Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2012

Open Access 01-12-2012 | Rapid communication

Effect of phenylhexyl isothiocyanate on aberrant histone H3 methylation in primary human acute leukemia

Authors: Yong Zou, Xudong Ma, Yiqun Huang, Lingling Hong, Jen-wei Chiao

Published in: Journal of Hematology & Oncology | Issue 1/2012

Login to get access

Abstract

Background

We have previously studied the histone acetylation in primary human leukemia cells. However, histone H3 methylation in these cells has not been characterized.

Methods

This study examined the methylation status at histone H3 lysine 4 (H3K4) and histone H3 lysine 9 (H3K9) in primary acute leukemia cells obtained from patients and compared with those in the non-leukemia and healthy cells. We further characterized the effect of phenylhexyl isothiocyanate (PHI), Trichostatin A (TSA), and 5-aza-2’-deoxycytidine (5-Aza) on the cells.

Results

We found that methylation of histone H3K4 was virtually undetectable, while methylation at H3K9 was significantly higher in primary human leukemia cells. The histone H3K9 hypermethylation and histone H3K4 hypomethylation were observed in both myeloid and lymphoid leukemia cells. PHI was found to be able to normalize the methylation level in the primary leukemia cells. We further showed that PHI was able to enhance the methyltransferase activity of H3K4 and decrease the activity of H3K9 methyltransferase. 5-Aza had similar effect on H3K4, but minimal effect on H3K9, whereas TSA had no effect on H3K4 and H3K9 methyltransferases.

Conclusions

This study revealed opposite methylation level of H3K4 and H3K9 in primary human leukemia cells and demonstrated for the first time that PHI has different effects on the methyltransferases for H3K4 and H3K9.
Appendix
Available only for authorised users
Literature
2.
go back to reference Strahl BD, Allis CD: The language of covalent histone modifications. Nature. 2000, 403 (6765): 41-45.CrossRefPubMed Strahl BD, Allis CD: The language of covalent histone modifications. Nature. 2000, 403 (6765): 41-45.CrossRefPubMed
3.
go back to reference Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Pérez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M: Loss of acetylation at lys 16 and trimethylation at lys 20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005, 37 (4): 391-400.CrossRefPubMed Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Pérez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M: Loss of acetylation at lys 16 and trimethylation at lys 20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005, 37 (4): 391-400.CrossRefPubMed
5.
6.
go back to reference Schneider R, Bannister AJ, Kouzarides T: Unsafe SETs: histone lysine methyltransferases and cancer. Trends Biochem Sci. 2002, 27 (8): 396-402.CrossRefPubMed Schneider R, Bannister AJ, Kouzarides T: Unsafe SETs: histone lysine methyltransferases and cancer. Trends Biochem Sci. 2002, 27 (8): 396-402.CrossRefPubMed
7.
go back to reference Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, Erdjument-Bromage H, Taylor-Papadimitriou J, Tempst P, Zhang Y: PLU-1 is an H3K4 demethylase involved n transcriptional repression and breast cancer cell. Mol Cell. 2007, 25 (6): 801-812.CrossRefPubMed Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, Erdjument-Bromage H, Taylor-Papadimitriou J, Tempst P, Zhang Y: PLU-1 is an H3K4 demethylase involved n transcriptional repression and breast cancer cell. Mol Cell. 2007, 25 (6): 801-812.CrossRefPubMed
8.
9.
go back to reference Sanders SL, Portoso M, Mata J, Bahler J, Allshire RC, Kouzarides T: Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell. 2004, 119 (5): 603-614.CrossRefPubMed Sanders SL, Portoso M, Mata J, Bahler J, Allshire RC, Kouzarides T: Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell. 2004, 119 (5): 603-614.CrossRefPubMed
10.
go back to reference Zhang Y, Reinberg D: Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 2001, 15 (18): 2343-2360.CrossRefPubMed Zhang Y, Reinberg D: Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 2001, 15 (18): 2343-2360.CrossRefPubMed
11.
go back to reference Boggs BA, Cheung P, Heard E, Spector DL, Chinault AC, Allis CD: Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat Genet. 2002, 30 (1): 73-76.CrossRefPubMed Boggs BA, Cheung P, Heard E, Spector DL, Chinault AC, Allis CD: Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat Genet. 2002, 30 (1): 73-76.CrossRefPubMed
12.
go back to reference Noma KI, Grewal SI: Histone H3 lysine 4 methylation is mediated by Set1 and prmotes maintenance of active chromatin states in fission yeast. Proc Natl Acad Sci U S A. 2002, 4: 16438-16445.CrossRef Noma KI, Grewal SI: Histone H3 lysine 4 methylation is mediated by Set1 and prmotes maintenance of active chromatin states in fission yeast. Proc Natl Acad Sci U S A. 2002, 4: 16438-16445.CrossRef
13.
go back to reference Lachner M, Jenuwein T: The many faces of histone lysine methylation. Curr Opin Cell Biol. 2002, 14 (3): 286-298.CrossRefPubMed Lachner M, Jenuwein T: The many faces of histone lysine methylation. Curr Opin Cell Biol. 2002, 14 (3): 286-298.CrossRefPubMed
14.
go back to reference Klose RJ, Kauin EM, Zhang Y: JmjC-domain- containing proteins and histone demethylation. Nat Rev Genet. 2006, 7 (9): 715-727.CrossRefPubMed Klose RJ, Kauin EM, Zhang Y: JmjC-domain- containing proteins and histone demethylation. Nat Rev Genet. 2006, 7 (9): 715-727.CrossRefPubMed
15.
16.
go back to reference Tan JH, Cang SD, Ma YH, Petrillo RL, Liu DL: Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J Hematol Oncol. 2010, 3: 5-PubMedCentralCrossRefPubMed Tan JH, Cang SD, Ma YH, Petrillo RL, Liu DL: Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J Hematol Oncol. 2010, 3: 5-PubMedCentralCrossRefPubMed
17.
go back to reference Lu LL, Liu DL, Ma XD, Beklemishev A, Seiter K, Ahmed T, Chiao JW: The phenylhexyl isothiocyanate induces apoptosis and inhibits leukemia cell growth in vivo. Oncol Rep. 2006, 16 (6): 1363-1367.PubMed Lu LL, Liu DL, Ma XD, Beklemishev A, Seiter K, Ahmed T, Chiao JW: The phenylhexyl isothiocyanate induces apoptosis and inhibits leukemia cell growth in vivo. Oncol Rep. 2006, 16 (6): 1363-1367.PubMed
18.
go back to reference Ma XD, Fang YQ, Beklemisheva A, Dai W, Feng JY, Ahmed T, Liu DL, Chiao JW: Phenylhexyl isothiocyanate inhibits histone deacetylases and remodels chromatin to induce growth arrest in human leukemia cells. Int J Oncol. 2006, 28 (5): 1287-1293.PubMed Ma XD, Fang YQ, Beklemisheva A, Dai W, Feng JY, Ahmed T, Liu DL, Chiao JW: Phenylhexyl isothiocyanate inhibits histone deacetylases and remodels chromatin to induce growth arrest in human leukemia cells. Int J Oncol. 2006, 28 (5): 1287-1293.PubMed
19.
go back to reference Lu QY, Lin XH, Feng J, Zhao XM, Gallagher R, Lee MY, Chiao JW, Liu DL: Phenylhexyl isothiocyanate has dual function as histone deacetylase inhibitor and hypomethylating agent and can inhibit myeloma cell growth by targeting critical pathways. J Hematol Oncol. 2008, 1: 6-PubMedCentralCrossRefPubMed Lu QY, Lin XH, Feng J, Zhao XM, Gallagher R, Lee MY, Chiao JW, Liu DL: Phenylhexyl isothiocyanate has dual function as histone deacetylase inhibitor and hypomethylating agent and can inhibit myeloma cell growth by targeting critical pathways. J Hematol Oncol. 2008, 1: 6-PubMedCentralCrossRefPubMed
20.
go back to reference Xiao LY, Huang YQ, Zhen RJ, Chiao JW, Liu DL, Ma XD: Deficient Histone Acetylation in Acute Leukemia and the Correction by an Isothiocyanate. Acta Haematol. 2010, 123 (2): 71-76.CrossRefPubMed Xiao LY, Huang YQ, Zhen RJ, Chiao JW, Liu DL, Ma XD: Deficient Histone Acetylation in Acute Leukemia and the Correction by an Isothiocyanate. Acta Haematol. 2010, 123 (2): 71-76.CrossRefPubMed
21.
go back to reference Huang YQ, Ma XD, Zhen RJ, Chiao JW, Liu DL: Experimental study of PHI on methylation and acetylation in Molt-4 T cells. Zhonghua Xue Ye Xue Za Zhi. 2007, 28 (9): 612-615.PubMed Huang YQ, Ma XD, Zhen RJ, Chiao JW, Liu DL: Experimental study of PHI on methylation and acetylation in Molt-4 T cells. Zhonghua Xue Ye Xue Za Zhi. 2007, 28 (9): 612-615.PubMed
22.
go back to reference Nguyen CT, Wisenberger DJ, Velicescu M, Conzales FA, Lin JC, Liang G, Jones PA: Histone H3-lysine 9 methylation is associated with aberrant gene selincing in cancer cells and is rapidly reversed by 5-aza-2’deoxycytidine. Cancer Res. 2002, 62 (22): 6456-6461.PubMed Nguyen CT, Wisenberger DJ, Velicescu M, Conzales FA, Lin JC, Liang G, Jones PA: Histone H3-lysine 9 methylation is associated with aberrant gene selincing in cancer cells and is rapidly reversed by 5-aza-2’deoxycytidine. Cancer Res. 2002, 62 (22): 6456-6461.PubMed
23.
go back to reference Hendzel MJ, Davie JR: Distribution of methylated histone and histone methyltransferases in chicken erythrocyte chromatin. J Biol Chem. 1989, 264 (32): 19208-19214.PubMed Hendzel MJ, Davie JR: Distribution of methylated histone and histone methyltransferases in chicken erythrocyte chromatin. J Biol Chem. 1989, 264 (32): 19208-19214.PubMed
24.
go back to reference Annunziato AT, Eason MB, Perry CA: Relationship between methylation and acetylation of arginine-rich histone in cycling and arrested Hela cells. Biochemistry. 1995, 34 (9): 2916-2924.CrossRefPubMed Annunziato AT, Eason MB, Perry CA: Relationship between methylation and acetylation of arginine-rich histone in cycling and arrested Hela cells. Biochemistry. 1995, 34 (9): 2916-2924.CrossRefPubMed
25.
go back to reference Jiang SH, Ma XD, Huang YQ, Xu YL, Zheng RJ: Phenylhexyl isothiocyanate induces gene p15 demethylation by down-regulating DNA methyltransferases in molt-4 cells. Yao Xue Xue Bao. 2009, 44 (4): 350-354.PubMed Jiang SH, Ma XD, Huang YQ, Xu YL, Zheng RJ: Phenylhexyl isothiocyanate induces gene p15 demethylation by down-regulating DNA methyltransferases in molt-4 cells. Yao Xue Xue Bao. 2009, 44 (4): 350-354.PubMed
26.
go back to reference Nimura K, Ura K, Kaneda Y: Histone methyltransferases: regulation of transcription and contribution to human disease. J Mol Med. 2010, 88 (12): 1213-1220.CrossRefPubMed Nimura K, Ura K, Kaneda Y: Histone methyltransferases: regulation of transcription and contribution to human disease. J Mol Med. 2010, 88 (12): 1213-1220.CrossRefPubMed
27.
go back to reference Rozenblatt-Rosen O, Rozovskaia T, Burakov D, Sedkov Y, Tillib S, Blechman J, Nakamura T, Croce CM, Mazo A, Canaani E: The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc Natl Acad Sci U S A. 1998, 95 (8): 4152-4157.PubMedCentralCrossRefPubMed Rozenblatt-Rosen O, Rozovskaia T, Burakov D, Sedkov Y, Tillib S, Blechman J, Nakamura T, Croce CM, Mazo A, Canaani E: The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc Natl Acad Sci U S A. 1998, 95 (8): 4152-4157.PubMedCentralCrossRefPubMed
28.
go back to reference Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y: SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 2004, 6 (8): 731-740.CrossRefPubMed Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y: SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 2004, 6 (8): 731-740.CrossRefPubMed
29.
go back to reference Tachibana M, Sugimoto K, Fukushima T, Shinkai Y: Set domain-containing protein, G9a, is a novel lysinepreferring mammalian histone methyltran-sferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem. 2001, 276 (27): 25309-25317.CrossRefPubMed Tachibana M, Sugimoto K, Fukushima T, Shinkai Y: Set domain-containing protein, G9a, is a novel lysinepreferring mammalian histone methyltran-sferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem. 2001, 276 (27): 25309-25317.CrossRefPubMed
30.
go back to reference Peters AH, O' Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T: Loss of the Suv39h histone methyltransferases impairsmammalian heterochromatin and genome stability. Cell. 2001, 107 (3)): 323-337.CrossRefPubMed Peters AH, O' Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T: Loss of the Suv39h histone methyltransferases impairsmammalian heterochromatin and genome stability. Cell. 2001, 107 (3)): 323-337.CrossRefPubMed
31.
go back to reference Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ: SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 2002, 16 (8): 919-932.PubMedCentralCrossRefPubMed Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ: SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 2002, 16 (8): 919-932.PubMedCentralCrossRefPubMed
32.
go back to reference Yang L, Xia L, Wu DY, Wang H, Chansky HA, Schubach WH, Hickstein DD, Zhang Y: Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene. 2002, 21 (1): 148-152.CrossRefPubMed Yang L, Xia L, Wu DY, Wang H, Chansky HA, Schubach WH, Hickstein DD, Zhang Y: Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene. 2002, 21 (1): 148-152.CrossRefPubMed
33.
go back to reference Christman JK: 5-azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002, 21 (35): 5483-5495.CrossRefPubMed Christman JK: 5-azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002, 21 (35): 5483-5495.CrossRefPubMed
34.
go back to reference Yuan Y, Liao YM, Hsueh CT, Mirshahidi HR: Novel targeted therapeutics: inhibitors of MDM2. ALK and PARP. J Hematol Oncol. 2011, 4: 16-CrossRefPubMed Yuan Y, Liao YM, Hsueh CT, Mirshahidi HR: Novel targeted therapeutics: inhibitors of MDM2. ALK and PARP. J Hematol Oncol. 2011, 4: 16-CrossRefPubMed
36.
37.
38.
Metadata
Title
Effect of phenylhexyl isothiocyanate on aberrant histone H3 methylation in primary human acute leukemia
Authors
Yong Zou
Xudong Ma
Yiqun Huang
Lingling Hong
Jen-wei Chiao
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2012
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/1756-8722-5-36

Other articles of this Issue 1/2012

Journal of Hematology & Oncology 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine