrophages in cancer. Blood. 2006, 108 (2): 525-535. 10.1182/blood-2005-09-3777.CrossRefPubMed
32.
go back to reference Almand B, et al: Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001, 166 (1): 678-689.CrossRefPubMed Almand B, et al: Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001, 166 (1): 678-689.CrossRefPubMed
33.
go back to reference Ochoa AC, et al: Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res. 2007, 13 (2 Pt 2): 721s-726s.CrossRefPubMed Ochoa AC, et al: Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res. 2007, 13 (2 Pt 2): 721s-726s.CrossRefPubMed
34.
go back to reference Filipazzi P, et al: Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007, 25 (18): 2546-2553. 10.1200/JCO.2006.08.5829.CrossRefPubMed Filipazzi P, et al: Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007, 25 (18): 2546-2553. 10.1200/JCO.2006.08.5829.CrossRefPubMed
35.
go back to reference Hoechst B, et al: A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008, 135 (1): 234-243. 10.1053/j.gastro.2008.03.020.CrossRefPubMed Hoechst B, et al: A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology. 2008, 135 (1): 234-243. 10.1053/j.gastro.2008.03.020.CrossRefPubMed
36.
go back to reference Vuk-Pavlovic S, et al: Immunosuppressive CD14 + HLA-DRlow/- monocytes in prostate cancer. Prostate. 2010, 70 (4): 443-455.PubMedCentralPubMed Vuk-Pavlovic S, et al: Immunosuppressive CD14 + HLA-DRlow/- monocytes in prostate cancer. Prostate. 2010, 70 (4): 443-455.PubMedCentralPubMed
37.
go back to reference Solito S, et al: A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood. 2011, 118 (8): 2254-2265. 10.1182/blood-2010-12-325753.PubMedCentralCrossRefPubMed Solito S, et al: A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood. 2011, 118 (8): 2254-2265. 10.1182/blood-2010-12-325753.PubMedCentralCrossRefPubMed
38.
go back to reference Luster AD, Alon R, von Andrian UH: Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol. 2005, 6 (12): 1182-1190. 10.1038/ni1275.CrossRefPubMed Luster AD, Alon R, von Andrian UH: Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol. 2005, 6 (12): 1182-1190. 10.1038/ni1275.CrossRefPubMed
39.
go back to reference Weber C, Koenen RR: Fine-tuning leukocyte responses: towards a chemokine’interactome’. Trends Immunol. 2006, 27 (6): 268-273. 10.1016/j.it.2006.04.002.CrossRefPubMed Weber C, Koenen RR: Fine-tuning leukocyte responses: towards a chemokine’interactome’. Trends Immunol. 2006, 27 (6): 268-273. 10.1016/j.it.2006.04.002.CrossRefPubMed
40.
go back to reference Du R, et al: HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell. 2008, 13 (3): 206-220. 10.1016/j.ccr.2008.01.034.PubMedCentralCrossRefPubMed Du R, et al: HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell. 2008, 13 (3): 206-220. 10.1016/j.ccr.2008.01.034.PubMedCentralCrossRefPubMed
41.
go back to reference Nakasone ES, et al: Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell. 2012, 21 (4): 488-503. 10.1016/j.ccr.2012.02.017.PubMedCentralCrossRefPubMed Nakasone ES, et al: Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell. 2012, 21 (4): 488-503. 10.1016/j.ccr.2012.02.017.PubMedCentralCrossRefPubMed
42.
go back to reference Schmid MC, et al: Combined blockade of integrin-alpha4beta1 plus cytokines SDF-1alpha or IL-1beta potently inhibits tumor inflammation and growth. Cancer Res. 2011, 71 (22): 6965-6975. 10.1158/0008-5472.CAN-11-0588.PubMedCentralCrossRefPubMed Schmid MC, et al: Combined blockade of integrin-alpha4beta1 plus cytokines SDF-1alpha or IL-1beta potently inhibits tumor inflammation and growth. Cancer Res. 2011, 71 (22): 6965-6975. 10.1158/0008-5472.CAN-11-0588.PubMedCentralCrossRefPubMed
43.
go back to reference Yang L, et al: Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell. 2008, 13 (1): 23-35. 10.1016/j.ccr.2007.12.004.PubMedCentralCrossRefPubMed Yang L, et al: Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell. 2008, 13 (1): 23-35. 10.1016/j.ccr.2007.12.004.PubMedCentralCrossRefPubMed
44.
go back to reference Wang XQ, et al: The high level of RANTES in the ectopic milieu recruits macrophages and induces their tolerance in progression of endometriosis. J Mol Endocrinol. 2010, 45 (5): 291-299. 10.1677/JME-09-0177.CrossRefPubMed Wang XQ, et al: The high level of RANTES in the ectopic milieu recruits macrophages and induces their tolerance in progression of endometriosis. J Mol Endocrinol. 2010, 45 (5): 291-299. 10.1677/JME-09-0177.CrossRefPubMed
45.
go back to reference Shojaei F, et al: G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci U S A. 2009, 106 (16): 6742-6747. 10.1073/pnas.0902280106.PubMedCentralCrossRefPubMed Shojaei F, et al: G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci U S A. 2009, 106 (16): 6742-6747. 10.1073/pnas.0902280106.PubMedCentralCrossRefPubMed
46.
go back to reference Shojaei F, et al: Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 2007, 450 (7171): 825-831. 10.1038/nature06348.CrossRefPubMed Shojaei F, et al: Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 2007, 450 (7171): 825-831. 10.1038/nature06348.CrossRefPubMed
47.
go back to reference Denardo DG, et al: Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy. Cancer Discov. 2011, 1: 54-67. 10.1158/2159-8274.CD-10-0028.PubMedCentralCrossRefPubMed Denardo DG, et al: Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy. Cancer Discov. 2011, 1: 54-67. 10.1158/2159-8274.CD-10-0028.PubMedCentralCrossRefPubMed
48.
49.
50.
go back to reference Ley K, et al: Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007, 7 (9): 678-689. 10.1038/nri2156.CrossRefPubMed Ley K, et al: Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007, 7 (9): 678-689. 10.1038/nri2156.CrossRefPubMed
51.
go back to reference Schmid MC, et al: Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell. 2011, 19 (6): 715-727. 10.1016/j.ccr.2011.04.016.PubMedCentralCrossRefPubMed Schmid MC, et al: Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell. 2011, 19 (6): 715-727. 10.1016/j.ccr.2011.04.016.PubMedCentralCrossRefPubMed
52.
53.
go back to reference Desgrosellier JS, Cheresh DA: Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010, 10 (1): 9-22. 10.1038/nrc2748.PubMedCentralCrossRefPubMed Desgrosellier JS, Cheresh DA: Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010, 10 (1): 9-22. 10.1038/nrc2748.PubMedCentralCrossRefPubMed
54.
go back to reference Foubert P, Varner JA: Integrins in tumor angiogenesis and lymphangiogenesis. Methods Mol Biol. 2012, 757: 471-486.CrossRefPubMed Foubert P, Varner JA: Integrins in tumor angiogenesis and lymphangiogenesis. Methods Mol Biol. 2012, 757: 471-486.CrossRefPubMed
55.
go back to reference Jin H, et al: Integrin alpha4beta1 promotes monocyte trafficking and angiogenesis in tumors. Cancer Res. 2006, 66 (4): 2146-2152. 10.1158/0008-5472.CAN-05-2704.CrossRefPubMed Jin H, et al: Integrin alpha4beta1 promotes monocyte trafficking and angiogenesis in tumors. Cancer Res. 2006, 66 (4): 2146-2152. 10.1158/0008-5472.CAN-05-2704.CrossRefPubMed
56.
go back to reference Luque A, et al: Activated conformations of very late activation integrins detected by a group of antibodies (HUTS) specific for a novel regulatory region (355–425) of the common beta 1 chain. J Biol Chem. 1996, 271 (19): 11067-11075. 10.1074/jbc.271.19.11067.CrossRefPubMed Luque A, et al: Activated conformations of very late activation integrins detected by a group of antibodies (HUTS) specific for a novel regulatory region (355–425) of the common beta 1 chain. J Biol Chem. 1996, 271 (19): 11067-11075. 10.1074/jbc.271.19.11067.CrossRefPubMed
57.
go back to reference Arnaout MA, Mahalingam B, Xiong JP: Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol. 2005, 21: 381-410. 10.1146/annurev.cellbio.21.090704.151217.CrossRefPubMed Arnaout MA, Mahalingam B, Xiong JP: Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol. 2005, 21: 381-410. 10.1146/annurev.cellbio.21.090704.151217.CrossRefPubMed
58.
60.
go back to reference Feral CC, et al: Blocking the alpha 4 integrin-paxillin interaction selectively impairs mononuclear leukocyte recruitment to an inflammatory site. J Clin Invest. 2006, 116 (3): 715-723. 10.1172/JCI26091.PubMedCentralCrossRefPubMed Feral CC, et al: Blocking the alpha 4 integrin-paxillin interaction selectively impairs mononuclear leukocyte recruitment to an inflammatory site. J Clin Invest. 2006, 116 (3): 715-723. 10.1172/JCI26091.PubMedCentralCrossRefPubMed
61.
go back to reference Manevich E, et al: Talin 1 and paxillin facilitate distinct steps in rapid VLA-4-mediated adhesion strengthening to vascular cell adhesion molecule 1. J Biol Chem. 2007, 282 (35): 25338-25348. 10.1074/jbc.M700089200.CrossRefPubMed Manevich E, et al: Talin 1 and paxillin facilitate distinct steps in rapid VLA-4-mediated adhesion strengthening to vascular cell adhesion molecule 1. J Biol Chem. 2007, 282 (35): 25338-25348. 10.1074/jbc.M700089200.CrossRefPubMed
62.
go back to reference Lewis JS, et al: Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol. 2000, 192 (2): 150-158. 10.1002/1096-9896(2000)9999:9999<::AID-PATH687>3.0.CO;2-G.CrossRefPubMed Lewis JS, et al: Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol. 2000, 192 (2): 150-158. 10.1002/1096-9896(2000)9999:9999<::AID-PATH687>3.0.CO;2-G.CrossRefPubMed
63.
go back to reference Sunderkotter C, et al: Macrophages and angiogenesis. J Leukoc Biol. 1994, 55 (3): 410-422.PubMed Sunderkotter C, et al: Macrophages and angiogenesis. J Leukoc Biol. 1994, 55 (3): 410-422.PubMed
64.
go back to reference Giraudo E, Inoue M, Hanahan D: An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest. 2004, 114 (5): 623-633.PubMedCentralCrossRefPubMed Giraudo E, Inoue M, Hanahan D: An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest. 2004, 114 (5): 623-633.PubMedCentralCrossRefPubMed
66.
go back to reference Esposito I, et al: Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol. 2004, 57 (6): 630-636. 10.1136/jcp.2003.014498.PubMedCentralCrossRefPubMed Esposito I, et al: Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol. 2004, 57 (6): 630-636. 10.1136/jcp.2003.014498.PubMedCentralCrossRefPubMed
67.
go back to reference Huang S, et al: Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J Natl Cancer Inst. 2002, 94 (15): 1134-1142. 10.1093/jnci/94.15.1134.CrossRefPubMed Huang S, et al: Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J Natl Cancer Inst. 2002, 94 (15): 1134-1142. 10.1093/jnci/94.15.1134.CrossRefPubMed
68.
go back to reference Ostrand-Rosenberg S, Sinha P: Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009, 182 (8): 4499-4506. 10.4049/jimmunol.0802740.PubMedCentralCrossRefPubMed Ostrand-Rosenberg S, Sinha P: Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009, 182 (8): 4499-4506. 10.4049/jimmunol.0802740.PubMedCentralCrossRefPubMed
69.
70.
go back to reference Rodriguez PC, et al: L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol. 2003, 171 (3): 1232-1239.CrossRefPubMed Rodriguez PC, et al: L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol. 2003, 171 (3): 1232-1239.CrossRefPubMed
71.
72.
go back to reference Sauer H, Wartenberg M, Hescheler J: Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem. 2001, 11 (4): 173-186. 10.1159/000047804.CrossRefPubMed Sauer H, Wartenberg M, Hescheler J: Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem. 2001, 11 (4): 173-186. 10.1159/000047804.CrossRefPubMed
73.
go back to reference Fichtner-Feigl S, et al: Restoration of tumor immunosurveillance via targeting of interleukin-13 receptor-alpha 2. Cancer Res. 2008, 68 (9): 3467-3475. 10.1158/0008-5472.CAN-07-5301.PubMedCentralCrossRefPubMed Fichtner-Feigl S, et al: Restoration of tumor immunosurveillance via targeting of interleukin-13 receptor-alpha 2. Cancer Res. 2008, 68 (9): 3467-3475. 10.1158/0008-5472.CAN-07-5301.PubMedCentralCrossRefPubMed
74.
go back to reference Terabe M, et al: Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med. 2003, 198 (11): 1741-1752. 10.1084/jem.20022227.PubMedCentralCrossRefPubMed Terabe M, et al: Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med. 2003, 198 (11): 1741-1752. 10.1084/jem.20022227.PubMedCentralCrossRefPubMed
75.
go back to reference Shojaei F, et al: Tumor refractoriness to anti-VEGF treatment is mediated by CD11b + Gr1+ myeloid cells. Nat Biotechnol. 2007, 25 (8): 911-920. 10.1038/nbt1323.CrossRefPubMed Shojaei F, et al: Tumor refractoriness to anti-VEGF treatment is mediated by CD11b + Gr1+ myeloid cells. Nat Biotechnol. 2007, 25 (8): 911-920. 10.1038/nbt1323.CrossRefPubMed
76.
go back to reference Qu X, et al: Induction of Bv8 expression by granulocyte-colony stimulating factor in CD11b + Gr1+ cells: Key role of Stat3 signaling. J Biol Chem. 2012, 287 (23): 19574-19584. 10.1074/jbc.M111.326801.PubMedCentralCrossRefPubMed Qu X, et al: Induction of Bv8 expression by granulocyte-colony stimulating factor in CD11b + Gr1+ cells: Key role of Stat3 signaling. J Biol Chem. 2012, 287 (23): 19574-19584. 10.1074/jbc.M111.326801.PubMedCentralCrossRefPubMed
77.
go back to reference Shojaei F, et al: Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Acad Sci U S A. 2008, 105 (7): 2640-2645. 10.1073/pnas.0712185105.PubMedCentralCrossRefPubMed Shojaei F, et al: Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Acad Sci U S A. 2008, 105 (7): 2640-2645. 10.1073/pnas.0712185105.PubMedCentralCrossRefPubMed
78.
go back to reference Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005, 307 (5706): 58-62. 10.1126/science.1104819.CrossRefPubMed Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005, 307 (5706): 58-62. 10.1126/science.1104819.CrossRefPubMed
79.
go back to reference Mazzieri R, et al: Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell. 2011, 19 (4): 512-526. 10.1016/j.ccr.2011.02.005.CrossRefPubMed Mazzieri R, et al: Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell. 2011, 19 (4): 512-526. 10.1016/j.ccr.2011.02.005.CrossRefPubMed
80.
go back to reference Stockmann C, et al: Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature. 2008, 456 (7223): 814-818. 10.1038/nature07445.PubMedCentralCrossRefPubMed Stockmann C, et al: Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature. 2008, 456 (7223): 814-818. 10.1038/nature07445.PubMedCentralCrossRefPubMed
81.
go back to reference Shree T, et al: Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 2011, 25 (23): 2465-2479. 10.1101/gad.180331.111.PubMedCentralCrossRefPubMed Shree T, et al: Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 2011, 25 (23): 2465-2479. 10.1101/gad.180331.111.PubMedCentralCrossRefPubMed
82.
go back to reference Squadrito ML, et al: miR-511-3p Modulates Gentic Programs of Tumor-Associated Macrophages. Cell Reports. 2012, 1: 141-154. 10.1016/j.celrep.2011.12.005.CrossRefPubMed Squadrito ML, et al: miR-511-3p Modulates Gentic Programs of Tumor-Associated Macrophages. Cell Reports. 2012, 1: 141-154. 10.1016/j.celrep.2011.12.005.CrossRefPubMed
83.
go back to reference DeNardo DG, et al: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 2009, 16 (2): 91-102. 10.1016/j.ccr.2009.06.018.PubMedCentralCrossRefPubMed DeNardo DG, et al: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 2009, 16 (2): 91-102. 10.1016/j.ccr.2009.06.018.PubMedCentralCrossRefPubMed
Metadata
Title
Myeloid cells in tumor inflammation
Authors
Michael C Schmid
Judith A Varner
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Vascular Cell / Issue 1/2012
Electronic ISSN: 2045-824X
DOI
https://doi.org/10.1186/2045-824X-4-14

Other articles of this Issue 1/2012

Vascular Cell 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.