Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2011

Open Access 01-12-2011 | Review

Novel targeted therapeutics: inhibitors of MDM2, ALK and PARP

Authors: Yuan Yuan, Yu-Min Liao, Chung-Tsen Hsueh, Hamid R Mirshahidi

Published in: Journal of Hematology & Oncology | Issue 1/2011

Login to get access

Abstract

We reviewed preclinical data and clinical development of MDM2 (murine double minute 2), ALK (anaplastic lymphoma kinase) and PARP (poly [ADP-ribose] polymerase) inhibitors. MDM2 binds to p53, and promotes degradation of p53 through ubiquitin-proteasome degradation. JNJ-26854165 and RO5045337 are 2 small-molecule inhibitors of MDM2 in clinical development. ALK is a transmembrane protein and a member of the insulin receptor tyrosine kinases. EML4-ALK fusion gene is identified in approximately 3-13% of non-small cell lung cancer (NSCLC). Early-phase clinical studies with Crizotinib, an ALK inhibitor, in NSCLC harboring EML4-ALK have demonstrated promising activity with high response rate and prolonged progression-free survival. PARPs are a family of nuclear enzymes that regulates the repair of DNA single-strand breaks through the base excision repair pathway. Randomized phase II study has shown adding PARP-1 inhibitor BSI-201 to cytotoxic chemotherapy improves clinical outcome in patients with triple-negative breast cancer. Olaparib, another oral small-molecule PARP inhibitor, demonstrated encouraging single-agent activity in patients with advanced breast or ovarian cancer. There are 5 other PARP inhibitors currently under active clinical investigation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fakharzadeh SS, Trusko SP, George DL: Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J. 1991, 10 (6): 1565-9.PubMedCentralPubMed Fakharzadeh SS, Trusko SP, George DL: Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J. 1991, 10 (6): 1565-9.PubMedCentralPubMed
2.
go back to reference Haupt Y: Mdm2 promotes the rapid degradation of p53. Nature. 1997, 387 (6630): 296-9. 10.1038/387296a0.PubMedCrossRef Haupt Y: Mdm2 promotes the rapid degradation of p53. Nature. 1997, 387 (6630): 296-9. 10.1038/387296a0.PubMedCrossRef
3.
go back to reference Bond GL, Hu W, Levine AJ: MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets. 2005, 5 (1): 3-8. 10.2174/1568009053332627.PubMedCrossRef Bond GL, Hu W, Levine AJ: MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets. 2005, 5 (1): 3-8. 10.2174/1568009053332627.PubMedCrossRef
4.
go back to reference Piette J, Neel H, Marechal V: Mdm2: keeping p53 under control. Oncogene. 1997, 15 (9): 1001-10. 10.1038/sj.onc.1201432.PubMedCrossRef Piette J, Neel H, Marechal V: Mdm2: keeping p53 under control. Oncogene. 1997, 15 (9): 1001-10. 10.1038/sj.onc.1201432.PubMedCrossRef
6.
go back to reference Montes de Oca Luna R, Wagner DS, Lozano G: Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature. 1995, 378 (6553): 203-6. 10.1038/378203a0.PubMedCrossRef Montes de Oca Luna R, Wagner DS, Lozano G: Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature. 1995, 378 (6553): 203-6. 10.1038/378203a0.PubMedCrossRef
7.
go back to reference de Rozieres S: The loss of mdm2 induces p53-mediated apoptosis. Oncogene. 2000, 19 (13): 1691-7. 10.1038/sj.onc.1203468.PubMedCrossRef de Rozieres S: The loss of mdm2 induces p53-mediated apoptosis. Oncogene. 2000, 19 (13): 1691-7. 10.1038/sj.onc.1203468.PubMedCrossRef
8.
go back to reference Steinman HA: An alternative splice form of Mdm2 induces p53-independent cell growth and tumorigenesis. J Biol Chem. 2004, 279 (6): 4877-86.PubMedCrossRef Steinman HA: An alternative splice form of Mdm2 induces p53-independent cell growth and tumorigenesis. J Biol Chem. 2004, 279 (6): 4877-86.PubMedCrossRef
9.
10.
go back to reference Onel K, Cordon-Cardo C: MDM2 and prognosis. Mol Cancer Res. 2004, 2 (1): 1-8.PubMed Onel K, Cordon-Cardo C: MDM2 and prognosis. Mol Cancer Res. 2004, 2 (1): 1-8.PubMed
11.
go back to reference Heist RS: MDM2 polymorphism, survival, and histology in early-stage non-small-cell lung cancer. J Clin Oncol. 2007, 25 (16): 2243-7. 10.1200/JCO.2006.08.8914.PubMedCrossRef Heist RS: MDM2 polymorphism, survival, and histology in early-stage non-small-cell lung cancer. J Clin Oncol. 2007, 25 (16): 2243-7. 10.1200/JCO.2006.08.8914.PubMedCrossRef
12.
go back to reference Wasylyk C: p53 mediated death of cells overexpressing MDM2 by an inhibitor of MDM2 interaction with p53. Oncogene. 1999, 18 (11): 1921-34. 10.1038/sj.onc.1202528.PubMedCrossRef Wasylyk C: p53 mediated death of cells overexpressing MDM2 by an inhibitor of MDM2 interaction with p53. Oncogene. 1999, 18 (11): 1921-34. 10.1038/sj.onc.1202528.PubMedCrossRef
13.
go back to reference Chene P: A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. J Mol Biol. 2000, 299 (1): 245-53. 10.1006/jmbi.2000.3738.PubMedCrossRef Chene P: A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. J Mol Biol. 2000, 299 (1): 245-53. 10.1006/jmbi.2000.3738.PubMedCrossRef
14.
go back to reference Wang H: Anti-tumor efficacy of a novel antisense anti-MDM2 mixed-backbone oligonucleotide in human colon cancer models: p53-dependent and p53-independent mechanisms. Mol Med. 2002, 8 (4): 185-99.PubMedCentralPubMed Wang H: Anti-tumor efficacy of a novel antisense anti-MDM2 mixed-backbone oligonucleotide in human colon cancer models: p53-dependent and p53-independent mechanisms. Mol Med. 2002, 8 (4): 185-99.PubMedCentralPubMed
15.
go back to reference Xue W: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007, 445 (7128): 656-60. 10.1038/nature05529.PubMedCentralPubMedCrossRef Xue W: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007, 445 (7128): 656-60. 10.1038/nature05529.PubMedCentralPubMedCrossRef
16.
go back to reference Ventura A: Restoration of p53 function leads to tumour regression in vivo. Nature. 2007, 445 (7128): 661-5. 10.1038/nature05541.PubMedCrossRef Ventura A: Restoration of p53 function leads to tumour regression in vivo. Nature. 2007, 445 (7128): 661-5. 10.1038/nature05541.PubMedCrossRef
17.
go back to reference Martins CP, Brown-Swigart L, Evan GI: Modeling the therapeutic efficacy of p53 restoration in tumors. Cell. 2006, 127 (7): 1323-34. 10.1016/j.cell.2006.12.007.PubMedCrossRef Martins CP, Brown-Swigart L, Evan GI: Modeling the therapeutic efficacy of p53 restoration in tumors. Cell. 2006, 127 (7): 1323-34. 10.1016/j.cell.2006.12.007.PubMedCrossRef
18.
go back to reference Kussie PH: Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 1996, 274 (5289): 948-53. 10.1126/science.274.5289.948.PubMedCrossRef Kussie PH: Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 1996, 274 (5289): 948-53. 10.1126/science.274.5289.948.PubMedCrossRef
19.
go back to reference Patel S, Player MR: Small-molecule inhibitors of the p53-HDM2 interaction for the treatment of cancer. Expert Opin Investig Drugs. 2008, 17 (12): 1865-82. 10.1517/13543780802493366.PubMedCrossRef Patel S, Player MR: Small-molecule inhibitors of the p53-HDM2 interaction for the treatment of cancer. Expert Opin Investig Drugs. 2008, 17 (12): 1865-82. 10.1517/13543780802493366.PubMedCrossRef
20.
go back to reference Cheok CF: Translating p53 into the clinic. Nat Rev Clin Oncol. 2010, advance online publication Cheok CF: Translating p53 into the clinic. Nat Rev Clin Oncol. 2010, advance online publication
21.
22.
go back to reference Vassilev LT: Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle. 2004, 3 (4): 419-21.PubMedCrossRef Vassilev LT: Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle. 2004, 3 (4): 419-21.PubMedCrossRef
23.
go back to reference Vassilev LT: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004, 303 (5659): 844-8. 10.1126/science.1092472.PubMedCrossRef Vassilev LT: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004, 303 (5659): 844-8. 10.1126/science.1092472.PubMedCrossRef
24.
go back to reference Tovar C: Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA. 2006, 103 (6): 1888-93. 10.1073/pnas.0507493103.PubMedCentralPubMedCrossRef Tovar C: Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA. 2006, 103 (6): 1888-93. 10.1073/pnas.0507493103.PubMedCentralPubMedCrossRef
25.
go back to reference Shangary S, S Wang: Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol. 2009, 49: 223-41. 10.1146/annurev.pharmtox.48.113006.094723.PubMedCentralPubMedCrossRef Shangary S, S Wang: Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol. 2009, 49: 223-41. 10.1146/annurev.pharmtox.48.113006.094723.PubMedCentralPubMedCrossRef
26.
go back to reference Van Maerken T: Antitumor activity of the selective MDM2 antagonist nutlin-3 against chemoresistant neuroblastoma with wild-type p53. J Natl Cancer Inst. 2009, 101 (22): 1562-74. 10.1093/jnci/djp355.PubMedCrossRef Van Maerken T: Antitumor activity of the selective MDM2 antagonist nutlin-3 against chemoresistant neuroblastoma with wild-type p53. J Natl Cancer Inst. 2009, 101 (22): 1562-74. 10.1093/jnci/djp355.PubMedCrossRef
27.
go back to reference Tabe Y: MDM2 antagonist nutlin-3 displays antiproliferative and proapoptotic activity in mantle cell lymphoma. Clin Cancer Res. 2009, 15 (3): 933-42. 10.1158/1078-0432.CCR-08-0399.PubMedCrossRef Tabe Y: MDM2 antagonist nutlin-3 displays antiproliferative and proapoptotic activity in mantle cell lymphoma. Clin Cancer Res. 2009, 15 (3): 933-42. 10.1158/1078-0432.CCR-08-0399.PubMedCrossRef
28.
go back to reference Hasegawa H: Activation of p53 by Nutlin-3a, an antagonist of MDM2, induces apoptosis and cellular senescence in adult T-cell leukemia cells. Leukemia. 2009, 23 (11): 2090-2101. 10.1038/leu.2009.171.PubMedCrossRef Hasegawa H: Activation of p53 by Nutlin-3a, an antagonist of MDM2, induces apoptosis and cellular senescence in adult T-cell leukemia cells. Leukemia. 2009, 23 (11): 2090-2101. 10.1038/leu.2009.171.PubMedCrossRef
29.
go back to reference Kojima K: MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood. 2005, 106 (9): 3150-9. 10.1182/blood-2005-02-0553.PubMedCentralPubMedCrossRef Kojima K: MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood. 2005, 106 (9): 3150-9. 10.1182/blood-2005-02-0553.PubMedCentralPubMedCrossRef
30.
go back to reference Lau LM: HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function. Oncogene. 2008, 27 (7): 997-1003. 10.1038/sj.onc.1210707.PubMedCrossRef Lau LM: HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function. Oncogene. 2008, 27 (7): 997-1003. 10.1038/sj.onc.1210707.PubMedCrossRef
31.
32.
go back to reference Wade M: Hdmx modulates the outcome of p53 activation in human tumor cells. J Biol Chem. 2006, 281 (44): 33036-44. 10.1074/jbc.M605405200.PubMedCrossRef Wade M: Hdmx modulates the outcome of p53 activation in human tumor cells. J Biol Chem. 2006, 281 (44): 33036-44. 10.1074/jbc.M605405200.PubMedCrossRef
34.
go back to reference Arts J: JNJ-26854165 - a novel HDM2 antagonist in clinical development showing broad-spectrum preclinical antitumour activity against solid malignancies. Proc Am Assoc Cancer Res. 2008, 49: Abstract 1592 Arts J: JNJ-26854165 - a novel HDM2 antagonist in clinical development showing broad-spectrum preclinical antitumour activity against solid malignancies. Proc Am Assoc Cancer Res. 2008, 49: Abstract 1592
35.
go back to reference Stuhmer T: A first-in-class HDM2-inhibitor (JNJ-26854165) in phase I development shows potent activity against multiple myeloma (MM) cells in vitro and ex vivo. J Clin Oncol (Meeting Abstracts). 2008, 26 (15_suppl): 14694- Stuhmer T: A first-in-class HDM2-inhibitor (JNJ-26854165) in phase I development shows potent activity against multiple myeloma (MM) cells in vitro and ex vivo. J Clin Oncol (Meeting Abstracts). 2008, 26 (15_suppl): 14694-
36.
go back to reference Kojima K: The novel tryptamine derivative JNJ-26854165 induces wild-type p53- and E2F1-mediated apoptosis in acute myeloid and lymphoid leukemias. Mol Cancer Ther. 2010, 9 (9): 2545-57. 10.1158/1535-7163.MCT-10-0337.PubMedCentralPubMedCrossRef Kojima K: The novel tryptamine derivative JNJ-26854165 induces wild-type p53- and E2F1-mediated apoptosis in acute myeloid and lymphoid leukemias. Mol Cancer Ther. 2010, 9 (9): 2545-57. 10.1158/1535-7163.MCT-10-0337.PubMedCentralPubMedCrossRef
37.
go back to reference Tabernero J: Phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of HDM-2 antagonist JNJ-26854165 in patients with advanced refractory solid tumors. J Clin Oncol (Meeting Abstracts). 2009, 27 (15S): 3514- Tabernero J: Phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of HDM-2 antagonist JNJ-26854165 in patients with advanced refractory solid tumors. J Clin Oncol (Meeting Abstracts). 2009, 27 (15S): 3514-
38.
go back to reference Yang H: Macrophage inhibitory cytokine-1: a novel biomarker for p53 pathway activation. Mol Cancer Ther. 2003, 2 (10): 1023-9.PubMed Yang H: Macrophage inhibitory cytokine-1: a novel biomarker for p53 pathway activation. Mol Cancer Ther. 2003, 2 (10): 1023-9.PubMed
39.
go back to reference Wasik MA: Anaplastic lymphoma kinase (ALK)-induced malignancies: novel mechanisms of cell transformation and potential therapeutic approaches. Semin Oncol. 2009, 36 (2 Suppl 1): S27-35.PubMedCrossRef Wasik MA: Anaplastic lymphoma kinase (ALK)-induced malignancies: novel mechanisms of cell transformation and potential therapeutic approaches. Semin Oncol. 2009, 36 (2 Suppl 1): S27-35.PubMedCrossRef
40.
go back to reference Chiarle R: The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008, 8 (1): 11-23. 10.1038/nrc2291.PubMedCrossRef Chiarle R: The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008, 8 (1): 11-23. 10.1038/nrc2291.PubMedCrossRef
41.
go back to reference Morris SW: Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 1994, 263 (5151): 1281-4. 10.1126/science.8122112.PubMedCrossRef Morris SW: Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 1994, 263 (5151): 1281-4. 10.1126/science.8122112.PubMedCrossRef
43.
go back to reference Chen Y: Oncogenic mutations of ALK kinase in neuroblastoma. Nature. 2008, 455 (7215): 971-974. 10.1038/nature07399.PubMedCrossRef Chen Y: Oncogenic mutations of ALK kinase in neuroblastoma. Nature. 2008, 455 (7215): 971-974. 10.1038/nature07399.PubMedCrossRef
44.
go back to reference Sharma SV, Settleman J: Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev. 2007, 21 (24): 3214-31. 10.1101/gad.1609907.PubMedCrossRef Sharma SV, Settleman J: Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev. 2007, 21 (24): 3214-31. 10.1101/gad.1609907.PubMedCrossRef
45.
go back to reference Piva R: Ablation of oncogenic ALK is a viable therapeutic approach for anaplastic large-cell lymphomas. Blood. 2006, 107 (2): 689-97. 10.1182/blood-2005-05-2125.PubMedCentralPubMedCrossRef Piva R: Ablation of oncogenic ALK is a viable therapeutic approach for anaplastic large-cell lymphomas. Blood. 2006, 107 (2): 689-97. 10.1182/blood-2005-05-2125.PubMedCentralPubMedCrossRef
46.
go back to reference Houtman SH: Echinoderm microtubule-associated protein like protein 4, a member of the echinoderm microtubule-associated protein family, stabilizes microtubules. Neuroscience. 2007, 144 (4): 1373-82. 10.1016/j.neuroscience.2006.11.015.PubMedCrossRef Houtman SH: Echinoderm microtubule-associated protein like protein 4, a member of the echinoderm microtubule-associated protein family, stabilizes microtubules. Neuroscience. 2007, 144 (4): 1373-82. 10.1016/j.neuroscience.2006.11.015.PubMedCrossRef
47.
go back to reference Choi YL: Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res. 2008, 68 (13): 4971-6. 10.1158/0008-5472.CAN-07-6158.PubMedCrossRef Choi YL: Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res. 2008, 68 (13): 4971-6. 10.1158/0008-5472.CAN-07-6158.PubMedCrossRef
48.
go back to reference Soda M: Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007, 448 (7153): 561-6. 10.1038/nature05945.PubMedCrossRef Soda M: Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007, 448 (7153): 561-6. 10.1038/nature05945.PubMedCrossRef
49.
go back to reference Takeuchi K: Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. Clin Cancer Res. 2008, 14 (20): 6618-24. 10.1158/1078-0432.CCR-08-1018.PubMedCrossRef Takeuchi K: Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. Clin Cancer Res. 2008, 14 (20): 6618-24. 10.1158/1078-0432.CCR-08-1018.PubMedCrossRef
50.
go back to reference Takeuchi K: KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res. 2009, 15 (9): 3143-9. 10.1158/1078-0432.CCR-08-3248.PubMedCrossRef Takeuchi K: KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res. 2009, 15 (9): 3143-9. 10.1158/1078-0432.CCR-08-3248.PubMedCrossRef
51.
go back to reference Wong DW: The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer. 2009, 115 (8): 1723-33. 10.1002/cncr.24181.PubMedCrossRef Wong DW: The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer. 2009, 115 (8): 1723-33. 10.1002/cncr.24181.PubMedCrossRef
53.
go back to reference Inamura K: EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J Thorac Oncol. 2008, 3 (1): 13-7. 10.1097/JTO.0b013e31815e8b60.PubMedCrossRef Inamura K: EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J Thorac Oncol. 2008, 3 (1): 13-7. 10.1097/JTO.0b013e31815e8b60.PubMedCrossRef
54.
go back to reference Shinmura K: EML4-ALK fusion transcripts, but no NPM-, TPM3-, CLTC-, ATIC-, or TFG-ALK fusion transcripts, in non-small cell lung carcinomas. Lung Cancer. 2008, 61 (2): 163-9. 10.1016/j.lungcan.2007.12.013.PubMedCrossRef Shinmura K: EML4-ALK fusion transcripts, but no NPM-, TPM3-, CLTC-, ATIC-, or TFG-ALK fusion transcripts, in non-small cell lung carcinomas. Lung Cancer. 2008, 61 (2): 163-9. 10.1016/j.lungcan.2007.12.013.PubMedCrossRef
55.
go back to reference Shaw AT: Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009, 27 (26): 4247-53. 10.1200/JCO.2009.22.6993.PubMedCentralPubMedCrossRef Shaw AT: Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009, 27 (26): 4247-53. 10.1200/JCO.2009.22.6993.PubMedCentralPubMedCrossRef
56.
go back to reference Fukuyoshi Y: EML4-ALK fusion transcript is not found in gastrointestinal and breast cancers. Br J Cancer. 2008, 98 (9): 1536-9. 10.1038/sj.bjc.6604341.PubMedCentralPubMedCrossRef Fukuyoshi Y: EML4-ALK fusion transcript is not found in gastrointestinal and breast cancers. Br J Cancer. 2008, 98 (9): 1536-9. 10.1038/sj.bjc.6604341.PubMedCentralPubMedCrossRef
57.
go back to reference Shaw AT: Prognostic versus predictive value of EML4-ALK translocation in metastatic non-small cell lung cancer. J Clin Oncol (Meeting Abstracts). 2010, 28 (15_suppl): 7606- Shaw AT: Prognostic versus predictive value of EML4-ALK translocation in metastatic non-small cell lung cancer. J Clin Oncol (Meeting Abstracts). 2010, 28 (15_suppl): 7606-
58.
go back to reference Li R, Morris SW: Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. Med Res Rev. 2008, 28 (3): 372-412. 10.1002/med.20109.PubMedCrossRef Li R, Morris SW: Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. Med Res Rev. 2008, 28 (3): 372-412. 10.1002/med.20109.PubMedCrossRef
59.
go back to reference Gunby RH: Structural insights into the ATP binding pocket of the anaplastic lymphoma kinase by site-directed mutagenesis, inhibitor binding analysis, and homology modeling. J Med Chem. 2006, 49 (19): 5759-68. 10.1021/jm060380k.PubMedCrossRef Gunby RH: Structural insights into the ATP binding pocket of the anaplastic lymphoma kinase by site-directed mutagenesis, inhibitor binding analysis, and homology modeling. J Med Chem. 2006, 49 (19): 5759-68. 10.1021/jm060380k.PubMedCrossRef
60.
go back to reference Zou HY: An Orally Available Small-Molecule Inhibitor of c-Met, PF-2341066, Exhibits Cytoreductive Antitumor Efficacy through Antiproliferative and Antiangiogenic Mechanisms. Cancer Research. 2007, 67 (9): 4408-4417. 10.1158/0008-5472.CAN-06-4443.PubMedCrossRef Zou HY: An Orally Available Small-Molecule Inhibitor of c-Met, PF-2341066, Exhibits Cytoreductive Antitumor Efficacy through Antiproliferative and Antiangiogenic Mechanisms. Cancer Research. 2007, 67 (9): 4408-4417. 10.1158/0008-5472.CAN-06-4443.PubMedCrossRef
61.
go back to reference Christensen JG: Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther. 2007, 6 (12 Pt 1): 3314-22.PubMedCrossRef Christensen JG: Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther. 2007, 6 (12 Pt 1): 3314-22.PubMedCrossRef
62.
go back to reference McDermott U: Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res. 2008, 68 (9): 3389-95. 10.1158/0008-5472.CAN-07-6186.PubMedCrossRef McDermott U: Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res. 2008, 68 (9): 3389-95. 10.1158/0008-5472.CAN-07-6186.PubMedCrossRef
63.
go back to reference Shakespeare WC: Discovery of potent and selective orally active inhibitors of anaplastic lymphoma kinase (ALK). Proc Am Assoc Cancer Res. 2009, 50: Abstract 3738 Shakespeare WC: Discovery of potent and selective orally active inhibitors of anaplastic lymphoma kinase (ALK). Proc Am Assoc Cancer Res. 2009, 50: Abstract 3738
64.
go back to reference Zhang S: AP26113, a potent ALK inhibitor, overcomes mutations in EML4-ALK that confer resistance to PF-02341066 (PF1066). Proc Am Assoc Cancer Res. 2010, 51: Abstract LB-298 Zhang S: AP26113, a potent ALK inhibitor, overcomes mutations in EML4-ALK that confer resistance to PF-02341066 (PF1066). Proc Am Assoc Cancer Res. 2010, 51: Abstract LB-298
65.
go back to reference Rivera VM: Efficacy and pharmacodynamic analysis of AP26113, a potent and selective orally active inhibitor of Anaplastic Lymphoma Kinase (ALK). Proc Am Assoc Cancer Res. 2010, 51: Abstract 3623 Rivera VM: Efficacy and pharmacodynamic analysis of AP26113, a potent and selective orally active inhibitor of Anaplastic Lymphoma Kinase (ALK). Proc Am Assoc Cancer Res. 2010, 51: Abstract 3623
66.
go back to reference Kwak EL: Clinical activity observed in a phase I dose escalation trial of an oral c-met and ALK inhibitor, PF-02341066. J Clin Oncol (Meeting Abstracts). 2009, 27 (15S): 3509- Kwak EL: Clinical activity observed in a phase I dose escalation trial of an oral c-met and ALK inhibitor, PF-02341066. J Clin Oncol (Meeting Abstracts). 2009, 27 (15S): 3509-
67.
go back to reference Bang Y: Clinical activity of the oral ALK inhibitor PF-02341066 in ALK-positive patients with non-small cell lung cancer (NSCLC). J Clin Oncol (Meeting Abstracts). 2010, 28 (18_suppl): 3- Bang Y: Clinical activity of the oral ALK inhibitor PF-02341066 in ALK-positive patients with non-small cell lung cancer (NSCLC). J Clin Oncol (Meeting Abstracts). 2010, 28 (18_suppl): 3-
68.
70.
go back to reference Durkacz BW: (ADP-ribose)n participates in DNA excision repair. Nature. 1980, 283 (5747): 593-596. 10.1038/283593a0.PubMedCrossRef Durkacz BW: (ADP-ribose)n participates in DNA excision repair. Nature. 1980, 283 (5747): 593-596. 10.1038/283593a0.PubMedCrossRef
71.
go back to reference Burkle A: Poly(ADP-ribose). The most elaborate metabolite of NAD+. FEBS J. 2005, 272 (18): 4576-89. 10.1111/j.1742-4658.2005.04864.x.PubMedCrossRef Burkle A: Poly(ADP-ribose). The most elaborate metabolite of NAD+. FEBS J. 2005, 272 (18): 4576-89. 10.1111/j.1742-4658.2005.04864.x.PubMedCrossRef
72.
go back to reference Huber A: PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development. DNA Repair (Amst). 2004, 3 (8-9): 1103-8. 10.1016/j.dnarep.2004.06.002.CrossRef Huber A: PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development. DNA Repair (Amst). 2004, 3 (8-9): 1103-8. 10.1016/j.dnarep.2004.06.002.CrossRef
73.
go back to reference Shieh WM: Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J Biol Chem. 1998, 273 (46): 30069-72. 10.1074/jbc.273.46.30069.PubMedCrossRef Shieh WM: Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J Biol Chem. 1998, 273 (46): 30069-72. 10.1074/jbc.273.46.30069.PubMedCrossRef
74.
go back to reference Yelamos J, Schreiber V, Dantzer F: Toward specific functions of poly(ADP-ribose) polymerase-2. Trends Mol Med. 2008, 14 (4): 169-78. 10.1016/j.molmed.2008.02.003.PubMedCrossRef Yelamos J, Schreiber V, Dantzer F: Toward specific functions of poly(ADP-ribose) polymerase-2. Trends Mol Med. 2008, 14 (4): 169-78. 10.1016/j.molmed.2008.02.003.PubMedCrossRef
75.
go back to reference Ratnam K, Low JA: Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin Cancer Res. 2007, 13 (5): 1383-8. 10.1158/1078-0432.CCR-06-2260.PubMedCrossRef Ratnam K, Low JA: Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin Cancer Res. 2007, 13 (5): 1383-8. 10.1158/1078-0432.CCR-06-2260.PubMedCrossRef
76.
go back to reference Puhalla S: PARP inhibitors: what we know and what we have yet to know. Oncology (Williston Park). 2010, 24 (1): 62-65-6 Puhalla S: PARP inhibitors: what we know and what we have yet to know. Oncology (Williston Park). 2010, 24 (1): 62-65-6
77.
go back to reference Comen EA, Robson M: Inhibition of poly(ADP)-ribose polymerase as a therapeutic strategy for breast cancer. Oncology (Williston Park). 2010, 24 (1): 55-62. Comen EA, Robson M: Inhibition of poly(ADP)-ribose polymerase as a therapeutic strategy for breast cancer. Oncology (Williston Park). 2010, 24 (1): 55-62.
78.
go back to reference Carden CP, Yap TA, Kaye SB: PARP inhibition: targeting the Achilles' heel of DNA repair to treat germline and sporadic ovarian cancers. Curr Opin Oncol. 2010, 22 (5): 473-80. 10.1097/CCO.0b013e32833b5126.PubMedCrossRef Carden CP, Yap TA, Kaye SB: PARP inhibition: targeting the Achilles' heel of DNA repair to treat germline and sporadic ovarian cancers. Curr Opin Oncol. 2010, 22 (5): 473-80. 10.1097/CCO.0b013e32833b5126.PubMedCrossRef
79.
go back to reference Plummer ER, Calvert H: Targeting poly(ADP-ribose) polymerase: a two-armed strategy for cancer therapy. Clin Cancer Res. 2007, 13 (21): 6252-6. 10.1158/1078-0432.CCR-07-0617.PubMedCrossRef Plummer ER, Calvert H: Targeting poly(ADP-ribose) polymerase: a two-armed strategy for cancer therapy. Clin Cancer Res. 2007, 13 (21): 6252-6. 10.1158/1078-0432.CCR-07-0617.PubMedCrossRef
80.
go back to reference Farmer H: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005, 434 (7035): 917-21. 10.1038/nature03445.PubMedCrossRef Farmer H: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005, 434 (7035): 917-21. 10.1038/nature03445.PubMedCrossRef
81.
go back to reference Bryant HE: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005, 434 (7035): 913-7. 10.1038/nature03443.PubMedCrossRef Bryant HE: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005, 434 (7035): 913-7. 10.1038/nature03443.PubMedCrossRef
82.
go back to reference Turner N, Tutt A, Ashworth A: Hallmarks of 'BRCAness' in sporadic cancers. Nat Rev Cancer. 2004, 4 (10): 814-9. 10.1038/nrc1457.PubMedCrossRef Turner N, Tutt A, Ashworth A: Hallmarks of 'BRCAness' in sporadic cancers. Nat Rev Cancer. 2004, 4 (10): 814-9. 10.1038/nrc1457.PubMedCrossRef
83.
go back to reference McCabe N: Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 2006, 66 (16): 8109-15. 10.1158/0008-5472.CAN-06-0140.PubMedCrossRef McCabe N: Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 2006, 66 (16): 8109-15. 10.1158/0008-5472.CAN-06-0140.PubMedCrossRef
84.
85.
go back to reference Konstantinopoulos PA: Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. J Clin Oncol. 2010, 28 (22): 3555-61. 10.1200/JCO.2009.27.5719.PubMedCentralPubMedCrossRef Konstantinopoulos PA: Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. J Clin Oncol. 2010, 28 (22): 3555-61. 10.1200/JCO.2009.27.5719.PubMedCentralPubMedCrossRef
86.
go back to reference Hastak K, Ford E, Alli JM: Synergistic chemosensitivity of triple-negative breast cancer cell lines to poly(ADP-Ribose) polymerase inhibition, gemcitabine, and cisplatin. Cancer Res. 2010, 70 (20): 7970-80. 10.1158/0008-5472.CAN-09-4521.PubMedCentralPubMedCrossRef Hastak K, Ford E, Alli JM: Synergistic chemosensitivity of triple-negative breast cancer cell lines to poly(ADP-Ribose) polymerase inhibition, gemcitabine, and cisplatin. Cancer Res. 2010, 70 (20): 7970-80. 10.1158/0008-5472.CAN-09-4521.PubMedCentralPubMedCrossRef
87.
go back to reference Ishida J: Discovery of potent and selective PARP-1 and PARP-2 inhibitors: SBDD analysis via a combination of X-ray structural study and homology modeling. Bioorg Med Chem. 2006, 14 (5): 1378-90. 10.1016/j.bmc.2005.09.061.PubMedCrossRef Ishida J: Discovery of potent and selective PARP-1 and PARP-2 inhibitors: SBDD analysis via a combination of X-ray structural study and homology modeling. Bioorg Med Chem. 2006, 14 (5): 1378-90. 10.1016/j.bmc.2005.09.061.PubMedCrossRef
88.
go back to reference Yoo AR: Effects of a newly developed tricyclic PARP-1 inhibitor, on ischemic stroke. Drug Dev Res. 2010, 71 (4): 253-260. 10.1002/ddr.20368.CrossRef Yoo AR: Effects of a newly developed tricyclic PARP-1 inhibitor, on ischemic stroke. Drug Dev Res. 2010, 71 (4): 253-260. 10.1002/ddr.20368.CrossRef
89.
go back to reference Pellicciari R: On the way to selective PARP-2 inhibitors. Design, synthesis, and preliminary evaluation of a series of isoquinolinone derivatives. ChemMedChem. 2008, 3 (6): 914-23. 10.1002/cmdc.200800010.PubMedCrossRef Pellicciari R: On the way to selective PARP-2 inhibitors. Design, synthesis, and preliminary evaluation of a series of isoquinolinone derivatives. ChemMedChem. 2008, 3 (6): 914-23. 10.1002/cmdc.200800010.PubMedCrossRef
90.
go back to reference Eliasson MJ: Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med. 1997, 3 (10): 1089-95. 10.1038/nm1097-1089.PubMedCrossRef Eliasson MJ: Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med. 1997, 3 (10): 1089-95. 10.1038/nm1097-1089.PubMedCrossRef
91.
go back to reference Graziani G, Battaini F, Zhang J: PARP-1 inhibition to treat cancer, ischemia, inflammation. Pharmacol Res. 2005, 52 (1): 1-4. 10.1016/j.phrs.2005.02.007.PubMedCrossRef Graziani G, Battaini F, Zhang J: PARP-1 inhibition to treat cancer, ischemia, inflammation. Pharmacol Res. 2005, 52 (1): 1-4. 10.1016/j.phrs.2005.02.007.PubMedCrossRef
92.
go back to reference Szabo C: Cardioprotective effects of poly(ADP-ribose) polymerase inhibition. Pharmacol Res. 2005, 52 (1): 34-43. 10.1016/j.phrs.2005.02.017.PubMedCrossRef Szabo C: Cardioprotective effects of poly(ADP-ribose) polymerase inhibition. Pharmacol Res. 2005, 52 (1): 34-43. 10.1016/j.phrs.2005.02.017.PubMedCrossRef
93.
go back to reference Radovits T: Single dose treatment with PARP-inhibitor INO-1001 improves aging-associated cardiac and vascular dysfunction. Exp Gerontol. 2007, 42 (7): 676-85. 10.1016/j.exger.2007.01.013.PubMedCentralPubMedCrossRef Radovits T: Single dose treatment with PARP-inhibitor INO-1001 improves aging-associated cardiac and vascular dysfunction. Exp Gerontol. 2007, 42 (7): 676-85. 10.1016/j.exger.2007.01.013.PubMedCentralPubMedCrossRef
94.
go back to reference Matsuura S: MP-124, a novel poly(adp-ribose)polymerase (PARP) inhibitor, ameliorates the ischemic damage in non-human primate model (2009 International Stroke Conference). Stroke. 2009, 40 (4): Abstract P251 Matsuura S: MP-124, a novel poly(adp-ribose)polymerase (PARP) inhibitor, ameliorates the ischemic damage in non-human primate model (2009 International Stroke Conference). Stroke. 2009, 40 (4): Abstract P251
95.
go back to reference McCabe N: Targeting Tankyrase 1 as a therapeutic strategy for BRCA-associated cancer. Oncogene. 2009, 28 (11): 1465-1470. 10.1038/onc.2008.483.PubMedCrossRef McCabe N: Targeting Tankyrase 1 as a therapeutic strategy for BRCA-associated cancer. Oncogene. 2009, 28 (11): 1465-1470. 10.1038/onc.2008.483.PubMedCrossRef
96.
go back to reference Huang S-MA: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009, 461 (7264): 614-620. 10.1038/nature08356.PubMedCrossRef Huang S-MA: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009, 461 (7264): 614-620. 10.1038/nature08356.PubMedCrossRef
97.
go back to reference Bedikian AY: A phase IB trial of intravenous INO-1001 plus oral temozolomide in subjects with unresectable stage-III or IV melanoma. Cancer Invest. 2009, 27 (7): 756-63. 10.1080/07357900802709159.PubMedCrossRef Bedikian AY: A phase IB trial of intravenous INO-1001 plus oral temozolomide in subjects with unresectable stage-III or IV melanoma. Cancer Invest. 2009, 27 (7): 756-63. 10.1080/07357900802709159.PubMedCrossRef
99.
go back to reference Annunziata CM, O'Shaughnessy J: Poly (ADP-ribose) polymerase as a novel therapeutic target in cancer. Clin Cancer Res. 2010, 16 (18): 4517-26. 10.1158/1078-0432.CCR-10-0526.PubMedCentralPubMedCrossRef Annunziata CM, O'Shaughnessy J: Poly (ADP-ribose) polymerase as a novel therapeutic target in cancer. Clin Cancer Res. 2010, 16 (18): 4517-26. 10.1158/1078-0432.CCR-10-0526.PubMedCentralPubMedCrossRef
100.
go back to reference Ferraris DV: Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J Med Chem. 2010, 53 (12): 4561-84. 10.1021/jm100012m.PubMedCrossRef Ferraris DV: Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J Med Chem. 2010, 53 (12): 4561-84. 10.1021/jm100012m.PubMedCrossRef
101.
go back to reference Kopetz S: First in human phase I study of BSI-201, a small molecule inhibitor of poly ADP-ribose polymerase (PARP) in subjects with advanced solid tumors. J Clin Oncol (Meeting Abstracts). 2008, 26 (15_suppl): 3577- Kopetz S: First in human phase I study of BSI-201, a small molecule inhibitor of poly ADP-ribose polymerase (PARP) in subjects with advanced solid tumors. J Clin Oncol (Meeting Abstracts). 2008, 26 (15_suppl): 3577-
102.
go back to reference Mahany JJ: A phase IB study evaluating BSI-201 in combination with chemotherapy in subjects with advanced solid tumors. J Clin Oncol (Meeting Abstracts). 2008, 26 (15_suppl): 3579- Mahany JJ: A phase IB study evaluating BSI-201 in combination with chemotherapy in subjects with advanced solid tumors. J Clin Oncol (Meeting Abstracts). 2008, 26 (15_suppl): 3579-
103.
go back to reference OShaughnessy JOC, Pippen J: Efficacy of BSI-201, a poly (ADP-ribose) ploymerase-1(PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): Results of a randomized phase II trial. J Clin Oncol (Meeting Abstracts). 2009, 27 (15S): 3- OShaughnessy JOC, Pippen J: Efficacy of BSI-201, a poly (ADP-ribose) ploymerase-1(PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): Results of a randomized phase II trial. J Clin Oncol (Meeting Abstracts). 2009, 27 (15S): 3-
104.
go back to reference Audeh MW: Phase II trial of the oral PARP inhibitor olaparib (AZD2281) in BRCA-deficient advanced ovarian cancer. J Clin Oncol (Meeting Abstracts). 2009, 27 (15S): 5500- Audeh MW: Phase II trial of the oral PARP inhibitor olaparib (AZD2281) in BRCA-deficient advanced ovarian cancer. J Clin Oncol (Meeting Abstracts). 2009, 27 (15S): 5500-
105.
go back to reference Fong PC: AZD2281 (KU-0059436), a PARP (poly ADP-ribose polymerase) inhibitor with single agent anticancer activity in patients with BRCA deficient ovarian cancer: Results from a phase I study. J Clin Oncol (Meeting Abstracts). 2008, 26 (15_suppl): 5510- Fong PC: AZD2281 (KU-0059436), a PARP (poly ADP-ribose polymerase) inhibitor with single agent anticancer activity in patients with BRCA deficient ovarian cancer: Results from a phase I study. J Clin Oncol (Meeting Abstracts). 2008, 26 (15_suppl): 5510-
106.
go back to reference Fong PC: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009, 361 (2): 123-34. 10.1056/NEJMoa0900212.PubMedCrossRef Fong PC: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009, 361 (2): 123-34. 10.1056/NEJMoa0900212.PubMedCrossRef
107.
go back to reference Tutt A: Phase II trial of the oral PARP inhibitor olaparib in BRCA-deficient advanced breast cancer. J Clin Oncol (Meeting Abstracts). 2009, 27 (18S): CRA501- Tutt A: Phase II trial of the oral PARP inhibitor olaparib in BRCA-deficient advanced breast cancer. J Clin Oncol (Meeting Abstracts). 2009, 27 (18S): CRA501-
108.
go back to reference Fong PC: Poly(ADP)-Ribose Polymerase Inhibition: Frequent Durable Responses in BRCA Carrier Ovarian Cancer Correlating With Platinum-Free Interval. J Clin Oncol. 2010, 28 (15): 2512-2519. 10.1200/JCO.2009.26.9589.PubMedCrossRef Fong PC: Poly(ADP)-Ribose Polymerase Inhibition: Frequent Durable Responses in BRCA Carrier Ovarian Cancer Correlating With Platinum-Free Interval. J Clin Oncol. 2010, 28 (15): 2512-2519. 10.1200/JCO.2009.26.9589.PubMedCrossRef
109.
go back to reference Audeh MW: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. The Lancet. 2010, 376 (9737): 245-251. 10.1016/S0140-6736(10)60893-8.CrossRef Audeh MW: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. The Lancet. 2010, 376 (9737): 245-251. 10.1016/S0140-6736(10)60893-8.CrossRef
110.
go back to reference Tutt A: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. The Lancet. 2010, 376 (9737): 235-244. 10.1016/S0140-6736(10)60892-6.CrossRef Tutt A: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. The Lancet. 2010, 376 (9737): 235-244. 10.1016/S0140-6736(10)60892-6.CrossRef
111.
go back to reference Gelmon KA: Can we define tumors that will respond to PARP inhibitors? A phase II correlative study of olaparib in advanced serous ovarian cancer and triple-negative breast cancer. J Clin Oncol (Meeting Abstracts). 2010, 28 (15_suppl): 3002- Gelmon KA: Can we define tumors that will respond to PARP inhibitors? A phase II correlative study of olaparib in advanced serous ovarian cancer and triple-negative breast cancer. J Clin Oncol (Meeting Abstracts). 2010, 28 (15_suppl): 3002-
112.
go back to reference Tan DS: "BRCAness" syndrome in ovarian cancer: a case-control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations. J Clin Oncol. 2008, 26 (34): 5530-6. 10.1200/JCO.2008.16.1703.PubMedCrossRef Tan DS: "BRCAness" syndrome in ovarian cancer: a case-control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations. J Clin Oncol. 2008, 26 (34): 5530-6. 10.1200/JCO.2008.16.1703.PubMedCrossRef
113.
go back to reference Giaccone G: A phase I combination study of olaparib (AZD2281; KU-0059436) and cisplatin (C) plus gemcitabine (G) in adults with solid tumors. J Clin Oncol (Meeting Abstracts). 2010, 28 (15_suppl): 3027- Giaccone G: A phase I combination study of olaparib (AZD2281; KU-0059436) and cisplatin (C) plus gemcitabine (G) in adults with solid tumors. J Clin Oncol (Meeting Abstracts). 2010, 28 (15_suppl): 3027-
114.
go back to reference Dent RA: Safety and efficacy of the oral PARP inhibitor olaparib (AZD2281) in combination with paclitaxel for the first- or second-line treatment of patients with metastatic triple-negative breast cancer: Results from the safety cohort of a phase I/II multicenter trial. J Clin Oncol (Meeting Abstracts). 2010, 28 (15_suppl): 1018- Dent RA: Safety and efficacy of the oral PARP inhibitor olaparib (AZD2281) in combination with paclitaxel for the first- or second-line treatment of patients with metastatic triple-negative breast cancer: Results from the safety cohort of a phase I/II multicenter trial. J Clin Oncol (Meeting Abstracts). 2010, 28 (15_suppl): 1018-
115.
go back to reference Plummer R: Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res. 2008, 14 (23): 7917-23. 10.1158/1078-0432.CCR-08-1223.PubMedCentralPubMedCrossRef Plummer R: Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res. 2008, 14 (23): 7917-23. 10.1158/1078-0432.CCR-08-1223.PubMedCentralPubMedCrossRef
116.
go back to reference Plummer R: First and final report of a phase II study of the poly(ADP-ribose) polymerase (PARP) inhibitor, AG014699, in combination with temozolomide (TMZ) in patients with metastatic malignant melanoma (MM). J Clin Oncol (Meeting Abstracts). 2006, 24 (18_suppl): 8013- Plummer R: First and final report of a phase II study of the poly(ADP-ribose) polymerase (PARP) inhibitor, AG014699, in combination with temozolomide (TMZ) in patients with metastatic malignant melanoma (MM). J Clin Oncol (Meeting Abstracts). 2006, 24 (18_suppl): 8013-
117.
go back to reference Kummar S: Phase 0 clinical trial of the poly (ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J Clin Oncol. 2009, 27 (16): 2705-11. 10.1200/JCO.2008.19.7681.PubMedCentralPubMedCrossRef Kummar S: Phase 0 clinical trial of the poly (ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J Clin Oncol. 2009, 27 (16): 2705-11. 10.1200/JCO.2008.19.7681.PubMedCentralPubMedCrossRef
118.
go back to reference Tan AR: Preliminary results of a phase I trial of ABT-888, a poly(ADP-ribose) polymerase (PARP) inhibitor, in combination with cyclophosphamide. J Clin Oncol (Meeting Abstracts). 2010, 28 (15_suppl): 3000- Tan AR: Preliminary results of a phase I trial of ABT-888, a poly(ADP-ribose) polymerase (PARP) inhibitor, in combination with cyclophosphamide. J Clin Oncol (Meeting Abstracts). 2010, 28 (15_suppl): 3000-
119.
go back to reference Kummar S: A phase I study of ABT-888 (A) in combination with metronomic cyclophosphamide (C) in adults with refractory solid tumors and lymphomas. J Clin Oncol (Meeting Abstracts). 2010, 28 (15_suppl): 2605- Kummar S: A phase I study of ABT-888 (A) in combination with metronomic cyclophosphamide (C) in adults with refractory solid tumors and lymphomas. J Clin Oncol (Meeting Abstracts). 2010, 28 (15_suppl): 2605-
120.
go back to reference Isakoff SJ: A phase II trial of the PARP inhibitor veliparib (ABT888) and temozolomide for metastatic breast cancer. J Clin Oncol (Meeting Abstracts). 2010, 28 (15_suppl): 1019- Isakoff SJ: A phase II trial of the PARP inhibitor veliparib (ABT888) and temozolomide for metastatic breast cancer. J Clin Oncol (Meeting Abstracts). 2010, 28 (15_suppl): 1019-
121.
go back to reference Jones P: Discovery of 2-{4-[(3S)-Piperidin-3-yl]phenyl}-2H-indazole-7-carboxamide (MK-4827): A Novel Oral Poly(ADP-ribose)polymerase (PARP) Inhibitor Efficacious in BRCA-1 and -2 Mutant Tumors. Journal of Medicinal Chemistry. 2009, 52 (22): 7170-7185. 10.1021/jm901188v.PubMedCrossRef Jones P: Discovery of 2-{4-[(3S)-Piperidin-3-yl]phenyl}-2H-indazole-7-carboxamide (MK-4827): A Novel Oral Poly(ADP-ribose)polymerase (PARP) Inhibitor Efficacious in BRCA-1 and -2 Mutant Tumors. Journal of Medicinal Chemistry. 2009, 52 (22): 7170-7185. 10.1021/jm901188v.PubMedCrossRef
122.
go back to reference Sandhu SK: First-in-human trial of a poly(ADP-ribose) polymerase (PARP) inhibitor MK-4827 in advanced cancer patients (pts) with antitumor activity in BRCA-deficient and sporadic ovarian cancers. J Clin Oncol (Meeting Abstracts). 2010, 28 (15_suppl): 3001- Sandhu SK: First-in-human trial of a poly(ADP-ribose) polymerase (PARP) inhibitor MK-4827 in advanced cancer patients (pts) with antitumor activity in BRCA-deficient and sporadic ovarian cancers. J Clin Oncol (Meeting Abstracts). 2010, 28 (15_suppl): 3001-
123.
go back to reference Miknyoczki S: The selective poly(ADP-ribose) polymerase-1(2) inhibitor, CEP-8983, increases the sensitivity of chemoresistant tumor cells to temozolomide and irinotecan but does not potentiate myelotoxicity. Mol Cancer Ther. 2007, 6 (8): 2290-2302. 10.1158/1535-7163.MCT-07-0062.PubMedCrossRef Miknyoczki S: The selective poly(ADP-ribose) polymerase-1(2) inhibitor, CEP-8983, increases the sensitivity of chemoresistant tumor cells to temozolomide and irinotecan but does not potentiate myelotoxicity. Mol Cancer Ther. 2007, 6 (8): 2290-2302. 10.1158/1535-7163.MCT-07-0062.PubMedCrossRef
124.
go back to reference Lapidus RG: PARP inhibitors enhance the effect of cisplatin against tumors and ameliorate cisplatin-induced neuropathy. Proc Am Assoc Cancer Res. 2006, 47: Abstract 506 Lapidus RG: PARP inhibitors enhance the effect of cisplatin against tumors and ameliorate cisplatin-induced neuropathy. Proc Am Assoc Cancer Res. 2006, 47: Abstract 506
125.
go back to reference Russo AL: In vitro and in vivo radiosensitization of glioblastoma cells by the poly (ADP-ribose) polymerase inhibitor E7016. Clin Cancer Res. 2009, 15 (2): 607-12. 10.1158/1078-0432.CCR-08-2079.PubMedCrossRef Russo AL: In vitro and in vivo radiosensitization of glioblastoma cells by the poly (ADP-ribose) polymerase inhibitor E7016. Clin Cancer Res. 2009, 15 (2): 607-12. 10.1158/1078-0432.CCR-08-2079.PubMedCrossRef
126.
go back to reference Sigal A, Rotter V: Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 2000, 60 (24): 6788-93.PubMed Sigal A, Rotter V: Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 2000, 60 (24): 6788-93.PubMed
127.
go back to reference Marine JC, Lozano G: Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ. 2010, 17 (1): 93-102. 10.1038/cdd.2009.68.PubMedCrossRef Marine JC, Lozano G: Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ. 2010, 17 (1): 93-102. 10.1038/cdd.2009.68.PubMedCrossRef
128.
go back to reference Patel A, Kaufmann SH: Development of PARP inhibitors: an unfinished story. Oncology (Williston Park). 2010, 24 (1): 66-68. Patel A, Kaufmann SH: Development of PARP inhibitors: an unfinished story. Oncology (Williston Park). 2010, 24 (1): 66-68.
129.
go back to reference Tong WM: Null mutation of DNA strand break-binding molecule poly(ADP-ribose) polymerase causes medulloblastomas in p53(-/-) mice. Am J Pathol. 2003, 162 (1): 343-52. 10.1016/S0002-9440(10)63825-4.PubMedCentralPubMedCrossRef Tong WM: Null mutation of DNA strand break-binding molecule poly(ADP-ribose) polymerase causes medulloblastomas in p53(-/-) mice. Am J Pathol. 2003, 162 (1): 343-52. 10.1016/S0002-9440(10)63825-4.PubMedCentralPubMedCrossRef
130.
go back to reference Grasberger BL: Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem. 2005, 48 (4): 909-12. 10.1021/jm049137g.PubMedCrossRef Grasberger BL: Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem. 2005, 48 (4): 909-12. 10.1021/jm049137g.PubMedCrossRef
131.
go back to reference Koblish HK: Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo. Mol Cancer Ther. 2006, 5 (1): 160-9. 10.1158/1535-7163.MCT-05-0199.PubMedCrossRef Koblish HK: Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo. Mol Cancer Ther. 2006, 5 (1): 160-9. 10.1158/1535-7163.MCT-05-0199.PubMedCrossRef
132.
go back to reference Ding K: Structure-Based Design of Spiro-oxindoles as Potent, Specific Small-Molecule Inhibitors of the MDM2âˆ'p53 Interaction. Journal of Medicinal Chemistry. 2006, 49 (12): 3432-3435. 10.1021/jm051122a.PubMedCrossRef Ding K: Structure-Based Design of Spiro-oxindoles as Potent, Specific Small-Molecule Inhibitors of the MDM2âˆ'p53 Interaction. Journal of Medicinal Chemistry. 2006, 49 (12): 3432-3435. 10.1021/jm051122a.PubMedCrossRef
133.
go back to reference Shangary S: Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA. 2008, 105 (10): 3933-3938. 10.1073/pnas.0708917105.PubMedCentralPubMedCrossRef Shangary S: Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA. 2008, 105 (10): 3933-3938. 10.1073/pnas.0708917105.PubMedCentralPubMedCrossRef
134.
go back to reference Mohammad R: An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals. Mol Cancer. 2009, 8 (1): 115-10.1186/1476-4598-8-115.PubMedCentralPubMedCrossRef Mohammad R: An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals. Mol Cancer. 2009, 8 (1): 115-10.1186/1476-4598-8-115.PubMedCentralPubMedCrossRef
135.
go back to reference Rothweiler U: Isoquinolin-1-one Inhibitors of the MDM2-p53 Interaction. ChemMedChem. 2008, 3 (7): 1118-1128. 10.1002/cmdc.200800025.PubMedCrossRef Rothweiler U: Isoquinolin-1-one Inhibitors of the MDM2-p53 Interaction. ChemMedChem. 2008, 3 (7): 1118-1128. 10.1002/cmdc.200800025.PubMedCrossRef
136.
go back to reference Nieves-Neira W: DNA protein cross-links produced by NSC 652287, a novel thiophene derivative active against human renal cancer cells. Mol Pharmacol. 1999, 56 (3): 478-84.PubMed Nieves-Neira W: DNA protein cross-links produced by NSC 652287, a novel thiophene derivative active against human renal cancer cells. Mol Pharmacol. 1999, 56 (3): 478-84.PubMed
137.
go back to reference Issaeva N: Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med. 2004, 10 (12): 1321-8. 10.1038/nm1146.PubMedCrossRef Issaeva N: Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med. 2004, 10 (12): 1321-8. 10.1038/nm1146.PubMedCrossRef
138.
go back to reference Yang Y: Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell. 2005, 7 (6): 547-559. 10.1016/j.ccr.2005.04.029.PubMedCrossRef Yang Y: Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell. 2005, 7 (6): 547-559. 10.1016/j.ccr.2005.04.029.PubMedCrossRef
139.
go back to reference Wilson JM: Synthesis of 5-deazaflavin derivatives and their activation of p53 in cells. Bioorg Med Chem. 2007, 15 (1): 77-86. 10.1016/j.bmc.2006.10.011.PubMedCrossRef Wilson JM: Synthesis of 5-deazaflavin derivatives and their activation of p53 in cells. Bioorg Med Chem. 2007, 15 (1): 77-86. 10.1016/j.bmc.2006.10.011.PubMedCrossRef
141.
go back to reference Ott GR: Discovery of a potent Inhibitor of anaplastic lymphoma kinase with in vivo antitumor activity. ACS Med Chem Lett. 2010, 1 (9): 493-498. 10.1021/ml100158s.PubMedCentralPubMedCrossRef Ott GR: Discovery of a potent Inhibitor of anaplastic lymphoma kinase with in vivo antitumor activity. ACS Med Chem Lett. 2010, 1 (9): 493-498. 10.1021/ml100158s.PubMedCentralPubMedCrossRef
142.
go back to reference Lovly CM: Preclinical development of a selective, potent small molecule ALK inhibitor. Proc Am Assoc Cancer Res. 2010, 51: Abstract 1788 Lovly CM: Preclinical development of a selective, potent small molecule ALK inhibitor. Proc Am Assoc Cancer Res. 2010, 51: Abstract 1788
143.
go back to reference Kruczynski A: Antitumor activity of pyridoisoquinoline derivatives F91873 and F91874, novel multikinase inhibitors with activity against the anaplastic lymphoma kinase. Anti-Cancer Drugs. 2009, 20 (5): 364-372. 10.1097/CAD.0b013e32832a2ed9.PubMedCrossRef Kruczynski A: Antitumor activity of pyridoisoquinoline derivatives F91873 and F91874, novel multikinase inhibitors with activity against the anaplastic lymphoma kinase. Anti-Cancer Drugs. 2009, 20 (5): 364-372. 10.1097/CAD.0b013e32832a2ed9.PubMedCrossRef
144.
go back to reference Fancelli D: 1,4,5,6-Tetrahydropyrrolo[3,4-c]pyrazoles:??Identification of a Potent Aurora Kinase Inhibitor with a Favorable Antitumor Kinase Inhibition Profile. Journal of Medicinal Chemistry. 2006, 49 (24): 7247-7251. 10.1021/jm060897w.PubMedCrossRef Fancelli D: 1,4,5,6-Tetrahydropyrrolo[3,4-c]pyrazoles:??Identification of a Potent Aurora Kinase Inhibitor with a Favorable Antitumor Kinase Inhibition Profile. Journal of Medicinal Chemistry. 2006, 49 (24): 7247-7251. 10.1021/jm060897w.PubMedCrossRef
145.
go back to reference Bossi RT: Crystal Structures of Anaplastic Lymphoma Kinase in Complex with ATP Competitive Inhibitors. Biochemistry. 2010, 49 (32): 6813-6825. 10.1021/bi1005514.PubMedCrossRef Bossi RT: Crystal Structures of Anaplastic Lymphoma Kinase in Complex with ATP Competitive Inhibitors. Biochemistry. 2010, 49 (32): 6813-6825. 10.1021/bi1005514.PubMedCrossRef
146.
go back to reference Wan W: Anaplastic lymphoma kinase activity is essential for the proliferation and survival of anaplastic large-cell lymphoma cells. Blood. 2006, 107 (4): 1617-1623. 10.1182/blood-2005-08-3254.PubMedCrossRef Wan W: Anaplastic lymphoma kinase activity is essential for the proliferation and survival of anaplastic large-cell lymphoma cells. Blood. 2006, 107 (4): 1617-1623. 10.1182/blood-2005-08-3254.PubMedCrossRef
147.
go back to reference Ardini E: Anaplastic Lymphoma Kinase: Role in specific tumours, and development of small molecule inhibitors for cancer therapy. Cancer Letters. 2010, 299 (2): 81-94. 10.1016/j.canlet.2010.09.001.PubMedCrossRef Ardini E: Anaplastic Lymphoma Kinase: Role in specific tumours, and development of small molecule inhibitors for cancer therapy. Cancer Letters. 2010, 299 (2): 81-94. 10.1016/j.canlet.2010.09.001.PubMedCrossRef
148.
go back to reference Sabbatini P: GSK1838705A inhibits the insulin-like growth factor-1 receptor and anaplastic lymphoma kinase and shows antitumor activity in experimental models of human cancers. Mol Cancer Ther. 2009, 8 (10): 2811-2820. 10.1158/1535-7163.MCT-09-0423.PubMedCrossRef Sabbatini P: GSK1838705A inhibits the insulin-like growth factor-1 receptor and anaplastic lymphoma kinase and shows antitumor activity in experimental models of human cancers. Mol Cancer Ther. 2009, 8 (10): 2811-2820. 10.1158/1535-7163.MCT-09-0423.PubMedCrossRef
149.
go back to reference Galkin AV: Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc Natl Acad Sci USA. 2007, 104 (1): 270-275. 10.1073/pnas.0609412103.PubMedCentralPubMedCrossRef Galkin AV: Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc Natl Acad Sci USA. 2007, 104 (1): 270-275. 10.1073/pnas.0609412103.PubMedCentralPubMedCrossRef
150.
go back to reference Chen Z: Inhibition of ALK, PI3K/MEK, and HSP90 in Murine Lung Adenocarcinoma Induced by EML4-ALK Fusion Oncogene. Cancer Research. 2010 Chen Z: Inhibition of ALK, PI3K/MEK, and HSP90 in Murine Lung Adenocarcinoma Induced by EML4-ALK Fusion Oncogene. Cancer Research. 2010
151.
go back to reference Brock WA: Radiosensitization of human and rodent cell lines by INO-1001, a novel inhibitor of poly(ADP-ribose) polymerase. Cancer Lett. 2004, 205 (2): 155-60. 10.1016/j.canlet.2003.10.029.PubMedCrossRef Brock WA: Radiosensitization of human and rodent cell lines by INO-1001, a novel inhibitor of poly(ADP-ribose) polymerase. Cancer Lett. 2004, 205 (2): 155-60. 10.1016/j.canlet.2003.10.029.PubMedCrossRef
152.
go back to reference Cheng CL: Poly(ADP-ribose) polymerase-1 inhibition reverses temozolomide resistance in a DNA mismatch repair-deficient malignant glioma xenograft. Mol Cancer Ther. 2005, 4 (9): 1364-8. 10.1158/1535-7163.MCT-05-0128.PubMedCrossRef Cheng CL: Poly(ADP-ribose) polymerase-1 inhibition reverses temozolomide resistance in a DNA mismatch repair-deficient malignant glioma xenograft. Mol Cancer Ther. 2005, 4 (9): 1364-8. 10.1158/1535-7163.MCT-05-0128.PubMedCrossRef
154.
go back to reference Wang B: Novel PARP inhibitors with potent antitumor activity as single-agent and combination therapies. Mol Cancer Ther. 2009, 8 (Supplement 1): Abstract 121 Wang B: Novel PARP inhibitors with potent antitumor activity as single-agent and combination therapies. Mol Cancer Ther. 2009, 8 (Supplement 1): Abstract 121
155.
go back to reference Plummer R: Perspective on the pipeline of drugs being developed with modulation of DNA damage as a target. Clin Cancer Res. 2010, 16 (18): 4527-31. 10.1158/1078-0432.CCR-10-0984.PubMedCrossRef Plummer R: Perspective on the pipeline of drugs being developed with modulation of DNA damage as a target. Clin Cancer Res. 2010, 16 (18): 4527-31. 10.1158/1078-0432.CCR-10-0984.PubMedCrossRef
156.
go back to reference Montagnoli A: NMS-P118, a Parp-1 selective inhibitor with efficacy in DNA repair deficient tumor models in 22nd EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics. Berlin, Germany. 2010 Montagnoli A: NMS-P118, a Parp-1 selective inhibitor with efficacy in DNA repair deficient tumor models in 22nd EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics. Berlin, Germany. 2010
Metadata
Title
Novel targeted therapeutics: inhibitors of MDM2, ALK and PARP
Authors
Yuan Yuan
Yu-Min Liao
Chung-Tsen Hsueh
Hamid R Mirshahidi
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2011
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/1756-8722-4-16

Other articles of this Issue 1/2011

Journal of Hematology & Oncology 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine