Skip to main content
Top
Published in: Vascular Cell 1/2012

Open Access 01-12-2012 | Research

RhoB controls endothelial cell morphogenesis in part via negative regulation of RhoA

Authors: Grant A Howe, Christina L Addison

Published in: Vascular Cell | Issue 1/2012

Login to get access

Abstract

Recent studies have suggested a role for the small GTPase RhoB in the control of processes required for angiogenesis. However, the mechanisms whereby RhoB exerts control over these processes are not well understood. Given the role of vascular endothelial growth factor (VEGF) in pathological angiogenesis, we were interested in examining whether RhoB contributed to VEGF-induced angiogenic processes. To assess this, RhoB was specifically depleted in human umbilical vein endothelial cells (HUVEC), using siRNA-targeted strategies. The effects of RhoB depletion on VEGF-induced angiogenic activities were assessed using a variety of standard in vitro angiogenesis assays to assess endothelial cell viability, migration and capillary morphogenesis. Effects of RhoB depletion on signaling from other Rho family member proteins was also assessed using specific activity assays for RhoA and RhoC. We observed that although RhoB appeared dispensable for HUVEC viability, RhoB was required for endothelial cell migration, sprouting, and capillary morphogenesis. We also observed that siRNA-mediated depletion of RhoB in HUVEC resulted in increased RhoA activation in response to VEGF stimulation. This increased RhoA activation contributed to the cellular morphogenesis defects observed in RhoB-depleted cells, as inhibition of RhoA activity using C3 transferase, or inhibition of the activity of the downstream RhoA effectors Rho-dependent kinases I and II (ROCK I and II) led to a partial restoration of capillary morphogenesis in the absence of RhoB. Thus our data indicate that RhoB plays a significant role in VEGF-induced endothelial cell morphogenesis in part by negatively regulating the activity of RhoA and the RhoA/ROCK pathway.
Appendix
Available only for authorised users
Literature
1.
go back to reference Szekanecz Z, Besenyei T, Szentpetery A, Koch AE: Angiogenesis and vasculogenesis in rheumatoid arthritis. Curr Opin Rheumatol. 2010, 22: 299-306. 10.1097/BOR.0b013e328337c95a.CrossRefPubMed Szekanecz Z, Besenyei T, Szentpetery A, Koch AE: Angiogenesis and vasculogenesis in rheumatoid arthritis. Curr Opin Rheumatol. 2010, 22: 299-306. 10.1097/BOR.0b013e328337c95a.CrossRefPubMed
2.
go back to reference Tolentino MJ: Current molecular understanding and future treatment strategies for pathologic ocular neovascularization. Curr Mol Med. 2009, 9: 973-981. 10.2174/156652409789712783.CrossRefPubMed Tolentino MJ: Current molecular understanding and future treatment strategies for pathologic ocular neovascularization. Curr Mol Med. 2009, 9: 973-981. 10.2174/156652409789712783.CrossRefPubMed
4.
go back to reference Ranpura V, Hapani S, Chuang J, Wu S: Risk of cardiac ischemia and arterial thromboembolic events with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis of randomized controlled trials. Acta Oncol. 2010, 49: 287-297. 10.3109/02841860903524396.CrossRefPubMed Ranpura V, Hapani S, Chuang J, Wu S: Risk of cardiac ischemia and arterial thromboembolic events with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis of randomized controlled trials. Acta Oncol. 2010, 49: 287-297. 10.3109/02841860903524396.CrossRefPubMed
5.
go back to reference Ranpura V, Hapani S, Wu S: Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis. Jama. 2011, 305: 487-494. 10.1001/jama.2011.51.CrossRefPubMed Ranpura V, Hapani S, Wu S: Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis. Jama. 2011, 305: 487-494. 10.1001/jama.2011.51.CrossRefPubMed
6.
go back to reference Hapani S, Sher A, Chu D, Wu S: Increased risk of serious hemorrhage with bevacizumab in cancer patients: a meta-analysis. Oncology. 2010, 79: 27-38. 10.1159/000314980.CrossRefPubMed Hapani S, Sher A, Chu D, Wu S: Increased risk of serious hemorrhage with bevacizumab in cancer patients: a meta-analysis. Oncology. 2010, 79: 27-38. 10.1159/000314980.CrossRefPubMed
7.
go back to reference Bos JL, Rehmann H, Wittinghofer A: GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007, 129: 865-877. 10.1016/j.cell.2007.05.018.CrossRefPubMed Bos JL, Rehmann H, Wittinghofer A: GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007, 129: 865-877. 10.1016/j.cell.2007.05.018.CrossRefPubMed
8.
go back to reference Adamson P, Marshall CJ, Hall A, Tilbrook PA: Post-translational modifications of p21rho proteins. J Biol Chem. 1992, 267: 20033-20038.PubMed Adamson P, Marshall CJ, Hall A, Tilbrook PA: Post-translational modifications of p21rho proteins. J Biol Chem. 1992, 267: 20033-20038.PubMed
9.
go back to reference Huang M, Satchell L, Duhadaway JB, Prendergast GC, Laury-Kleintop LD: RHOB links pdgf signaling to cell migration by coordinating activation and localization of CDC42 and Rac. J Cell Biochem. 2011, 112: 1572-84. 10.1002/jcb.23069.PubMedCentralCrossRefPubMed Huang M, Satchell L, Duhadaway JB, Prendergast GC, Laury-Kleintop LD: RHOB links pdgf signaling to cell migration by coordinating activation and localization of CDC42 and Rac. J Cell Biochem. 2011, 112: 1572-84. 10.1002/jcb.23069.PubMedCentralCrossRefPubMed
10.
go back to reference Gampel A, Parker PJ, Mellor H: Regulation of epidermal growth factor receptor traffic by the small GTPase rhoB. Curr Biol. 1999, 9: 955-958. 10.1016/S0960-9822(99)80422-9.CrossRefPubMed Gampel A, Parker PJ, Mellor H: Regulation of epidermal growth factor receptor traffic by the small GTPase rhoB. Curr Biol. 1999, 9: 955-958. 10.1016/S0960-9822(99)80422-9.CrossRefPubMed
11.
go back to reference Wheeler AP, Ridley AJ: Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res. 2004, 301: 43-49. 10.1016/j.yexcr.2004.08.012.CrossRefPubMed Wheeler AP, Ridley AJ: Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res. 2004, 301: 43-49. 10.1016/j.yexcr.2004.08.012.CrossRefPubMed
12.
go back to reference Rolli-Derkinderen M, Toumaniantz G, Pacaud P, Loirand G: RhoA phosphorylation induces Rac1 release from guanine dissociation inhibitor alpha and stimulation of vascular smooth muscle cell migration. Mol Cell Biol. 2010, 30: 4786-4796. 10.1128/MCB.00381-10.PubMedCentralCrossRefPubMed Rolli-Derkinderen M, Toumaniantz G, Pacaud P, Loirand G: RhoA phosphorylation induces Rac1 release from guanine dissociation inhibitor alpha and stimulation of vascular smooth muscle cell migration. Mol Cell Biol. 2010, 30: 4786-4796. 10.1128/MCB.00381-10.PubMedCentralCrossRefPubMed
13.
go back to reference Sander EE, ten Klooster JP, van Delft S, van der Kammen RA, Collard JG: Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol. 1999, 147: 1009-1022. 10.1083/jcb.147.5.1009.PubMedCentralCrossRefPubMed Sander EE, ten Klooster JP, van Delft S, van der Kammen RA, Collard JG: Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol. 1999, 147: 1009-1022. 10.1083/jcb.147.5.1009.PubMedCentralCrossRefPubMed
14.
go back to reference Ho TT, Merajver SD, Lapiere CM, Nusgens BV, Deroanne CF: RhoA-GDP regulates RhoB protein stability. Potential involvement of RhoGDIalpha. J Biol Chem. 2008, 283: 21588-21598. 10.1074/jbc.M710033200.CrossRefPubMed Ho TT, Merajver SD, Lapiere CM, Nusgens BV, Deroanne CF: RhoA-GDP regulates RhoB protein stability. Potential involvement of RhoGDIalpha. J Biol Chem. 2008, 283: 21588-21598. 10.1074/jbc.M710033200.CrossRefPubMed
15.
go back to reference Zeng H, Zhao D, Mukhopadhyay D: KDR stimulates endothelial cell migration through heterotrimeric G protein Gq/11-mediated activation of a small GTPase RhoA. J Biol Chem. 2002, 277: 46791-46798. 10.1074/jbc.M206133200.CrossRefPubMed Zeng H, Zhao D, Mukhopadhyay D: KDR stimulates endothelial cell migration through heterotrimeric G protein Gq/11-mediated activation of a small GTPase RhoA. J Biol Chem. 2002, 277: 46791-46798. 10.1074/jbc.M206133200.CrossRefPubMed
16.
go back to reference Wang W, Wu F, Fang F, Tao Y, Yang L: RhoC is essential for angiogenesis induced by hepatocellular carcinoma cells via regulation of endothelial cell organization. Cancer Sci. 2008, 99: 2012-2018.PubMed Wang W, Wu F, Fang F, Tao Y, Yang L: RhoC is essential for angiogenesis induced by hepatocellular carcinoma cells via regulation of endothelial cell organization. Cancer Sci. 2008, 99: 2012-2018.PubMed
17.
go back to reference Bryan BA, D'Amore PA: What tangled webs they weave: Rho-GTPase control of angiogenesis. Cell Mol Life Sci. 2007, 64: 2053-2065. 10.1007/s00018-007-7008-z.CrossRefPubMed Bryan BA, D'Amore PA: What tangled webs they weave: Rho-GTPase control of angiogenesis. Cell Mol Life Sci. 2007, 64: 2053-2065. 10.1007/s00018-007-7008-z.CrossRefPubMed
18.
go back to reference Adini I, Rabinovitz I, Sun JF, Prendergast GC, Benjamin LE: RhoB controls Akt trafficking and stage-specific survival of endothelial cells during vascular development. Genes Dev. 2003, 17: 2721-2732. 10.1101/gad.1134603.PubMedCentralCrossRefPubMed Adini I, Rabinovitz I, Sun JF, Prendergast GC, Benjamin LE: RhoB controls Akt trafficking and stage-specific survival of endothelial cells during vascular development. Genes Dev. 2003, 17: 2721-2732. 10.1101/gad.1134603.PubMedCentralCrossRefPubMed
19.
go back to reference Lajoie-Mazenc I, Tovar D, Penary M, Lortal B, Allart S, Favard C, Brihoum M, Pradines A, Favre G: MAP1A light chain-2 interacts with GTP-RhoB to control epidermal growth factor (EGF)-dependent EGF receptor signaling. J Biol Chem. 2008, 283: 4155-4164.CrossRefPubMed Lajoie-Mazenc I, Tovar D, Penary M, Lortal B, Allart S, Favard C, Brihoum M, Pradines A, Favre G: MAP1A light chain-2 interacts with GTP-RhoB to control epidermal growth factor (EGF)-dependent EGF receptor signaling. J Biol Chem. 2008, 283: 4155-4164.CrossRefPubMed
20.
go back to reference Huang M, Duhadaway JB, Prendergast GC, Laury-Kleintop LD: RhoB regulates PDGFR-beta trafficking and signaling in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2007, 27: 2597-2605. 10.1161/ATVBAHA.107.154211.PubMedCentralCrossRefPubMed Huang M, Duhadaway JB, Prendergast GC, Laury-Kleintop LD: RhoB regulates PDGFR-beta trafficking and signaling in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2007, 27: 2597-2605. 10.1161/ATVBAHA.107.154211.PubMedCentralCrossRefPubMed
21.
go back to reference Vasilaki E, Papadimitriou E, Tajadura V, Ridley AJ, Stournaras C, Kardassis D: Transcriptional regulation of the small GTPase RhoB gene by TGF{beta}-induced signaling pathways. Faseb J. 2010, 24: 891-905. 10.1096/fj.09-134742.CrossRefPubMed Vasilaki E, Papadimitriou E, Tajadura V, Ridley AJ, Stournaras C, Kardassis D: Transcriptional regulation of the small GTPase RhoB gene by TGF{beta}-induced signaling pathways. Faseb J. 2010, 24: 891-905. 10.1096/fj.09-134742.CrossRefPubMed
22.
go back to reference Vardouli L, Vasilaki E, Papadimitriou E, Kardassis D, Stournaras C: A novel mechanism of TGFbeta-induced actin reorganization mediated by Smad proteins and Rho GTPases. Febs J. 2008, 275: 4074-4087. 10.1111/j.1742-4658.2008.06549.x.CrossRefPubMed Vardouli L, Vasilaki E, Papadimitriou E, Kardassis D, Stournaras C: A novel mechanism of TGFbeta-induced actin reorganization mediated by Smad proteins and Rho GTPases. Febs J. 2008, 275: 4074-4087. 10.1111/j.1742-4658.2008.06549.x.CrossRefPubMed
23.
go back to reference de Cremoux P, Gauville C, Closson V, Linares G, Calvo F, Tavitian A, Olofsson B: EGF modulation of the ras-related rhoB gene expression in human breast-cancer cell lines. Int J Cancer. 1994, 59: 408-415. 10.1002/ijc.2910590320.CrossRefPubMed de Cremoux P, Gauville C, Closson V, Linares G, Calvo F, Tavitian A, Olofsson B: EGF modulation of the ras-related rhoB gene expression in human breast-cancer cell lines. Int J Cancer. 1994, 59: 408-415. 10.1002/ijc.2910590320.CrossRefPubMed
24.
go back to reference Sabatel C, Malvaux L, Bovy N, Deroanne C, Lambert V, Gonzalez ML, Colige A, Rakic JM, Noel A, Martial JA, Struman I: MicroRNA-21 Exhibits Antiangiogenic Function by Targeting RhoB Expression in Endothelial Cells. PLoS One. 2011, 6: e16979-10.1371/journal.pone.0016979.PubMedCentralCrossRefPubMed Sabatel C, Malvaux L, Bovy N, Deroanne C, Lambert V, Gonzalez ML, Colige A, Rakic JM, Noel A, Martial JA, Struman I: MicroRNA-21 Exhibits Antiangiogenic Function by Targeting RhoB Expression in Endothelial Cells. PLoS One. 2011, 6: e16979-10.1371/journal.pone.0016979.PubMedCentralCrossRefPubMed
25.
go back to reference Borikova AL, Dibble CF, Sciaky N, Welch CM, Abell AN, Bencharit S, Johnson GL: Rho kinase inhibition rescues the endothelial cell cerebral cavernous malformation phenotype. J Biol Chem. 2010, 285: 11760-11764. 10.1074/jbc.C109.097220.PubMedCentralCrossRefPubMed Borikova AL, Dibble CF, Sciaky N, Welch CM, Abell AN, Bencharit S, Johnson GL: Rho kinase inhibition rescues the endothelial cell cerebral cavernous malformation phenotype. J Biol Chem. 2010, 285: 11760-11764. 10.1074/jbc.C109.097220.PubMedCentralCrossRefPubMed
26.
go back to reference Kroll J, Epting D, Kern K, Dietz CT, Feng Y, Hammes HP, Wieland T, Augustin HG: Inhibition of Rho-dependent kinases ROCK I/II activates VEGF-driven retinal neovascularization and sprouting angiogenesis. Am J Physiol Heart Circ Physiol. 2009, 296: H893-899. 10.1152/ajpheart.01038.2008.CrossRefPubMed Kroll J, Epting D, Kern K, Dietz CT, Feng Y, Hammes HP, Wieland T, Augustin HG: Inhibition of Rho-dependent kinases ROCK I/II activates VEGF-driven retinal neovascularization and sprouting angiogenesis. Am J Physiol Heart Circ Physiol. 2009, 296: H893-899. 10.1152/ajpheart.01038.2008.CrossRefPubMed
27.
go back to reference Hakem A, Sanchez-Sweatman O, You-Ten A, Duncan G, Wakeham A, Khokha R, Mak TW: RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev. 2005, 19: 1974-1979. 10.1101/gad.1310805.PubMedCentralCrossRefPubMed Hakem A, Sanchez-Sweatman O, You-Ten A, Duncan G, Wakeham A, Khokha R, Mak TW: RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev. 2005, 19: 1974-1979. 10.1101/gad.1310805.PubMedCentralCrossRefPubMed
28.
go back to reference van Golen KL, Bao L, DiVito MM, Wu Z, Prendergast GC, Merajver SD: Reversion of RhoC GTPase-induced inflammatory breast cancer phenotype by treatment with a farnesyl transferase inhibitor. Mol Cancer Ther. 2002, 1: 575-583.PubMed van Golen KL, Bao L, DiVito MM, Wu Z, Prendergast GC, Merajver SD: Reversion of RhoC GTPase-induced inflammatory breast cancer phenotype by treatment with a farnesyl transferase inhibitor. Mol Cancer Ther. 2002, 1: 575-583.PubMed
29.
go back to reference Bellovin DI, Simpson KJ, Danilov T, Maynard E, Rimm DL, Oettgen P, Mercurio AM: Reciprocal regulation of RhoA and RhoC characterizes the EMT and identifies RhoC as a prognostic marker of colon carcinoma. Oncogene. 2006, 25: 6959-6967. 10.1038/sj.onc.1209682.CrossRefPubMed Bellovin DI, Simpson KJ, Danilov T, Maynard E, Rimm DL, Oettgen P, Mercurio AM: Reciprocal regulation of RhoA and RhoC characterizes the EMT and identifies RhoC as a prognostic marker of colon carcinoma. Oncogene. 2006, 25: 6959-6967. 10.1038/sj.onc.1209682.CrossRefPubMed
30.
go back to reference Ho TTG, Stultiens A, Dubail J, Lapiere CM, Nusgens BV, Colige AC, Deroanne CF: RhoGDIalpha-dependent balance between RhoA and RhoC is a key regulator of cancer cell tumorigenesis. Molecular Biology of the Cell. 2011, 22: 3263-3275. 10.1091/mbc.E11-01-0020.CrossRef Ho TTG, Stultiens A, Dubail J, Lapiere CM, Nusgens BV, Colige AC, Deroanne CF: RhoGDIalpha-dependent balance between RhoA and RhoC is a key regulator of cancer cell tumorigenesis. Molecular Biology of the Cell. 2011, 22: 3263-3275. 10.1091/mbc.E11-01-0020.CrossRef
31.
go back to reference Boulter E, Garcia-Mata R, Guilluy C, Dubash A, Rossi G, Brennwald PJ, Burridge K: Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat Cell Biol. 2010, 12: 477-483. 10.1038/ncb2049.PubMedCentralCrossRefPubMed Boulter E, Garcia-Mata R, Guilluy C, Dubash A, Rossi G, Brennwald PJ, Burridge K: Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat Cell Biol. 2010, 12: 477-483. 10.1038/ncb2049.PubMedCentralCrossRefPubMed
32.
go back to reference Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, Abell A, Johnson GL, Hahn KM, Danuser G: Coordination of Rho GTPase activities during cell protrusion. Nature. 2009, 461: 99-103. 10.1038/nature08242.PubMedCentralCrossRefPubMed Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, Abell A, Johnson GL, Hahn KM, Danuser G: Coordination of Rho GTPase activities during cell protrusion. Nature. 2009, 461: 99-103. 10.1038/nature08242.PubMedCentralCrossRefPubMed
33.
go back to reference Birkenfeld J, Nalbant P, Bohl BP, Pertz O, Hahn KM, Bokoch GM: GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases. Dev Cell. 2007, 12: 699-712. 10.1016/j.devcel.2007.03.014.PubMedCentralCrossRefPubMed Birkenfeld J, Nalbant P, Bohl BP, Pertz O, Hahn KM, Bokoch GM: GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases. Dev Cell. 2007, 12: 699-712. 10.1016/j.devcel.2007.03.014.PubMedCentralCrossRefPubMed
34.
go back to reference Pertz O, Hodgson L, Klemke RL, Hahn KM: Spatiotemporal dynamics of RhoA activity in migrating cells. Nature. 2006, 440: 1069-1072. 10.1038/nature04665.CrossRefPubMed Pertz O, Hodgson L, Klemke RL, Hahn KM: Spatiotemporal dynamics of RhoA activity in migrating cells. Nature. 2006, 440: 1069-1072. 10.1038/nature04665.CrossRefPubMed
35.
go back to reference Zalcman G, Closson V, Linares-Cruz G, Lerebours F, Honore N, Tavitian A, Olofsson B: Regulation of Ras-related RhoB protein expression during the cell cycle. Oncogene. 1995, 10: 1935-1945.PubMed Zalcman G, Closson V, Linares-Cruz G, Lerebours F, Honore N, Tavitian A, Olofsson B: Regulation of Ras-related RhoB protein expression during the cell cycle. Oncogene. 1995, 10: 1935-1945.PubMed
36.
go back to reference Arthur WT, Ellerbroek SM, Der CJ, Burridge K, Wennerberg K: XPLN, a guanine nucleotide exchange factor for RhoA and RhoB, but not RhoC. J Biol Chem. 2002, 277: 42964-42972. 10.1074/jbc.M207401200.CrossRefPubMed Arthur WT, Ellerbroek SM, Der CJ, Burridge K, Wennerberg K: XPLN, a guanine nucleotide exchange factor for RhoA and RhoB, but not RhoC. J Biol Chem. 2002, 277: 42964-42972. 10.1074/jbc.M207401200.CrossRefPubMed
37.
go back to reference Bhattacharyya R, Wedegaertner PB: Characterization of G alpha 13-dependent plasma membrane recruitment of p115RhoGEF. Biochem J. 2003, 371: 709-720. 10.1042/BJ20021897.PubMedCentralCrossRefPubMed Bhattacharyya R, Wedegaertner PB: Characterization of G alpha 13-dependent plasma membrane recruitment of p115RhoGEF. Biochem J. 2003, 371: 709-720. 10.1042/BJ20021897.PubMedCentralCrossRefPubMed
38.
go back to reference Sharma SV: Rapid recruitment of p120RasGAP and its associated protein, p190RhoGAP, to the cytoskeleton during integrin mediated cell-substrate interaction. Oncogene. 1998, 17: 271-281. 10.1038/sj.onc.1201921.CrossRefPubMed Sharma SV: Rapid recruitment of p120RasGAP and its associated protein, p190RhoGAP, to the cytoskeleton during integrin mediated cell-substrate interaction. Oncogene. 1998, 17: 271-281. 10.1038/sj.onc.1201921.CrossRefPubMed
39.
go back to reference Zeng PY, Rane N, Du W, Chintapalli J, Prendergast GC: Role for RhoB and PRK in the suppression of epithelial cell transformation by farnesyltransferase inhibitors. Oncogene. 2003, 22: 1124-1134. 10.1038/sj.onc.1206181.CrossRefPubMed Zeng PY, Rane N, Du W, Chintapalli J, Prendergast GC: Role for RhoB and PRK in the suppression of epithelial cell transformation by farnesyltransferase inhibitors. Oncogene. 2003, 22: 1124-1134. 10.1038/sj.onc.1206181.CrossRefPubMed
Metadata
Title
RhoB controls endothelial cell morphogenesis in part via negative regulation of RhoA
Authors
Grant A Howe
Christina L Addison
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Vascular Cell / Issue 1/2012
Electronic ISSN: 2045-824X
DOI
https://doi.org/10.1186/2045-824X-4-1

Other articles of this Issue 1/2012

Vascular Cell 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine