Skip to main content
Top
Published in: Virology Journal 1/2013

Open Access 01-12-2013 | Research

Quantitative detection of relative expression levels of the whole genome of Southern rice black-streaked dwarf virus and its replication in different hosts

Authors: Peng He, Jia-Ju Liu, Ming He, Zhen-Chao Wang, Zhuo Chen, Rong Guo, James C Correll, Song Yang, Bao-An Song

Published in: Virology Journal | Issue 1/2013

Login to get access

Abstract

Background

In recent years, a disease caused by Southern rice black-streaked dwarf virus (SRBSDV) has resulted in significant loss in rice production in Southern China and has spread quickly throughout East and Southeast Asia. This virus is transmitted by an insect vector, white-backed planthopper (WBPH) Sogatella furcifera (Hemiptera: Delphacidae), in a persistent propagative manner. Aside from rice, SRBSDV can also infect numerous Poaceae plants. However, the molecular mechanism of interaction between SRBSDV and its plant or insect vector remains unclear. In order to address this, we investigated the whole viral genome relative mRNA expression level in distinct hosts and monitored their expression level in real-time in rice plants.

Methods

In this study, a reliable, rapid, and sensitive method for detecting viral gene expression transcripts is reported. A SYBR Green I based real-time polymerase chain reaction (PCR) method was adopted for the quantitative detection of SRBSDV gene expression in different hosts and real-time changes in gene expression in rice.

Results

Compared to the relative mRNA expression level of the whole genome of SRBSDV, P3, P7-1, and P9-2 were dominantly expressed in rice and WBPH. Similarly, these genes also exhibited high expression levels in corn, suggesting that they have more important functions than other viral genes in the interaction between SRBSDV and hosts, and that they could be used as molecular detection target genes of SRBSDV. In contrast, the levels of P6 and P10 were relative low. Western blotting analysis partially was also verified our qPCR results at the level of protein expression. Analysis of the real-time changes in SRBSDV-infected rice plants revealed four distinct temporal expression patterns of the thirteen genes. Moreover, expression levels of P1 and other genes were significantly down-regulated on days 14 and 20, respectively.

Conclusion

SRBSDV genes showed similar expression patterns in distinct hosts (rice, corn, and WBPH), indicating that SRBSDV uses the same infection strategy in plant and insect hosts. P3, P7-1, and P9-2 were the dominantly expressed genes in the three tested hosts. Therefore, they are likely to be genes with the most crucial function and could be used as sensitive molecular detection targets for SRBSDV. Furthermore, real-time changes in SRBSDV genes provided a basis for understanding the mechanism of interaction between SRBSDV and its hosts.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ha VC, Nguyen VH, Vu TM, Masaru M: Rice dwarf disease in north Vietnam in 2009 is caused by southern rice black-streaked dwarf virus (SRBSDV). Bull Inst Trop Agric Kyushu Univ. 2009, 32: 85-92. Ha VC, Nguyen VH, Vu TM, Masaru M: Rice dwarf disease in north Vietnam in 2009 is caused by southern rice black-streaked dwarf virus (SRBSDV). Bull Inst Trop Agric Kyushu Univ. 2009, 32: 85-92.
2.
go back to reference Guo R, Zhou G-H, Zhang S-G: Character of rice Southern black-streaked disease and its control strategy. China Plant Prot. 2010, 30: 17-20. Guo R, Zhou G-H, Zhang S-G: Character of rice Southern black-streaked disease and its control strategy. China Plant Prot. 2010, 30: 17-20.
3.
go back to reference Chen Z, Song B-A: The Technology of Prevention and Control on Southern Rice Black-Streaked Dwarf Virus. 2011, Beijing, China: Chemical Industrial Press, 1-3. Chen Z, Song B-A: The Technology of Prevention and Control on Southern Rice Black-Streaked Dwarf Virus. 2011, Beijing, China: Chemical Industrial Press, 1-3.
4.
go back to reference Hoang AT, Zhang HM, Yang J, Chen JP, Hébrard E, Zhou GH, Vinh VN, Cheng JA: Identification, characterization, and distribution of southern rice black-streaked dwarf virus in Vietnam. Plant Dis Rep. 2011, 2011: 1063-1069.CrossRef Hoang AT, Zhang HM, Yang J, Chen JP, Hébrard E, Zhou GH, Vinh VN, Cheng JA: Identification, characterization, and distribution of southern rice black-streaked dwarf virus in Vietnam. Plant Dis Rep. 2011, 2011: 1063-1069.CrossRef
5.
go back to reference Pu L-L, Xie G-H, Ji C-Y, Ling B, Zhang M-X, Xu D-L, Zhou G-H: Transmission characteristics of Southern rice black-streaked dwarf virus by rice planthoppers. Crop Prot. 2012, 41: 71-76.CrossRef Pu L-L, Xie G-H, Ji C-Y, Ling B, Zhang M-X, Xu D-L, Zhou G-H: Transmission characteristics of Southern rice black-streaked dwarf virus by rice planthoppers. Crop Prot. 2012, 41: 71-76.CrossRef
6.
go back to reference Zhang S-B, Luo H-G, Zhang Q-D, Zhang C-Q, Wu Z-J, Xie L-H: A dwarf disease on rice in hubei province, china is caused by southern rice black-streaked dwarf virus. Chin J Rice Sci. 2011, 25: 223-226. Zhang S-B, Luo H-G, Zhang Q-D, Zhang C-Q, Wu Z-J, Xie L-H: A dwarf disease on rice in hubei province, china is caused by southern rice black-streaked dwarf virus. Chin J Rice Sci. 2011, 25: 223-226.
7.
go back to reference Yin X, Xu F-F, Zheng F-Q, Li X-D, Liu B-S, Zhang C-Q: Molecular characterization of segments S7 to S10 of a southern rice black-streaked dwarf virus isolate from maize in northern China. Virol Sin. 2011, 26: 47-53. 10.1007/s12250-011-3170-9.PubMedCrossRef Yin X, Xu F-F, Zheng F-Q, Li X-D, Liu B-S, Zhang C-Q: Molecular characterization of segments S7 to S10 of a southern rice black-streaked dwarf virus isolate from maize in northern China. Virol Sin. 2011, 26: 47-53. 10.1007/s12250-011-3170-9.PubMedCrossRef
8.
go back to reference Zhu J-Z, Zhou Q, Cui Y, Gao B-D: New natural host of Southern rice black-streaked dwarf virus. J Hunan Agri Univ. 2012, 38: 58-60.CrossRef Zhu J-Z, Zhou Q, Cui Y, Gao B-D: New natural host of Southern rice black-streaked dwarf virus. J Hunan Agri Univ. 2012, 38: 58-60.CrossRef
9.
go back to reference Li Y-Z, Cao Y, Zhou Q, Guo H-M, Ou G-C: The efficiency of southern rice black-streaked dwarf virus transmission by the vector sogatella furcifera to different host plant species. J Integ Agri. 2012, 11: 621-627.CrossRef Li Y-Z, Cao Y, Zhou Q, Guo H-M, Ou G-C: The efficiency of southern rice black-streaked dwarf virus transmission by the vector sogatella furcifera to different host plant species. J Integ Agri. 2012, 11: 621-627.CrossRef
10.
go back to reference Cao Y, Pan F, Zhou Q, Li G-H, Liu S-Q, Huang Z-N, Li Y-Z: Transmission characteristics of sogatella furcifera: a vector of the southern rice black-streaked dwarf virus. Chin Appl Entomol. 2011, 48: 1314-1320. Cao Y, Pan F, Zhou Q, Li G-H, Liu S-Q, Huang Z-N, Li Y-Z: Transmission characteristics of sogatella furcifera: a vector of the southern rice black-streaked dwarf virus. Chin Appl Entomol. 2011, 48: 1314-1320.
11.
go back to reference Zhou G-H, Wen J-J, Cai D-J, Li P, Xu D-L, Zhang S-G: Southern rice black-streaked dwarf virus: a new proposed fijivirus species in the family reoviridae. Chin Sci Bull. 2008, 53: 3677-3685. 10.1007/s11434-008-0467-2.CrossRef Zhou G-H, Wen J-J, Cai D-J, Li P, Xu D-L, Zhang S-G: Southern rice black-streaked dwarf virus: a new proposed fijivirus species in the family reoviridae. Chin Sci Bull. 2008, 53: 3677-3685. 10.1007/s11434-008-0467-2.CrossRef
12.
go back to reference Zhou G-H, Zhang S-G, Zou S-F, Xu Z-W, Zhou Z-Q: Occurrence and damage analysis of a new rice dwarf disease caused by Southern rice black-streaked dwarf virus. Plant Prot. 2010, 36 (2): 144-146. Zhou G-H, Zhang S-G, Zou S-F, Xu Z-W, Zhou Z-Q: Occurrence and damage analysis of a new rice dwarf disease caused by Southern rice black-streaked dwarf virus. Plant Prot. 2010, 36 (2): 144-146.
13.
go back to reference Xu Y, Zhou W-X, Zhou Y-J, Wu J-X, Zhou X-P: Transcriptome and comparative gene expression analysis of Sogatella furcifera (Horvath) in response to southern rice black-streaked dwarf virus. PLoS One. 2012, 7: e36238-10.1371/journal.pone.0036238.PubMedPubMedCentralCrossRef Xu Y, Zhou W-X, Zhou Y-J, Wu J-X, Zhou X-P: Transcriptome and comparative gene expression analysis of Sogatella furcifera (Horvath) in response to southern rice black-streaked dwarf virus. PLoS One. 2012, 7: e36238-10.1371/journal.pone.0036238.PubMedPubMedCentralCrossRef
14.
go back to reference Wang Q, Yang J, Zhou G-H, Zhang H-M, Chen J-P, Adams MJ: The complete genome sequence of Two isolates of southern rice black-streaked dwarf virus, a new member of the genus fijivirus. J Phytopa. 2010, 158: 733-737. 10.1111/j.1439-0434.2010.01679.x.CrossRef Wang Q, Yang J, Zhou G-H, Zhang H-M, Chen J-P, Adams MJ: The complete genome sequence of Two isolates of southern rice black-streaked dwarf virus, a new member of the genus fijivirus. J Phytopa. 2010, 158: 733-737. 10.1111/j.1439-0434.2010.01679.x.CrossRef
15.
go back to reference Liu Y, Jia D-S, Chen H-Y, Chen Q, Xie L-H, Wu Z-J, Wei T-Y: The P7-1 protein of southern rice black-streaked dwarf virus, a fijivirus, induces the formation of tubular structures in insect cells. Arch Virol. 2011, 156: 1729-1736. 10.1007/s00705-011-1041-9.PubMedCrossRef Liu Y, Jia D-S, Chen H-Y, Chen Q, Xie L-H, Wu Z-J, Wei T-Y: The P7-1 protein of southern rice black-streaked dwarf virus, a fijivirus, induces the formation of tubular structures in insect cells. Arch Virol. 2011, 156: 1729-1736. 10.1007/s00705-011-1041-9.PubMedCrossRef
16.
go back to reference Jia D-S, Chen H-Y, Zheng A-L, Chen Q, Liu Q-F, Xie L-H, Wu Z-J, Wei T-Y: Development of an insect vector cell culture and RNA interference system to investigate the functional role of fijivirus replication protein. J Virol. 2012, 86: 5800-5807. 10.1128/JVI.07121-11.PubMedPubMedCentralCrossRef Jia D-S, Chen H-Y, Zheng A-L, Chen Q, Liu Q-F, Xie L-H, Wu Z-J, Wei T-Y: Development of an insect vector cell culture and RNA interference system to investigate the functional role of fijivirus replication protein. J Virol. 2012, 86: 5800-5807. 10.1128/JVI.07121-11.PubMedPubMedCentralCrossRef
17.
go back to reference Lu Y-H, Zhang J-F, Xiong R-Y, Xu Q-F, Zhou Y-J: Identification of an RNA silencing suppressor encoded by southern rice black-streaked dwarf virus S6. Sci Agri Sin. 2011, 44: 2909- Lu Y-H, Zhang J-F, Xiong R-Y, Xu Q-F, Zhou Y-J: Identification of an RNA silencing suppressor encoded by southern rice black-streaked dwarf virus S6. Sci Agri Sin. 2011, 44: 2909-
18.
go back to reference Zhang H-M, Chen J-P, Adams MJ: Molecular characterisation of segments 1 to 6 of Rice black-streaked dwarf virus from China provides the complete genome. Arch Virol. 2001, 146: 2331-2339. 10.1007/s007050170006.PubMedCrossRef Zhang H-M, Chen J-P, Adams MJ: Molecular characterisation of segments 1 to 6 of Rice black-streaked dwarf virus from China provides the complete genome. Arch Virol. 2001, 146: 2331-2339. 10.1007/s007050170006.PubMedCrossRef
19.
go back to reference Isogai M, Uyeda I, Lee BC: Detection and assignment of proteins encoded by rice black streaked dwarf fijivirus S7, S8, S9 and S10. J Gen Virol. 1998, 79: 1487-1494.PubMedCrossRef Isogai M, Uyeda I, Lee BC: Detection and assignment of proteins encoded by rice black streaked dwarf fijivirus S7, S8, S9 and S10. J Gen Virol. 1998, 79: 1487-1494.PubMedCrossRef
20.
go back to reference Wang Z-C, Yu D-D, Li X-Y, Zeng M-J, Chen Z, Bi L, Liu J-J, Jin L-H, Hu D-Y, Yang S, Song B-A: The development and application of a Dot-ELISA assay for diagnosis of southern rice black-streaked dwarf disease in the field. Viruses. 2012, 4: 167-183. 10.3390/v4010167.PubMedPubMedCentralCrossRef Wang Z-C, Yu D-D, Li X-Y, Zeng M-J, Chen Z, Bi L, Liu J-J, Jin L-H, Hu D-Y, Yang S, Song B-A: The development and application of a Dot-ELISA assay for diagnosis of southern rice black-streaked dwarf disease in the field. Viruses. 2012, 4: 167-183. 10.3390/v4010167.PubMedPubMedCentralCrossRef
21.
go back to reference Yang Y-Q, Zhou G-H, Pu L-L, Lan B, Li X-M: Construction of one-step detection method on two rice dwarf viruses. J Huazhong Agri Univ. 2012, 31: 337-340. Yang Y-Q, Zhou G-H, Pu L-L, Lan B, Li X-M: Construction of one-step detection method on two rice dwarf viruses. J Huazhong Agri Univ. 2012, 31: 337-340.
22.
go back to reference Zhou Q, Zhu J-Z, Liang J-G, Chen X-Y, Gao B-D: Rapid detection of southern rice black-streaked dwarf virus. Genomics Appl Biol. 2010, 29: 1009-1012. Zhou Q, Zhu J-Z, Liang J-G, Chen X-Y, Gao B-D: Rapid detection of southern rice black-streaked dwarf virus. Genomics Appl Biol. 2010, 29: 1009-1012.
23.
go back to reference Ji Y-H, Gao R-Z, Zhang Y, Cheng Z-B, Zhou T, Fan Y-J, Zhou Y-J: A simplified method for quick detection of rice black-streaked dwarf virus and southern rice black-streaked dwarf virus. Chi J of Rice Sci. 2011, 25: 91-94. Ji Y-H, Gao R-Z, Zhang Y, Cheng Z-B, Zhou T, Fan Y-J, Zhou Y-J: A simplified method for quick detection of rice black-streaked dwarf virus and southern rice black-streaked dwarf virus. Chi J of Rice Sci. 2011, 25: 91-94.
24.
go back to reference Chen Z, Yin C-J, Liu J-J, Zeng M-J, Wang Z-C, Yu D-D, Bi L, Jin L-H, Yang S, Song B-A: Methodology for antibody preparation and detection of southern rice black-streaked dwarf virus. Arch Virol. 2012, 157 (12): 2327-2333. 10.1007/s00705-012-1430-8.PubMedCrossRef Chen Z, Yin C-J, Liu J-J, Zeng M-J, Wang Z-C, Yu D-D, Bi L, Jin L-H, Yang S, Song B-A: Methodology for antibody preparation and detection of southern rice black-streaked dwarf virus. Arch Virol. 2012, 157 (12): 2327-2333. 10.1007/s00705-012-1430-8.PubMedCrossRef
25.
go back to reference Chen Z, Liu J-J, Zeng M-J, Wang Z-C, Yu D-D, Yin C-J, Jin L-H, Yang S, Song B-A: Dot immunobinding assay method with chlorophyll removal for the detection of southern rice black-streaked dwarf virus. Molecules. 2012, 17: 6886-6900. 10.3390/molecules17066886.PubMedCrossRef Chen Z, Liu J-J, Zeng M-J, Wang Z-C, Yu D-D, Yin C-J, Jin L-H, Yang S, Song B-A: Dot immunobinding assay method with chlorophyll removal for the detection of southern rice black-streaked dwarf virus. Molecules. 2012, 17: 6886-6900. 10.3390/molecules17066886.PubMedCrossRef
26.
go back to reference Pan Y-R, Fang C-Y, Chang Y-S, Chang H-Y: Analysis of Epstein-Barr virus gene expression upon phorbol ester and hydroxyurea treatment by real-time quantitative PCR. Arch Virol. 2005, 150: 755-770. 10.1007/s00705-004-0431-7.PubMedCrossRef Pan Y-R, Fang C-Y, Chang Y-S, Chang H-Y: Analysis of Epstein-Barr virus gene expression upon phorbol ester and hydroxyurea treatment by real-time quantitative PCR. Arch Virol. 2005, 150: 755-770. 10.1007/s00705-004-0431-7.PubMedCrossRef
27.
go back to reference Tombacz D, Toth JS, Petrovszki P, Boldogkoi Z: Whole-genome analysis of pseudorabies virus gene expression by real-time quantitative RT-PCR assay. BMC Genomics. 2009, 10: 491-10.1186/1471-2164-10-491.PubMedPubMedCentralCrossRef Tombacz D, Toth JS, Petrovszki P, Boldogkoi Z: Whole-genome analysis of pseudorabies virus gene expression by real-time quantitative RT-PCR assay. BMC Genomics. 2009, 10: 491-10.1186/1471-2164-10-491.PubMedPubMedCentralCrossRef
28.
go back to reference Chaouachi M, Fortabat MN, Geldreich A, Yot P, Kerlan C, Kebdani N, Audeon C, Romaniuk M, Bertheau Y: An accurate real-time PCR test for the detection and quantification of cauliflower mosaic virus (CaMV): applicable in GMO screening. Eur Food Res Technol. 2008, 227: 789-798. 10.1007/s00217-007-0787-5.CrossRef Chaouachi M, Fortabat MN, Geldreich A, Yot P, Kerlan C, Kebdani N, Audeon C, Romaniuk M, Bertheau Y: An accurate real-time PCR test for the detection and quantification of cauliflower mosaic virus (CaMV): applicable in GMO screening. Eur Food Res Technol. 2008, 227: 789-798. 10.1007/s00217-007-0787-5.CrossRef
29.
go back to reference Li S, Li X, Sun L, Zhou Y-J: Analysis of rice stripe virus whole-gene expression in rice and in the small brown planthopper by real-time quantitative PCR. Acta Virol. 2012, 56: 75-79. 10.4149/av_2012_01_75.PubMedCrossRef Li S, Li X, Sun L, Zhou Y-J: Analysis of rice stripe virus whole-gene expression in rice and in the small brown planthopper by real-time quantitative PCR. Acta Virol. 2012, 56: 75-79. 10.4149/av_2012_01_75.PubMedCrossRef
30.
go back to reference Sharma S, Dasgupta I: Development of SYBR Green I based real-time PCR assays for quantitative detection of Rice tungro bacilliform virus and Rice tungro spherical virus. J Virol Methods. 2012, 181: 86-92. 10.1016/j.jviromet.2012.01.018.PubMedCrossRef Sharma S, Dasgupta I: Development of SYBR Green I based real-time PCR assays for quantitative detection of Rice tungro bacilliform virus and Rice tungro spherical virus. J Virol Methods. 2012, 181: 86-92. 10.1016/j.jviromet.2012.01.018.PubMedCrossRef
31.
go back to reference Zhang P, Mar T-T, Liu W-W, Li L, Wang X-F: Simultaneous detection and differentiation of Rice black streaked dwarf virus (RBSDV) and Southern rice black streaked dwarf virus (SRBSDV) by duplex real time RT-PCR. Virol J. 2013, 10: 24-10.1186/1743-422X-10-24.PubMedPubMedCentralCrossRef Zhang P, Mar T-T, Liu W-W, Li L, Wang X-F: Simultaneous detection and differentiation of Rice black streaked dwarf virus (RBSDV) and Southern rice black streaked dwarf virus (SRBSDV) by duplex real time RT-PCR. Virol J. 2013, 10: 24-10.1186/1743-422X-10-24.PubMedPubMedCentralCrossRef
32.
go back to reference Matsukura K, Towata T, Sakai J-i, Onuki M, Okuda M, Matsumura M: Dynamics of Southern rice black-streaked dwarf virus in rice and implication for virus acquisition. Phytopathology. 2013, 103: 509-512. 10.1094/PHYTO-10-12-0261-R.PubMedCrossRef Matsukura K, Towata T, Sakai J-i, Onuki M, Okuda M, Matsumura M: Dynamics of Southern rice black-streaked dwarf virus in rice and implication for virus acquisition. Phytopathology. 2013, 103: 509-512. 10.1094/PHYTO-10-12-0261-R.PubMedCrossRef
33.
go back to reference Loon LC, Dijkstra J: Virus-specific expression of systemic acquired resistance in tobacco mosaic virus- and tobacco necrosis virus-infected ‘Samsun NN’ and ‘Samsun’ tobacco. Neth J Plant Path. 1976, 82: 231-237. 10.1007/BF03041378.CrossRef Loon LC, Dijkstra J: Virus-specific expression of systemic acquired resistance in tobacco mosaic virus- and tobacco necrosis virus-infected ‘Samsun NN’ and ‘Samsun’ tobacco. Neth J Plant Path. 1976, 82: 231-237. 10.1007/BF03041378.CrossRef
34.
go back to reference Xie L-H, Lin Q-Y: Plant virology. 2004, Beijing, China: China agriculture press, 61- Xie L-H, Lin Q-Y: Plant virology. 2004, Beijing, China: China agriculture press, 61-
35.
go back to reference Durrant WE, Dong X: Systemic acquired resistance. Annu Rev Phytopathol. 2004, 42: 185-209. 10.1146/annurev.phyto.42.040803.140421.PubMedCrossRef Durrant WE, Dong X: Systemic acquired resistance. Annu Rev Phytopathol. 2004, 42: 185-209. 10.1146/annurev.phyto.42.040803.140421.PubMedCrossRef
36.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.PubMedCrossRef Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.PubMedCrossRef
Metadata
Title
Quantitative detection of relative expression levels of the whole genome of Southern rice black-streaked dwarf virus and its replication in different hosts
Authors
Peng He
Jia-Ju Liu
Ming He
Zhen-Chao Wang
Zhuo Chen
Rong Guo
James C Correll
Song Yang
Bao-An Song
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2013
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/1743-422X-10-136

Other articles of this Issue 1/2013

Virology Journal 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.