Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2009

Open Access 01-12-2009 | Research

A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition

Authors: Gregory S Sawicki, Daniel P Ferris

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2009

Login to get access

Abstract

Background

The goal of this study was to test the mechanical performance of a prototype knee-ankle-foot orthosis (KAFO) powered by artificial pneumatic muscles during human walking. We had previously built a powered ankle-foot orthosis (AFO) and used it effectively in studies on human motor adaptation, locomotion energetics, and gait rehabilitation. Extending the previous AFO to a KAFO presented additional challenges related to the force-length properties of the artificial pneumatic muscles and the presence of multiple antagonistic artificial pneumatic muscle pairs.

Methods

Three healthy males were fitted with custom KAFOs equipped with artificial pneumatic muscles to power ankle plantar flexion/dorsiflexion and knee extension/flexion. Subjects walked over ground at 1.25 m/s under four conditions without extensive practice: 1) without wearing the orthosis, 2) wearing the orthosis with artificial muscles turned off, 3) wearing the orthosis activated under direct proportional myoelectric control, and 4) wearing the orthosis activated under proportional myoelectric control with flexor inhibition produced by leg extensor muscle activation. We collected joint kinematics, ground reaction forces, electromyography, and orthosis kinetics.

Results

The KAFO produced ~22%–33% of the peak knee flexor moment, ~15%–33% of the peak extensor moment, ~42%–46% of the peak plantar flexor moment, and ~83%–129% of the peak dorsiflexor moment during normal walking. With flexor inhibition produced by leg extensor muscle activation, ankle (Pearson r-value = 0.74 ± 0.04) and knee ( r = 0.95 ± 0.04) joint kinematic profiles were more similar to the without orthosis condition compared to when there was no flexor inhibition (r = 0.49 ± 0.13 for ankle, p = 0.05, and r = 0.90 ± 0.03 for knee, p = 0.17).

Conclusion

The proportional myoelectric control with flexor inhibition allowed for a more normal gait than direct proportional myoelectric control. The current orthosis design provided knee torques smaller than the ankle torques due to the trade-off in torque and range of motion that occurs with artificial pneumatic muscles. Future KAFO designs could incorporate cams, gears, or different actuators to transmit greater torque to the knee.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Sawicki GS, Gordon KE, Ferris DP: Powered lower limb orthoses: applications in motor adaptation and rehabilitation. In Proceedings of the IEEE International Conference on Rehabilitation Robotics; Chicago, IL. IEEE; 2005. Sawicki GS, Gordon KE, Ferris DP: Powered lower limb orthoses: applications in motor adaptation and rehabilitation. In Proceedings of the IEEE International Conference on Rehabilitation Robotics; Chicago, IL. IEEE; 2005.
3.
go back to reference Ferris DP, Sawicki GS, Daley MA: A physiologist's perspective on robotic exoskeletons for human locomotion. International Journal of Humanoid Robotics 2007, 4: 507-528.PubMedCentralCrossRefPubMed Ferris DP, Sawicki GS, Daley MA: A physiologist's perspective on robotic exoskeletons for human locomotion. International Journal of Humanoid Robotics 2007, 4: 507-528.PubMedCentralCrossRefPubMed
4.
go back to reference Ferris DP, Gordon KE, Sawicki GS, Peethambaran A: An improved powered ankle-foot orthosis using proportional myoelectric control. Gait Posture. 2006,23(4):425-428.CrossRefPubMed Ferris DP, Gordon KE, Sawicki GS, Peethambaran A: An improved powered ankle-foot orthosis using proportional myoelectric control. Gait Posture. 2006,23(4):425-428.CrossRefPubMed
5.
go back to reference Gordon KE, Sawicki GS, Ferris DP: Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis. Journal of Biomechanics 2006, 39: 1832-1841.CrossRefPubMed Gordon KE, Sawicki GS, Ferris DP: Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis. Journal of Biomechanics 2006, 39: 1832-1841.CrossRefPubMed
6.
go back to reference Neptune RR, Kautz SA, Zajac FE: Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. Journal of Biomechanics 2001, 34: 1387-1398.CrossRefPubMed Neptune RR, Kautz SA, Zajac FE: Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. Journal of Biomechanics 2001, 34: 1387-1398.CrossRefPubMed
7.
go back to reference Meinders M, Gitter A, Czerniecki JM: The role of ankle plantar flexor muscle work during walking. Scandinavian Journal of Rehabilitation Medicine 1998, 30: 39-46.CrossRefPubMed Meinders M, Gitter A, Czerniecki JM: The role of ankle plantar flexor muscle work during walking. Scandinavian Journal of Rehabilitation Medicine 1998, 30: 39-46.CrossRefPubMed
8.
go back to reference Gottschall JS, Kram R: Energy cost and muscular activity required for propulsion during walking. Journal of Applied Physiology 2003, 94: 1766-1772.CrossRefPubMed Gottschall JS, Kram R: Energy cost and muscular activity required for propulsion during walking. Journal of Applied Physiology 2003, 94: 1766-1772.CrossRefPubMed
9.
go back to reference Eng JJ, Winter DA: Kinetic analysis of the lower limbs during walking: what information can be gained from a three-dimensional model? Journal of Biomechanics 1995, 28: 753-758.CrossRefPubMed Eng JJ, Winter DA: Kinetic analysis of the lower limbs during walking: what information can be gained from a three-dimensional model? Journal of Biomechanics 1995, 28: 753-758.CrossRefPubMed
10.
go back to reference Teixeira-Salmela LF, Nadeau S, Milot MH, Gravel D, Requiao LF: Effects of cadence on energy generation and absorption at lower extremity joints during gait. Clinical Biomechanics 2008, 23: 769-778.CrossRefPubMed Teixeira-Salmela LF, Nadeau S, Milot MH, Gravel D, Requiao LF: Effects of cadence on energy generation and absorption at lower extremity joints during gait. Clinical Biomechanics 2008, 23: 769-778.CrossRefPubMed
11.
go back to reference Umberger BR, Martin PE: Mechanical power and efficiency of level walking with different stride rates. Journal of Experimental Biology 2007, 210: 3255-3265.CrossRefPubMed Umberger BR, Martin PE: Mechanical power and efficiency of level walking with different stride rates. Journal of Experimental Biology 2007, 210: 3255-3265.CrossRefPubMed
12.
go back to reference Kuo AD, Donelan JM, Ruina A: Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exerc Sport Sci Rev. 2005,33(2):88-97.CrossRefPubMed Kuo AD, Donelan JM, Ruina A: Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exerc Sport Sci Rev. 2005,33(2):88-97.CrossRefPubMed
13.
go back to reference Mavroidis C, Nikitczuk J, Weinberg B, Danaher G, Jensen K, Pelletier P, Prugnarola J, Stuart R, Arango R, Leahey M, et al.: Smart portable rehabilitation devices. Journal of Neuroengineering and Rehabilitation 2005, 2: 18.PubMedCentralCrossRefPubMed Mavroidis C, Nikitczuk J, Weinberg B, Danaher G, Jensen K, Pelletier P, Prugnarola J, Stuart R, Arango R, Leahey M, et al.: Smart portable rehabilitation devices. Journal of Neuroengineering and Rehabilitation 2005, 2: 18.PubMedCentralCrossRefPubMed
14.
go back to reference Zoss AB, Kazerooni H, Chu A: Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics 2006, 11: 128-138.CrossRef Zoss AB, Kazerooni H, Chu A: Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX). IEEE/ASME Transactions on Mechatronics 2006, 11: 128-138.CrossRef
15.
go back to reference Kawamoto H, Sankai Y: Power assist system HAL-3 for gait disorder person. In Computer Helping People with Special Needs: 8th International Conference, ICCHP 2002. Edited by: Miesenberger K, Klaus J, Zagler W. Berlin: Springer Verlag; 2002:196-203.CrossRef Kawamoto H, Sankai Y: Power assist system HAL-3 for gait disorder person. In Computer Helping People with Special Needs: 8th International Conference, ICCHP 2002. Edited by: Miesenberger K, Klaus J, Zagler W. Berlin: Springer Verlag; 2002:196-203.CrossRef
16.
go back to reference Zoss A, Kazerooni H: Design of an electrically actuated lower extremity exoskeleton. Advanced Robotics 2006, 20: 967-988.CrossRef Zoss A, Kazerooni H: Design of an electrically actuated lower extremity exoskeleton. Advanced Robotics 2006, 20: 967-988.CrossRef
17.
go back to reference Pratt JE, Krupp BT, Morse CJ, Collins SH: The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. In IEEE International Conference on Robotics and Automation; New Orleans, LA. IEEE Press; 2004:2430-2435. Pratt JE, Krupp BT, Morse CJ, Collins SH: The RoboKnee: an exoskeleton for enhancing strength and endurance during walking. In IEEE International Conference on Robotics and Automation; New Orleans, LA. IEEE Press; 2004:2430-2435.
18.
go back to reference Fleischer C, Hommel G: A human–exoskeleton interface utilizing electromyography. Ieee Transactions on Robotics 2008, 24: 872-882.CrossRef Fleischer C, Hommel G: A human–exoskeleton interface utilizing electromyography. Ieee Transactions on Robotics 2008, 24: 872-882.CrossRef
19.
go back to reference Cullell A, Moreno JC, Rocon E, Forner-Cordero A, Pons JL: Biologically based design of an actuator system for a knee-ankle-foot orthosis. Mechanism and Machine Theory 2009, 44: 860-872.CrossRef Cullell A, Moreno JC, Rocon E, Forner-Cordero A, Pons JL: Biologically based design of an actuator system for a knee-ankle-foot orthosis. Mechanism and Machine Theory 2009, 44: 860-872.CrossRef
20.
go back to reference do Nascimento BG, Vimieiro CBS, Nagem DAP, Pinotti M: Hip orthosis powered by pneumatic artificial muscle: voluntary activation in absence of myoelectrical signal. Artificial Organs 2008, 32: 317-322.CrossRefPubMed do Nascimento BG, Vimieiro CBS, Nagem DAP, Pinotti M: Hip orthosis powered by pneumatic artificial muscle: voluntary activation in absence of myoelectrical signal. Artificial Organs 2008, 32: 317-322.CrossRefPubMed
21.
go back to reference Dollar AM, Herr H: Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. Ieee Transactions on Robotics 2008, 24: 144-158.CrossRef Dollar AM, Herr H: Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. Ieee Transactions on Robotics 2008, 24: 144-158.CrossRef
22.
go back to reference Enoka RM: Neuromechanics of Human Movement. 4th edition. Champaign, IL: Human Kinetics; 2008. Enoka RM: Neuromechanics of Human Movement. 4th edition. Champaign, IL: Human Kinetics; 2008.
23.
go back to reference Ferris DP, Czerniecki JM, Hannaford B: An ankle-foot orthosis powered by artificial pneumatic muscles. Journal of Applied Biomechanics 2005, 21: 189-197.PubMedCentralPubMed Ferris DP, Czerniecki JM, Hannaford B: An ankle-foot orthosis powered by artificial pneumatic muscles. Journal of Applied Biomechanics 2005, 21: 189-197.PubMedCentralPubMed
24.
go back to reference Zatsiorsky V, Seluyanov V: The mass and inertial characteristics of the main segments of the human body. In Biomechanics VIII-B. Edited by: Matsui HaK K. Champaign, IL: Human Kinetics; 1983:1152-1159. Zatsiorsky V, Seluyanov V: The mass and inertial characteristics of the main segments of the human body. In Biomechanics VIII-B. Edited by: Matsui HaK K. Champaign, IL: Human Kinetics; 1983:1152-1159.
25.
26.
go back to reference Parker P, Englehart K, Hudgins B: Myoelectric signal processing for control of powered limb prostheses. J Electromyogr Kinesiol. 2006,16(6):541-548.CrossRefPubMed Parker P, Englehart K, Hudgins B: Myoelectric signal processing for control of powered limb prostheses. J Electromyogr Kinesiol. 2006,16(6):541-548.CrossRefPubMed
27.
28.
go back to reference Gordon KE, Ferris DP: Learning to walk with a robotic ankle exoskeleton. Journal of Biomechanics 2007, 40: 2636-2644.CrossRefPubMed Gordon KE, Ferris DP: Learning to walk with a robotic ankle exoskeleton. Journal of Biomechanics 2007, 40: 2636-2644.CrossRefPubMed
29.
30.
go back to reference Farrell TR, Weir RF: A comparison of the effects of electrode implantation and targeting on pattern classification accuracy for prosthesis control. IEEE Transactions on Biomedical Engineering 2008, 55: 2198-2211.PubMedCentralCrossRefPubMed Farrell TR, Weir RF: A comparison of the effects of electrode implantation and targeting on pattern classification accuracy for prosthesis control. IEEE Transactions on Biomedical Engineering 2008, 55: 2198-2211.PubMedCentralCrossRefPubMed
31.
go back to reference Ohnishi K, Weir RF, Kuiken TA: Neural machine interfaces for controlling multifunctional powered upper-limb prostheses. Expert Rev Med Devices 2007, 4: 43-53.CrossRefPubMed Ohnishi K, Weir RF, Kuiken TA: Neural machine interfaces for controlling multifunctional powered upper-limb prostheses. Expert Rev Med Devices 2007, 4: 43-53.CrossRefPubMed
32.
go back to reference Emken JL, Benitez R, Sideris A, Bobrow JE, Reinkensmeyer DJ: Motor adaptation as a greedy optimization of error and effort. Journal of Neurophysiology 2007, 97: 3997-4006.CrossRefPubMed Emken JL, Benitez R, Sideris A, Bobrow JE, Reinkensmeyer DJ: Motor adaptation as a greedy optimization of error and effort. Journal of Neurophysiology 2007, 97: 3997-4006.CrossRefPubMed
33.
go back to reference Scheidt RA, Dingwell JB, Mussa-Ivaldi FA: Learning to move amid uncertainty. Journal of Neurophysiology 2001, 86: 971-985.PubMed Scheidt RA, Dingwell JB, Mussa-Ivaldi FA: Learning to move amid uncertainty. Journal of Neurophysiology 2001, 86: 971-985.PubMed
34.
go back to reference Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res. 2006,168(3):368-383.CrossRefPubMed Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res. 2006,168(3):368-383.CrossRefPubMed
36.
go back to reference Veneman JF, Ekkelenkamp R, Kruidhof R, Helm FCT, Kooij H: Design of a series elastic and bowdencable-based actuation system for use as torque-actuator in exoskeleton-type training robots. Rehabilitation Robotics, 2005 ICORR 2005 9th International Conference on 2005, 496-499.CrossRef Veneman JF, Ekkelenkamp R, Kruidhof R, Helm FCT, Kooij H: Design of a series elastic and bowdencable-based actuation system for use as torque-actuator in exoskeleton-type training robots. Rehabilitation Robotics, 2005 ICORR 2005 9th International Conference on 2005, 496-499.CrossRef
37.
go back to reference Sulzer JS, Peshkin MA, Patton JL: MARIONET: An Exotendon-Driven Rotary Series Elastic Actuator for Exerting Joint Torque. In IEEE International Conference on Rehabilitation Robotics; Chicago, IL. IEEE; 2005. Sulzer JS, Peshkin MA, Patton JL: MARIONET: An Exotendon-Driven Rotary Series Elastic Actuator for Exerting Joint Torque. In IEEE International Conference on Rehabilitation Robotics; Chicago, IL. IEEE; 2005.
38.
go back to reference Sawicki GS, Ferris DP: Mechanics and energetics of level walking with powered ankle exoskeletons. Journal of Experimental Biology 2008, 211: 1402-1413.CrossRefPubMed Sawicki GS, Ferris DP: Mechanics and energetics of level walking with powered ankle exoskeletons. Journal of Experimental Biology 2008, 211: 1402-1413.CrossRefPubMed
39.
go back to reference Davis S, Tsagarakis N, Canderle J, Caldwell DG: Enhanced modelling and performance in braided pneumatic muscle actuators. International Journal of Robotics Research 2003, 22: 213-227.CrossRef Davis S, Tsagarakis N, Canderle J, Caldwell DG: Enhanced modelling and performance in braided pneumatic muscle actuators. International Journal of Robotics Research 2003, 22: 213-227.CrossRef
40.
go back to reference Klute GK, Czerniecki JM, Hannaford B: Artificial muscles: Actuators for biorobotic systems. International Journal of Robotics Research 2002, 21: 295-309.CrossRef Klute GK, Czerniecki JM, Hannaford B: Artificial muscles: Actuators for biorobotic systems. International Journal of Robotics Research 2002, 21: 295-309.CrossRef
41.
go back to reference Reynolds DB, Repperger DW, Phillips CA, Bandry G: Modeling the dynamic characteristics of pneumatic muscle. Annals of Biomedical Engineering 2003, 31: 310-317.CrossRefPubMed Reynolds DB, Repperger DW, Phillips CA, Bandry G: Modeling the dynamic characteristics of pneumatic muscle. Annals of Biomedical Engineering 2003, 31: 310-317.CrossRefPubMed
42.
go back to reference Walsh CJ, Endo K, Herr H: A quasi-passive leg exoskeleton for load-carrying augmentation. International Journal of Humanoid Robotics 2007, 4: 487-506.CrossRef Walsh CJ, Endo K, Herr H: A quasi-passive leg exoskeleton for load-carrying augmentation. International Journal of Humanoid Robotics 2007, 4: 487-506.CrossRef
43.
go back to reference Sawicki GS, Domingo A, Ferris DP: The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury. J Neuroeng Rehabil. 2006, 3: 3.PubMedCentralCrossRefPubMed Sawicki GS, Domingo A, Ferris DP: The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury. J Neuroeng Rehabil. 2006, 3: 3.PubMedCentralCrossRefPubMed
45.
go back to reference Sawicki GS, Ferris DP: Mechanics and energetics of incline walking with robotic ankle exoskeletons. Journal of Experimental Biology 2009, 212: 32-41.CrossRefPubMed Sawicki GS, Ferris DP: Mechanics and energetics of incline walking with robotic ankle exoskeletons. Journal of Experimental Biology 2009, 212: 32-41.CrossRefPubMed
46.
go back to reference Sawicki GS, Ferris DP: Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. Journal of Experimental Biology 2009, 212: 21-31.CrossRefPubMed Sawicki GS, Ferris DP: Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. Journal of Experimental Biology 2009, 212: 21-31.CrossRefPubMed
Metadata
Title
A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition
Authors
Gregory S Sawicki
Daniel P Ferris
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2009
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-6-23

Other articles of this Issue 1/2009

Journal of NeuroEngineering and Rehabilitation 1/2009 Go to the issue