Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2009

Open Access 01-12-2009 | Review

Review of control strategies for robotic movement training after neurologic injury

Authors: Laura Marchal-Crespo, David J Reinkensmeyer

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2009

Login to get access

Abstract

There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Reinkensmeyer DJ, Emken JL, Cramer SC: Robotics, motor learning, and neurologic recovery. Annual Review of Biomedical Engineering. 2004, 6: 497-525.PubMed Reinkensmeyer DJ, Emken JL, Cramer SC: Robotics, motor learning, and neurologic recovery. Annual Review of Biomedical Engineering. 2004, 6: 497-525.PubMed
2.
go back to reference Riener R, Nef T, Colombo G: Robot-aided neurorehabilitation of the upper extremities. Med Biol Eng Comput. 2005, 43 (1): 2-10.PubMed Riener R, Nef T, Colombo G: Robot-aided neurorehabilitation of the upper extremities. Med Biol Eng Comput. 2005, 43 (1): 2-10.PubMed
3.
go back to reference Matarić MJ, Eriksson J, Feil-Seifer DJ, Winstein CJ: Socially assistive robotics for post-stroke rehabilitation. J Neuroeng Rehabil. 2007, 4: 5-PubMedPubMedCentral Matarić MJ, Eriksson J, Feil-Seifer DJ, Winstein CJ: Socially assistive robotics for post-stroke rehabilitation. J Neuroeng Rehabil. 2007, 4: 5-PubMedPubMedCentral
4.
go back to reference Kristy KA, Wu SJ, Erlandson RF, deBear P, Geer D, Dijkers M: A robotic arm "smart exercise system": a rehabilitation therapy modality. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1989, 1504-1505. Kristy KA, Wu SJ, Erlandson RF, deBear P, Geer D, Dijkers M: A robotic arm "smart exercise system": a rehabilitation therapy modality. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1989, 1504-1505.
5.
go back to reference Lum PS, Uswatte G, Taub E, Hardin P, Mark VW: A telerehabilitation approach to delivery of constraint-induced movement therapy. J Rehabil Res Dev. 2006, 43 (3): 391-400.PubMed Lum PS, Uswatte G, Taub E, Hardin P, Mark VW: A telerehabilitation approach to delivery of constraint-induced movement therapy. J Rehabil Res Dev. 2006, 43 (3): 391-400.PubMed
6.
go back to reference Emken JL, Benitez R, Reinkensmeyer DJ: Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed. J Neuroeng Rehabil. 2007, 4: 8-PubMedPubMedCentral Emken JL, Benitez R, Reinkensmeyer DJ: Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed. J Neuroeng Rehabil. 2007, 4: 8-PubMedPubMedCentral
7.
go back to reference Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE: A robot and control algorithm that can synchronously assist in naturalistic motion during body weight supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng. 2007, 15 (3): 387-400.PubMed Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE: A robot and control algorithm that can synchronously assist in naturalistic motion during body weight supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng. 2007, 15 (3): 387-400.PubMed
8.
go back to reference Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, van Asseldonk EHF, Kooij van der H: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007, 15 (3): 379-386.PubMed Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, van Asseldonk EHF, Kooij van der H: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007, 15 (3): 379-386.PubMed
9.
go back to reference Banala SK, Agrawal SK, Scholz JP: Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007. 2007, 401-407. Banala SK, Agrawal SK, Scholz JP: Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007. 2007, 401-407.
10.
go back to reference Riener R, Lunenburger L, Jezernik S, Anderschitz JM, Colombo G, Dietz V: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005, 13 (3): 380-394.PubMed Riener R, Lunenburger L, Jezernik S, Anderschitz JM, Colombo G, Dietz V: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng. 2005, 13 (3): 380-394.PubMed
11.
go back to reference Wheeler JW, Krebs HI, Hogan N: An ankle robot for a modular gait rehabilitation system. Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2004. 2004, 2: 1680-1684. Wheeler JW, Krebs HI, Hogan N: An ankle robot for a modular gait rehabilitation system. Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2004. 2004, 2: 1680-1684.
12.
go back to reference Yano H, Kasai K, Saitou H, Iwata H: Development of a gait rehabilitation system using a locomotion interface. The Journal of Visualization and Computer Animation. 2003, 14 (5): 243-252. Yano H, Kasai K, Saitou H, Iwata H: Development of a gait rehabilitation system using a locomotion interface. The Journal of Visualization and Computer Animation. 2003, 14 (5): 243-252.
13.
go back to reference Sawicki GS, Domingo A, Ferris DP: The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury. J Neuroeng Rehabil. 2006, 3: 3-PubMedPubMedCentral Sawicki GS, Domingo A, Ferris DP: The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury. J Neuroeng Rehabil. 2006, 3: 3-PubMedPubMedCentral
14.
go back to reference Surdilovic D, Zhang J, Bernhardt R: STRING-MAN: Wire-robot technology for safe, flexible and human-friendly gait rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007. 2007, 446-453. Surdilovic D, Zhang J, Bernhardt R: STRING-MAN: Wire-robot technology for safe, flexible and human-friendly gait rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007. 2007, 446-453.
15.
go back to reference Schmidt H, Hesse S, Bernhardt R, Krüueger J: HapticWalker-a novel haptic foot device. ACM Transactions on Applied Perception (TAP). 2005, 2 (2): 166-180. Schmidt H, Hesse S, Bernhardt R, Krüueger J: HapticWalker-a novel haptic foot device. ACM Transactions on Applied Perception (TAP). 2005, 2 (2): 166-180.
16.
go back to reference Wolbrecht ET, Chan V, Reinkensmeyer D, Bobrow JE: Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2008, 16 (3): 286-297.PubMed Wolbrecht ET, Chan V, Reinkensmeyer D, Bobrow JE: Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2008, 16 (3): 286-297.PubMed
17.
go back to reference Nef T, Mihelj M, Riener R: ARMin: a robot for patient-cooperative arm therapy. Medical and Biological Engineering and Computing. 2007, 45 (9): 887-900.PubMed Nef T, Mihelj M, Riener R: ARMin: a robot for patient-cooperative arm therapy. Medical and Biological Engineering and Computing. 2007, 45 (9): 887-900.PubMed
18.
go back to reference Montagner A, Frisoli A, Borelli L, Procopio C, Bergamasco M, Carboncini MC, Rossi B: A pilot clinical study on robotic assisted rehabilitation in VR with an arm exoskeleton device. Virtual Rehabilitation. 2007, 57-64. Montagner A, Frisoli A, Borelli L, Procopio C, Bergamasco M, Carboncini MC, Rossi B: A pilot clinical study on robotic assisted rehabilitation in VR with an arm exoskeleton device. Virtual Rehabilitation. 2007, 57-64.
19.
go back to reference Perry JC, Rosen J, Burns S: Upper-Limb powered exoskeleton design. IEEE/ASME Transactions on Mechatronics. 2007, 12 (4): 408-417. Perry JC, Rosen J, Burns S: Upper-Limb powered exoskeleton design. IEEE/ASME Transactions on Mechatronics. 2007, 12 (4): 408-417.
20.
go back to reference Wisneski KK, Johnson MJ: Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: Implications for modelling trajectories for robot-assisted ADL tasks. Journal of NeuroEngineering and Rehabilitation. 2007, 4: 7-PubMedPubMedCentral Wisneski KK, Johnson MJ: Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: Implications for modelling trajectories for robot-assisted ADL tasks. Journal of NeuroEngineering and Rehabilitation. 2007, 4: 7-PubMedPubMedCentral
21.
go back to reference Kousidou S, Tsagarakis NG, Smith C, Caldwell DG: Task-orientated biofeedback system for the rehabilitation of the upper limb. IEEE 10th International Conference on Rehabilitation Robotics, 13–15 June ICORR. 2007, 376-384. Kousidou S, Tsagarakis NG, Smith C, Caldwell DG: Task-orientated biofeedback system for the rehabilitation of the upper limb. IEEE 10th International Conference on Rehabilitation Robotics, 13–15 June ICORR. 2007, 376-384.
22.
go back to reference Tsagarakism NG, Caldwell DG: Development and control of a "soft-actuated" exoskeleton for use in physiotherapy and training. Autonomous Robots. 2003, 15: 21-33. Tsagarakism NG, Caldwell DG: Development and control of a "soft-actuated" exoskeleton for use in physiotherapy and training. Autonomous Robots. 2003, 15: 21-33.
23.
go back to reference Zhang LQ, Park HS, Ren Y: Developing an intelligent robotic arm for stroke rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics, ICORR. 2007, 984-993. Zhang LQ, Park HS, Ren Y: Developing an intelligent robotic arm for stroke rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics, ICORR. 2007, 984-993.
24.
go back to reference Loureiro RCV, Harwin WS: Reach & grasp therapy: design and control of a 9-DOF robotic neuro-rehabilitation system. IEEE 10th International Conference on Rehabilitation Robotics, 13–15 June ICORR. 2007, 757-763. Loureiro RCV, Harwin WS: Reach & grasp therapy: design and control of a 9-DOF robotic neuro-rehabilitation system. IEEE 10th International Conference on Rehabilitation Robotics, 13–15 June ICORR. 2007, 757-763.
25.
go back to reference Krebs H, Volpe B, Williams D, Celestino J, Charles S, Lynch D, Hogan N: Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007, 15 (3): 327-335.PubMedPubMedCentral Krebs H, Volpe B, Williams D, Celestino J, Charles S, Lynch D, Hogan N: Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007, 15 (3): 327-335.PubMedPubMedCentral
26.
go back to reference Mayhew D, Bachrach B, Rymer WZ, Beer RF: Development of the MACARM – a novel cable robot for upper limb neurorehabilitation. Proceedings of the 9th International Conference on Rehabilitation Robotics, ICORR. 2005, 299-302. Mayhew D, Bachrach B, Rymer WZ, Beer RF: Development of the MACARM – a novel cable robot for upper limb neurorehabilitation. Proceedings of the 9th International Conference on Rehabilitation Robotics, ICORR. 2005, 299-302.
27.
go back to reference Sugar TG, He J, Koeneman EJ, Koeneman JB, Herman R, Huang H, Schultz RS, Herring DE, Wanberg J, Balasubramanian S, Swenson P, Ward JA: Design and control of RUPERT: A device for robotic upper extremity repetitive therapy. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007, 15 (3): 336-346.PubMed Sugar TG, He J, Koeneman EJ, Koeneman JB, Herman R, Huang H, Schultz RS, Herring DE, Wanberg J, Balasubramanian S, Swenson P, Ward JA: Design and control of RUPERT: A device for robotic upper extremity repetitive therapy. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007, 15 (3): 336-346.PubMed
28.
go back to reference Peshkin M, Brown DA, Santos-Munné JJ, Makhlin A, Lewis E, Colgate JE, Patton J, Schwandt D: KineAssist: A robotic overground gait and balance training device. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics. 2005, 241-246. Peshkin M, Brown DA, Santos-Munné JJ, Makhlin A, Lewis E, Colgate JE, Patton J, Schwandt D: KineAssist: A robotic overground gait and balance training device. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics. 2005, 241-246.
29.
go back to reference Steger R, Kim SH, Kazerooni H: Control scheme and networked control architecture for the Berkeley lower extremity exoskeleton (BLEEX). Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA. 2006, 3469-3476. Steger R, Kim SH, Kazerooni H: Control scheme and networked control architecture for the Berkeley lower extremity exoskeleton (BLEEX). Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA. 2006, 3469-3476.
30.
go back to reference Hayashi T, Kawamoto H, Sankai Y: Control method of robot suit HAL working as operator's muscle using biological and dynamical information. IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS. 2005, 3063-3068. Hayashi T, Kawamoto H, Sankai Y: Control method of robot suit HAL working as operator's muscle using biological and dynamical information. IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS. 2005, 3063-3068.
31.
go back to reference Miyoshi T, Hiramatsu K, Yamamoto SI, Nakazawa K, Akai M: Robotic gait trainer in water: Development of an underwater gait-training orthosis. Disabil Rehabil. 2008, 30 (2): 81-87.PubMed Miyoshi T, Hiramatsu K, Yamamoto SI, Nakazawa K, Akai M: Robotic gait trainer in water: Development of an underwater gait-training orthosis. Disabil Rehabil. 2008, 30 (2): 81-87.PubMed
32.
go back to reference Agrawal SK, Banala SK, Fattah A: A gravity balancing passive exoskeleton for the human leg. Proceedings of Robotics: Science and Systems. 2006 Agrawal SK, Banala SK, Fattah A: A gravity balancing passive exoskeleton for the human leg. Proceedings of Robotics: Science and Systems. 2006
33.
go back to reference Stienen AHA, Hekman EEG, Helm Van der FCT, Prange GB, Jannink MJA, Aalsma AMM, Kooij Van der H: Dampace: dynamic force-coordination trainer for the upper extremities. IEEE 10th International Conference on Rehabilitation Robotics, ICORR. 2007, 820-826. Stienen AHA, Hekman EEG, Helm Van der FCT, Prange GB, Jannink MJA, Aalsma AMM, Kooij Van der H: Dampace: dynamic force-coordination trainer for the upper extremities. IEEE 10th International Conference on Rehabilitation Robotics, ICORR. 2007, 820-826.
34.
go back to reference Rosati G, Gallina P, Masiero S: Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007, 15 (4): 560-569.PubMed Rosati G, Gallina P, Masiero S: Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007, 15 (4): 560-569.PubMed
35.
go back to reference Vallery H, Ekkelenkamp R, Kooij van der H, Buss M: Passive and accurate torque control of series elastic actuators. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS. 2007, 3534-3538. Vallery H, Ekkelenkamp R, Kooij van der H, Buss M: Passive and accurate torque control of series elastic actuators. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS. 2007, 3534-3538.
36.
go back to reference Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG: Motor learning elicited by voluntary drive. Brain. 2003, 126 (4): 866-872.PubMed Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG: Motor learning elicited by voluntary drive. Brain. 2003, 126 (4): 866-872.PubMed
37.
go back to reference Perez MA, Lungholt BK, Nyborg K, Nielsen JB: Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res. 2004, 159 (2): 197-205.PubMed Perez MA, Lungholt BK, Nyborg K, Nielsen JB: Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res. 2004, 159 (2): 197-205.PubMed
38.
go back to reference Reinkensmeyer DJ, Kahn LE, Averbuch M, McKenna-Cole AN, Schmit BD, Rymer WZ: Understanding and treating arm movement impairment after chronic brain injury: Progress with the ARM Guides. J Rehabil Res Dev. 2000, 37 (6): 653-662.PubMed Reinkensmeyer DJ, Kahn LE, Averbuch M, McKenna-Cole AN, Schmit BD, Rymer WZ: Understanding and treating arm movement impairment after chronic brain injury: Progress with the ARM Guides. J Rehabil Res Dev. 2000, 37 (6): 653-662.PubMed
39.
go back to reference Hesse S, Kuhlmann H, Wilk J, Tomelleri C, Kirker S: A new electromechanical trainer for sensorimotor rehabilitation of paralysed fingers: A case series in chronic and acute stroke patients. Journal of NeuroEngineering and Rehabilitation. 2008, 5: 21-PubMedPubMedCentral Hesse S, Kuhlmann H, Wilk J, Tomelleri C, Kirker S: A new electromechanical trainer for sensorimotor rehabilitation of paralysed fingers: A case series in chronic and acute stroke patients. Journal of NeuroEngineering and Rehabilitation. 2008, 5: 21-PubMedPubMedCentral
40.
go back to reference Poon CS: Sensorimotor learning and information processing by Bayesian internal models. Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS. 2004, 4481-2. Poon CS: Sensorimotor learning and information processing by Bayesian internal models. Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS. 2004, 4481-2.
41.
go back to reference Rossini PM, Dal Forno G: Integrated technology for evaluation of brain function and neural plasticity. Phys Med Rehabil Clin N Am. 2004, 15 (1): 263-306.PubMed Rossini PM, Dal Forno G: Integrated technology for evaluation of brain function and neural plasticity. Phys Med Rehabil Clin N Am. 2004, 15 (1): 263-306.PubMed
42.
go back to reference Marchal-Crespo L, Reinkensmeyer DJ: Effect of robotic guidance on motor learning of a timing task. Proceedings of the Second IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. 2008 Marchal-Crespo L, Reinkensmeyer DJ: Effect of robotic guidance on motor learning of a timing task. Proceedings of the Second IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. 2008
43.
go back to reference Harkema SJ: Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking. The Neuroscientist. 2001, 7 (5): 455-468.PubMed Harkema SJ: Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking. The Neuroscientist. 2001, 7 (5): 455-468.PubMed
44.
go back to reference Reinkensmeyer DJ: How to retrain movement after neurologic injury: a computational rationale for incorporating robot (or therapist) assistance. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS. 2003, 1479-1482. Reinkensmeyer DJ: How to retrain movement after neurologic injury: a computational rationale for incorporating robot (or therapist) assistance. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS. 2003, 1479-1482.
45.
go back to reference Lum PS, Burgar CG, Shor PC, Majmundar M, Loos Van der M: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002, 83 (7): 952-959.PubMed Lum PS, Burgar CG, Shor PC, Majmundar M, Loos Van der M: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002, 83 (7): 952-959.PubMed
46.
go back to reference Marchal-Crespo L, Reinkensmeyer DJ: Haptic guidance can enhance motor learning of a steering tasks. Journal of motor behaviour. 2008, 40 (6): 545-557. Marchal-Crespo L, Reinkensmeyer DJ: Haptic guidance can enhance motor learning of a steering tasks. Journal of motor behaviour. 2008, 40 (6): 545-557.
47.
go back to reference Reinkensmeyer DJ, Housman SJ: "If I can't do it once, why do it a hundred times?": Connecting volition to movement success in a virtual environment motivates people to exercise the arm after stroke. Virtual Rehabilitation. 2007, 44-48. Reinkensmeyer DJ, Housman SJ: "If I can't do it once, why do it a hundred times?": Connecting volition to movement success in a virtual environment motivates people to exercise the arm after stroke. Virtual Rehabilitation. 2007, 44-48.
48.
go back to reference Schmidt RA, Bjork RA: New conceptualizations of practice: common principles in three paradigms suggest new concepts for training. Psychological Science. 1992, 3 (4): 207-217. Schmidt RA, Bjork RA: New conceptualizations of practice: common principles in three paradigms suggest new concepts for training. Psychological Science. 1992, 3 (4): 207-217.
49.
go back to reference Israel JF, Campbell DD, Kahn JH, Hornby TG: Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Physical Therapy. 2006, 86 (11): 1466-78.PubMed Israel JF, Campbell DD, Kahn JH, Hornby TG: Metabolic costs and muscle activity patterns during robotic- and therapist-assisted treadmill walking in individuals with incomplete spinal cord injury. Physical Therapy. 2006, 86 (11): 1466-78.PubMed
50.
go back to reference Wolbrecht ET, Chan V, Le V, Cramer SC, Reinkensmeyer DJ, Bobrow JE: Real-time computer modeling of weakness following stroke optimizes robotic assistance for movement therapy. 3rd International IEEE/EMBS Conference on Neural Engineering, CNE. 2007, 152-158. Wolbrecht ET, Chan V, Le V, Cramer SC, Reinkensmeyer DJ, Bobrow JE: Real-time computer modeling of weakness following stroke optimizes robotic assistance for movement therapy. 3rd International IEEE/EMBS Conference on Neural Engineering, CNE. 2007, 152-158.
51.
go back to reference Krebs HI, Hogan N, Aisen ML, Volpe BT: Robot-aided neurorehabilitation. Rehabilitation Engineering, IEEE Transactions on. 1998, 6: 75-87. Krebs HI, Hogan N, Aisen ML, Volpe BT: Robot-aided neurorehabilitation. Rehabilitation Engineering, IEEE Transactions on. 1998, 6: 75-87.
52.
go back to reference Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT: The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Archives of Neurology. 1997, 54 (4): 443-446.PubMed Aisen ML, Krebs HI, Hogan N, McDowell F, Volpe BT: The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Archives of Neurology. 1997, 54 (4): 443-446.PubMed
53.
go back to reference Lum PS, Reinkensmeyer DJ, Lehman SL: Robotic assist devices for bimanual physical therapy: preliminary experiments. IEEE Transactions on Rehabilitation Engineering. 1993, 1 (3): 185-191. Lum PS, Reinkensmeyer DJ, Lehman SL: Robotic assist devices for bimanual physical therapy: preliminary experiments. IEEE Transactions on Rehabilitation Engineering. 1993, 1 (3): 185-191.
54.
go back to reference Lum PS, Lehman SL, Reinkensmeyer DJ: The bimanual lifting rehabilitator: a device for rehabilitating bimanual control in stroke patients. IEEE Transactions on Rehabilitation Engineering. 1995, 3 (2): 166-174. Lum PS, Lehman SL, Reinkensmeyer DJ: The bimanual lifting rehabilitator: a device for rehabilitating bimanual control in stroke patients. IEEE Transactions on Rehabilitation Engineering. 1995, 3 (2): 166-174.
55.
go back to reference Krebs HI, Palazzolo JJ, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe BT, Hogan N: Rehabilitation robotics: performance-based progressive robot-assisted therapy. Autonomous Robots. 2003, 15: 7-20. Krebs HI, Palazzolo JJ, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe BT, Hogan N: Rehabilitation robotics: performance-based progressive robot-assisted therapy. Autonomous Robots. 2003, 15: 7-20.
56.
go back to reference Amirabdollahian F, Loureiro R, Gradwell E, Collin C, Harwin W, Johnson G: Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy. Journal of NeuroEngineering and Rehabilitation. 2007, 4 (4): Amirabdollahian F, Loureiro R, Gradwell E, Collin C, Harwin W, Johnson G: Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy. Journal of NeuroEngineering and Rehabilitation. 2007, 4 (4):
57.
go back to reference Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML: Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke. 2005, 36 (9): 1960-6.PubMed Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML: Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke. 2005, 36 (9): 1960-6.PubMed
58.
go back to reference Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C: Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil. 2003, 84 (6): 915-920.PubMed Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C: Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil. 2003, 84 (6): 915-920.PubMed
59.
go back to reference Boian R, Sharma A, Han C, Merians A, Burdea G, Adamovich S, Recce M, Tremaine M, Poizner H: Virtual reality-based post-stroke hand rehabilitation. Proceedings of Medicine Meets Virtual Reality. 2002, 64-70. Boian R, Sharma A, Han C, Merians A, Burdea G, Adamovich S, Recce M, Tremaine M, Poizner H: Virtual reality-based post-stroke hand rehabilitation. Proceedings of Medicine Meets Virtual Reality. 2002, 64-70.
60.
go back to reference Brewer BR, Klatzky R, Matsuoka Y: Initial therapeutic results of visual feedback manipulation in robotic rehabilitation. International Workshop on Virtual Rehabilitation. 2006, 160-166. Brewer BR, Klatzky R, Matsuoka Y: Initial therapeutic results of visual feedback manipulation in robotic rehabilitation. International Workshop on Virtual Rehabilitation. 2006, 160-166.
61.
go back to reference Denève A, Moughamir S, Afilal L, Zaytoon J: Control system design of a 3-DOF upper limbs rehabilitation robot. Computer Methods and Programs in Biomedicine. 2008, 89 (2): 202-214.PubMed Denève A, Moughamir S, Afilal L, Zaytoon J: Control system design of a 3-DOF upper limbs rehabilitation robot. Computer Methods and Programs in Biomedicine. 2008, 89 (2): 202-214.PubMed
62.
go back to reference Toth A, Fazekas G, Arz G, Jurak M, Horvath M: Passive robotic movement therapy of the spastic hemiparetic arm with REHAROB: report of the first clinical test and the follow-up system improvement. 9th International Conference on Rehabilitation Robotics, ICORR 2005. 2005, 127-130. Toth A, Fazekas G, Arz G, Jurak M, Horvath M: Passive robotic movement therapy of the spastic hemiparetic arm with REHAROB: report of the first clinical test and the follow-up system improvement. 9th International Conference on Rehabilitation Robotics, ICORR 2005. 2005, 127-130.
63.
go back to reference Lambercy O, Dovat L, Gassert R, Burdet E, Teo CL, Milner T: A Haptic Knob for rehabilitation of hand function. Neural Systems and Rehabilitation Engineering, IEEE Transactions on. 2007, 15 (3): 356-366. Lambercy O, Dovat L, Gassert R, Burdet E, Teo CL, Milner T: A Haptic Knob for rehabilitation of hand function. Neural Systems and Rehabilitation Engineering, IEEE Transactions on. 2007, 15 (3): 356-366.
64.
go back to reference Masia L, Krebs HI, Cappa P, Hogan N: Design and characterization of hand module for whole-arm rehabilitation following stroke. Mechatronics, IEEE/ASME Transactions on. 2007, 12 (4): 399-407. Masia L, Krebs HI, Cappa P, Hogan N: Design and characterization of hand module for whole-arm rehabilitation following stroke. Mechatronics, IEEE/ASME Transactions on. 2007, 12 (4): 399-407.
65.
go back to reference Jackson AE, Holt RJ, Culmer PR, Makower SG, Levesley MC, Richardson RC, Cozens JA, Williams MM, Bhakta BB: Dual robot system for upper limb rehabilitation after stroke: the design process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2007, 221: 845-857. Jackson AE, Holt RJ, Culmer PR, Makower SG, Levesley MC, Richardson RC, Cozens JA, Williams MM, Bhakta BB: Dual robot system for upper limb rehabilitation after stroke: the design process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2007, 221: 845-857.
66.
go back to reference Richardson R, Jackson A, Culmer P, Bhakta B, Levesley MC: Pneumatic impedance control of a 3-d.o.f. physiotherapy robot. Advanced Robotics. 2006, 20 (12): 1321-1339. Richardson R, Jackson A, Culmer P, Bhakta B, Levesley MC: Pneumatic impedance control of a 3-d.o.f. physiotherapy robot. Advanced Robotics. 2006, 20 (12): 1321-1339.
67.
go back to reference Fischer HC, Stubblefield K, Kline T, Luo X, Kenyon RV, Kamper DG: Hand rehabilitation following stroke: A pilot study of assisted finger extension training in a virtual environment. Topics in Stroke Rehabilitation. 2007, 14: 1-12.PubMed Fischer HC, Stubblefield K, Kline T, Luo X, Kenyon RV, Kamper DG: Hand rehabilitation following stroke: A pilot study of assisted finger extension training in a virtual environment. Topics in Stroke Rehabilitation. 2007, 14: 1-12.PubMed
68.
go back to reference Frick EM, Alberts JL: Combined use of repetitive task practice and an assistive robotic device in a patient with subacute stroke. Physical Therapy. 2006, 86 (10): 1378-13.PubMed Frick EM, Alberts JL: Combined use of repetitive task practice and an assistive robotic device in a patient with subacute stroke. Physical Therapy. 2006, 86 (10): 1378-13.PubMed
69.
go back to reference Mayr A, Kofler M, Saltuari L: ARMOR: An electromechanical robot for upper limb training following stroke. A prospective randomised controlled pilot study. Handchirurgie Mikrochirurgie Plastische Chirurgie. 2008, 40: 66-73. Mayr A, Kofler M, Saltuari L: ARMOR: An electromechanical robot for upper limb training following stroke. A prospective randomised controlled pilot study. Handchirurgie Mikrochirurgie Plastische Chirurgie. 2008, 40: 66-73.
70.
go back to reference Rocon E, Belda-Lois JM, Ruiz AF, Manto M, Moreno JC, Pons JL: Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007, 15 (3): 367-378.PubMed Rocon E, Belda-Lois JM, Ruiz AF, Manto M, Moreno JC, Pons JL: Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007, 15 (3): 367-378.PubMed
71.
go back to reference Cai LL, Fong AJ, Otoshi CK, Liang Y, Burdick JW, Roy RR, Edgerton VR: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. Journal of Neuroscience. 2006, 26 (41): 10564-8.PubMed Cai LL, Fong AJ, Otoshi CK, Liang Y, Burdick JW, Roy RR, Edgerton VR: Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. Journal of Neuroscience. 2006, 26 (41): 10564-8.PubMed
72.
go back to reference Hesse S, Schmidt H, Werner C: Machines to support motor rehabilitation after stroke: 10 years of experience in Berlin. J Rehabil Res Dev. 2006, 43 (5): 671-678.PubMed Hesse S, Schmidt H, Werner C: Machines to support motor rehabilitation after stroke: 10 years of experience in Berlin. J Rehabil Res Dev. 2006, 43 (5): 671-678.PubMed
73.
go back to reference Yoon J, Ryu J, Lim K: Reconfigurable ankle rehabilitation robot for various exercises. Journal of Robotic Systems. 2005, 22: 15-33. Yoon J, Ryu J, Lim K: Reconfigurable ankle rehabilitation robot for various exercises. Journal of Robotic Systems. 2005, 22: 15-33.
74.
go back to reference Timoszyk WK, Nessler JA, Acosta C, Roy RR, Edgerton VR, Reinkensmeyer DJ, de Leon R: Hindlimb loading determines stepping quantity and quality following spinal cord transection. Brain Research. 2005, 1050 (1–2): 180-189.PubMed Timoszyk WK, Nessler JA, Acosta C, Roy RR, Edgerton VR, Reinkensmeyer DJ, de Leon R: Hindlimb loading determines stepping quantity and quality following spinal cord transection. Brain Research. 2005, 1050 (1–2): 180-189.PubMed
75.
go back to reference Kamnik R, Bajd T: Does unilateral pedaling activate a rhythmic locomotor pattern in the nonpedaling leg in post-stroke hemiparesis?. J Neurophysiol. 2007, 95 (5): 3154-3163. Kamnik R, Bajd T: Does unilateral pedaling activate a rhythmic locomotor pattern in the nonpedaling leg in post-stroke hemiparesis?. J Neurophysiol. 2007, 95 (5): 3154-3163.
76.
go back to reference Stauffer Y, Allemand Y, Bouri M, Fournier J, Clavel R, Metrailler P, Brodard R, Reynard F: The WalkTrainer -A New Generation of Walking Reeducation Device Combining Orthoses and Muscle Stimulation. Neural Systems and Rehabilitation Engineering, IEEE Transactions on. 2009, 17: 38-45. Stauffer Y, Allemand Y, Bouri M, Fournier J, Clavel R, Metrailler P, Brodard R, Reynard F: The WalkTrainer -A New Generation of Walking Reeducation Device Combining Orthoses and Muscle Stimulation. Neural Systems and Rehabilitation Engineering, IEEE Transactions on. 2009, 17: 38-45.
77.
go back to reference Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza M, Dario P, Minuco G: Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005, 13 (3): 311-324.PubMed Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza M, Dario P, Minuco G: Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005, 13 (3): 311-324.PubMed
78.
go back to reference Ekkelenkamp R, Veltink P, Stramigioli S, Kooij van der H: Evaluation of a Virtual Model Control for the selective support of gait functions using an exoskeleton. Proceedings of the IEEE 10th International Conference o nRehabilitation Robotics, ICORR. 2007, 693-699. Ekkelenkamp R, Veltink P, Stramigioli S, Kooij van der H: Evaluation of a Virtual Model Control for the selective support of gait functions using an exoskeleton. Proceedings of the IEEE 10th International Conference o nRehabilitation Robotics, ICORR. 2007, 693-699.
79.
go back to reference Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ: Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: A randomized controlled pilot study. Journal of Neuroengineering and Rehabilitation. 2006, 3 (12): Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ: Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: A randomized controlled pilot study. Journal of Neuroengineering and Rehabilitation. 2006, 3 (12):
80.
go back to reference Johnson MJ, Wisneski KJ, Anderson J, Nathan D, Smith RO: Development of ADLER: The Activities of Daily Living Exercise Robot. The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob. 2006, 881-886. Johnson MJ, Wisneski KJ, Anderson J, Nathan D, Smith RO: Development of ADLER: The Activities of Daily Living Exercise Robot. The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob. 2006, 881-886.
81.
go back to reference Bi S, Ji L, Wang Z: Robot-aided sensorimotor arm training methods based on neurological rehabilitation principles in stroke and brain injury patients. 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS. 2005, 5025-5027. Bi S, Ji L, Wang Z: Robot-aided sensorimotor arm training methods based on neurological rehabilitation principles in stroke and brain injury patients. 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS. 2005, 5025-5027.
82.
go back to reference Ju MS, Lin CC, Lin DH, Hwang IS, Chen SM: A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005, 13 (3): 349-358.PubMed Ju MS, Lin CC, Lin DH, Hwang IS, Chen SM: A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005, 13 (3): 349-358.PubMed
83.
go back to reference Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza M, Dario P, Minuco G: Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Neurorehabil Neural Repair. 2008, 22: 50-63.PubMed Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza M, Dario P, Minuco G: Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Neurorehabil Neural Repair. 2008, 22: 50-63.PubMed
84.
go back to reference Takahashi CD, Der-Yeghiaian L, Le VH, Cramer SC: A robotic device for hand motor therapy after stroke. Proceedings of the 2005 IEEE International Conference on Rehabilitation Robotics. 2005, 17-20. Takahashi CD, Der-Yeghiaian L, Le VH, Cramer SC: A robotic device for hand motor therapy after stroke. Proceedings of the 2005 IEEE International Conference on Rehabilitation Robotics. 2005, 17-20.
85.
go back to reference Chang mechanisms of recovery during robot-aided neurorehabilitation of the upper limb JJ, Tung WL, Wu WL, Huang MH, Su FC: Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke. Arch Phys Med Rehabil. 2007, 88 (10): 1332-1338. Chang mechanisms of recovery during robot-aided neurorehabilitation of the upper limb JJ, Tung WL, Wu WL, Huang MH, Su FC: Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke. Arch Phys Med Rehabil. 2007, 88 (10): 1332-1338.
86.
go back to reference Hogan N, Krebs HI: Interactive robots for neuro-rehabilitation. Restorative Neurology and Neuroscience. 2004, 22 (3–5): 349-358.PubMed Hogan N, Krebs HI: Interactive robots for neuro-rehabilitation. Restorative Neurology and Neuroscience. 2004, 22 (3–5): 349-358.PubMed
87.
go back to reference Dipietro L, Ferraro M, Palazzolo JJ, Krebs HI, Volpe BT, Hogan N: Customized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005, 13 (3): 325-334.PubMedPubMedCentral Dipietro L, Ferraro M, Palazzolo JJ, Krebs HI, Volpe BT, Hogan N: Customized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005, 13 (3): 325-334.PubMedPubMedCentral
88.
go back to reference Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Cramer SC, Bobrow JE, Reinkensmeyer DJ: Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Transactions on Neural and Rehabilitation Engineering. 2006, 14 (3): 378-389. Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Cramer SC, Bobrow JE, Reinkensmeyer DJ: Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Transactions on Neural and Rehabilitation Engineering. 2006, 14 (3): 378-389.
89.
go back to reference Stienen AHA, Hekman EEG, Helm Van der FCT, Prange GB, Jannink MJA, Aalsma AMM, Kooij Van der H: Freebal: dedicated gravity compensation for the upper extremities. IEEE 10th International Conference on Rehabilitation Robotics, ICORR. 2007, 804-808. Stienen AHA, Hekman EEG, Helm Van der FCT, Prange GB, Jannink MJA, Aalsma AMM, Kooij Van der H: Freebal: dedicated gravity compensation for the upper extremities. IEEE 10th International Conference on Rehabilitation Robotics, ICORR. 2007, 804-808.
90.
go back to reference Matjacic Z, Hesse S, Sinkjaer T: BalanceReTrainer: A new standing-balance training apparatus and methods applied to a chronic hemiparetic subject with a neglect syndrome. NeuroRehabilitation. 2003, 18 (3): 251-259.PubMed Matjacic Z, Hesse S, Sinkjaer T: BalanceReTrainer: A new standing-balance training apparatus and methods applied to a chronic hemiparetic subject with a neglect syndrome. NeuroRehabilitation. 2003, 18 (3): 251-259.PubMed
91.
go back to reference Veg A, Popovic DB: Walkaround: Mobile balance support for therapy of walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2008, 16 (3): 264-269.PubMed Veg A, Popovic DB: Walkaround: Mobile balance support for therapy of walking. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2008, 16 (3): 264-269.PubMed
92.
go back to reference Sukal TM, Ellis MD, Dewald JPA: Source of work area reduction following hemiparetic stroke and preliminary intervention using the ACT 3D system. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2006, 177-180. Sukal TM, Ellis MD, Dewald JPA: Source of work area reduction following hemiparetic stroke and preliminary intervention using the ACT 3D system. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2006, 177-180.
93.
go back to reference Jackson A, Culmer P, Makower S, Levesley M, Richardson R, Cozens A, Williams MM, Bhakta B: Initial patient testing of iPAM – a robotic system for stroke rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007. 2007, 250-256. Jackson A, Culmer P, Makower S, Levesley M, Richardson R, Cozens A, Williams MM, Bhakta B: Initial patient testing of iPAM – a robotic system for stroke rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007. 2007, 250-256.
94.
go back to reference Mihelj M, Nef T, Riener R: A novel paradigm for patient-cooperative control of upper-limb rehabilitation robots. Advanced Robotics. 2007, 21 (8): 843-867. Mihelj M, Nef T, Riener R: A novel paradigm for patient-cooperative control of upper-limb rehabilitation robots. Advanced Robotics. 2007, 21 (8): 843-867.
95.
go back to reference Frey M, Colombo G, Vaglio M, Bucher R, Jorg M, Riener R: A novel mechatronic body weight support system. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2006, 14 (3): 311-321.PubMed Frey M, Colombo G, Vaglio M, Bucher R, Jorg M, Riener R: A novel mechatronic body weight support system. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2006, 14 (3): 311-321.PubMed
96.
go back to reference Reinkensmeyer DJ, Takahashi CD, Timoszyk WK, Reinkensmeyer AN, Kahn LE: Design of robot assistance for arm movement therapy following stroke, invited paper. Advanced Robotics. 2000, 14 (7): 625-638. Reinkensmeyer DJ, Takahashi CD, Timoszyk WK, Reinkensmeyer AN, Kahn LE: Design of robot assistance for arm movement therapy following stroke, invited paper. Advanced Robotics. 2000, 14 (7): 625-638.
97.
go back to reference Song R, Tong KY, Hu X, Li L: Assistive control system using continuous myoelectric signal in robot-aided arm training for patients after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2008, 16 (4): 371-379.PubMed Song R, Tong KY, Hu X, Li L: Assistive control system using continuous myoelectric signal in robot-aided arm training for patients after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2008, 16 (4): 371-379.PubMed
98.
go back to reference Stein J, Narendran K, McBean J, Krebs K, Hughes R: Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke. American Journal of Physical Medicine & Rehabilitation. 2007, 86 (4): 255-261. Stein J, Narendran K, McBean J, Krebs K, Hughes R: Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke. American Journal of Physical Medicine & Rehabilitation. 2007, 86 (4): 255-261.
99.
go back to reference Li Q, Wang D, Du Z, Sun L: A novel rehabilitation system for upper limbs. 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS. 2005, 6840-6843. Li Q, Wang D, Du Z, Sun L: A novel rehabilitation system for upper limbs. 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS. 2005, 6840-6843.
100.
go back to reference Ferris DP, Czerniecki JM, Hannaford B: An ankle-foot orthosis powered by artificial pneumatic muscles. Journal of Applied Biomechanics. 2005, 21 (2): 189-197.PubMedPubMedCentral Ferris DP, Czerniecki JM, Hannaford B: An ankle-foot orthosis powered by artificial pneumatic muscles. Journal of Applied Biomechanics. 2005, 21 (2): 189-197.PubMedPubMedCentral
101.
go back to reference Kang SJ, Ryu JC, Ryu JW, Kim KH, Mun MS: A real-time control of powered gait orthosis by bio signal. Proceedings of the 11th World Congress of the International Societyfor Prosthetics and Orthotics, Hong Kong. 2004 Kang SJ, Ryu JC, Ryu JW, Kim KH, Mun MS: A real-time control of powered gait orthosis by bio signal. Proceedings of the 11th World Congress of the International Societyfor Prosthetics and Orthotics, Hong Kong. 2004
102.
go back to reference Kahn LE, Rymer WZ, Reinkensmeyer DJ: Adaptive assistance for guided force training in chronic stroke. Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Meeting, IEMBS. 2004, 2272-2725. Kahn LE, Rymer WZ, Reinkensmeyer DJ: Adaptive assistance for guided force training in chronic stroke. Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Meeting, IEMBS. 2004, 2272-2725.
103.
go back to reference Erol D, Sarkar N: Intelligent control for robotic rehabilitation after stroke. Journal of Intelligent and Robotic Systems. 2007, 50 (4): 341-360. Erol D, Sarkar N: Intelligent control for robotic rehabilitation after stroke. Journal of Intelligent and Robotic Systems. 2007, 50 (4): 341-360.
104.
go back to reference von Zitzewitz J, Bernhardt M, Riener R: A novel method for automatic treadmill speed adaptation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007, 15 (3): 401-409.PubMed von Zitzewitz J, Bernhardt M, Riener R: A novel method for automatic treadmill speed adaptation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007, 15 (3): 401-409.PubMed
105.
go back to reference Emken JL, Harkema SJ, Beres-Jones J, Ferreira CK, Reinkensmeyer DJ: Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Transactions of Biomedical Engineering. 2008, 55: 322-334. Emken JL, Harkema SJ, Beres-Jones J, Ferreira CK, Reinkensmeyer DJ: Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Transactions of Biomedical Engineering. 2008, 55: 322-334.
107.
go back to reference Blaya JA, Herr H: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng. 2004, 12 (1): 24-31.PubMed Blaya JA, Herr H: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Syst Rehabil Eng. 2004, 12 (1): 24-31.PubMed
108.
go back to reference Emken JL, Bobrow JE, Reinkensmeyer DJ: Robotic movement training as an optimization problem: Designing a controller that assists only as needed. IEEE 9th International Conference on Rehabilitation Robotics, ICORR. 2005, 307-312. Emken JL, Bobrow JE, Reinkensmeyer DJ: Robotic movement training as an optimization problem: Designing a controller that assists only as needed. IEEE 9th International Conference on Rehabilitation Robotics, ICORR. 2005, 307-312.
109.
go back to reference Slotine JJE, Li W: Applied nonlinear control. 1991, NJ: Prentice Hall Slotine JJE, Li W: Applied nonlinear control. 1991, NJ: Prentice Hall
110.
go back to reference Rosati G, Bobrow JE, Reinkensmeyer DJ: Compliant control of post-stroke rehabilitation robots: using movement-specific models to improve controller performance. Proceedings of the ASME International Mechanical Engineering Congress & Exposition IMECE 2008. 2008, Boston, MA, USA Rosati G, Bobrow JE, Reinkensmeyer DJ: Compliant control of post-stroke rehabilitation robots: using movement-specific models to improve controller performance. Proceedings of the ASME International Mechanical Engineering Congress & Exposition IMECE 2008. 2008, Boston, MA, USA
111.
go back to reference Vallery H, van Asseldonk EHF, Buss M, Kooij van der H: Reference Trajectory Generation for Rehabilitation Robots: Complementary Limb Motion Estimation. 2009, 17: 23-30. Vallery H, van Asseldonk EHF, Buss M, Kooij van der H: Reference Trajectory Generation for Rehabilitation Robots: Complementary Limb Motion Estimation. 2009, 17: 23-30.
112.
go back to reference Kautz SA, Patten C: Interlimb influences on paretic leg function in poststroke hemiparesis. Journal of Neurophysiology. 2005, 93 (5): Kautz SA, Patten C: Interlimb influences on paretic leg function in poststroke hemiparesis. Journal of Neurophysiology. 2005, 93 (5):
113.
go back to reference Lum PS, Burgar CG, Shor PC: Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2004, 12 (2): 186-194.PubMed Lum PS, Burgar CG, Shor PC: Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2004, 12 (2): 186-194.PubMed
114.
go back to reference Wolbrecht E: Adaptive, assist-as-needed control of a pneumatic orthosis for optimizing robotic movement therapy following stroke. PhD thesis. 2007, University of California, Irvine – Mechanical and Aerospace Engineering Wolbrecht E: Adaptive, assist-as-needed control of a pneumatic orthosis for optimizing robotic movement therapy following stroke. PhD thesis. 2007, University of California, Irvine – Mechanical and Aerospace Engineering
115.
go back to reference Erol D, Sarkar N: Smooth human-robot interaction in robot-assisted rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics, ICORR. 2007, 5-15. Erol D, Sarkar N: Smooth human-robot interaction in robot-assisted rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics, ICORR. 2007, 5-15.
116.
go back to reference Kamper DG, Harvey RL, Suresh S, Rymer WZ: Relative contributions of neural mechanisms versus muscle mechanics in promoting finger extension deficits following stroke. Muscle Nerve. 2003, 28 (3): 309-318.PubMed Kamper DG, Harvey RL, Suresh S, Rymer WZ: Relative contributions of neural mechanisms versus muscle mechanics in promoting finger extension deficits following stroke. Muscle Nerve. 2003, 28 (3): 309-318.PubMed
117.
go back to reference Daly J, Wolpaw J: Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 2008, 7 (11): Daly J, Wolpaw J: Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 2008, 7 (11):
118.
go back to reference Guadagnoli M, Lee T: Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J Mot Behav. 2004, 36 (2): 212-224.PubMed Guadagnoli M, Lee T: Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J Mot Behav. 2004, 36 (2): 212-224.PubMed
119.
go back to reference Voss DE, Ionta MK, Meyers BJ: Proprioceptive Neurofacilitation: Patterns & Techniques. 1985, PHILADELPHIA, PENNSYLVANIA: Harper & Rowe Voss DE, Ionta MK, Meyers BJ: Proprioceptive Neurofacilitation: Patterns & Techniques. 1985, PHILADELPHIA, PENNSYLVANIA: Harper & Rowe
120.
go back to reference Patterson LA, Spivey WE: Validity and reliability of the LIDO active isokinetic system. Journal of Orthopaedic Sports Physical Therapy. 1992, 15: 32-36.PubMed Patterson LA, Spivey WE: Validity and reliability of the LIDO active isokinetic system. Journal of Orthopaedic Sports Physical Therapy. 1992, 15: 32-36.PubMed
121.
go back to reference Feiring DC, Ellenbecker TS, Dersheid GL: Test-retest reliability of the Biodex isokinetic dynamometer. Journal of Orthopaedic Sports Physical Therapy. 1990, 11 (7): 298-300.PubMed Feiring DC, Ellenbecker TS, Dersheid GL: Test-retest reliability of the Biodex isokinetic dynamometer. Journal of Orthopaedic Sports Physical Therapy. 1990, 11 (7): 298-300.PubMed
122.
go back to reference Weiss A, Suzuki T, Bean J, Fielding RA: High intensity strength training improves strength and functional performance after stroke. Am J Phys Med Rehabil. 2000, 79 (4): 369-76.PubMed Weiss A, Suzuki T, Bean J, Fielding RA: High intensity strength training improves strength and functional performance after stroke. Am J Phys Med Rehabil. 2000, 79 (4): 369-76.PubMed
123.
go back to reference Ouellette MM, LeBrasseur NK, Bean JF, Phillips E, Stein J, Frontera WR, Fielding RA: High-intensity resistance training improves muscle strength, self-reported function, and disability in long-term stroke survivors. Stroke. 2004, 35 (6): 1404-1409.PubMed Ouellette MM, LeBrasseur NK, Bean JF, Phillips E, Stein J, Frontera WR, Fielding RA: High-intensity resistance training improves muscle strength, self-reported function, and disability in long-term stroke survivors. Stroke. 2004, 35 (6): 1404-1409.PubMed
124.
go back to reference Morris SL, Dodd KJ, Morris ME: Outcomes of progressive resistance strength training following stroke: a systematic review. Clinical Rehabilitation. 2004, 18: 27-39.PubMed Morris SL, Dodd KJ, Morris ME: Outcomes of progressive resistance strength training following stroke: a systematic review. Clinical Rehabilitation. 2004, 18: 27-39.PubMed
125.
go back to reference Patten C, Dozono J, Schmidt S, Jue M, Lum P: Combined functional task practice and dynamic high intensity resistance training promotes recovery of upper-extremity motor function in post-stroke hemiparesis: a case study. Journal of Neurologic Physical Therapy. 2006, 30 (3): 99-115.PubMed Patten C, Dozono J, Schmidt S, Jue M, Lum P: Combined functional task practice and dynamic high intensity resistance training promotes recovery of upper-extremity motor function in post-stroke hemiparesis: a case study. Journal of Neurologic Physical Therapy. 2006, 30 (3): 99-115.PubMed
126.
go back to reference Mercier C, Bourbonnais D, Bilodeau S, Lemay JF, Cross P: Description of a new motor re-education programme for the paretic lower limb aimed at improving the mobility of stroke patients. Clinical Rehabilitation. 1999, 13 (3): 199-206.PubMed Mercier C, Bourbonnais D, Bilodeau S, Lemay JF, Cross P: Description of a new motor re-education programme for the paretic lower limb aimed at improving the mobility of stroke patients. Clinical Rehabilitation. 1999, 13 (3): 199-206.PubMed
127.
go back to reference Lam T, Wirz M, Lüunenburger L, Dietz V: Swing phase resistance enhances flexor muscle activity during treadmill locomotion in incomplete spinal cord injury. Neurorehabil Neural Repair. 2008, 22 (5): 438-446.PubMed Lam T, Wirz M, Lüunenburger L, Dietz V: Swing phase resistance enhances flexor muscle activity during treadmill locomotion in incomplete spinal cord injury. Neurorehabil Neural Repair. 2008, 22 (5): 438-446.PubMed
128.
go back to reference Ellis MD, Sukal T, DeMott T, Dewald JPA: Augmenting Clinical Evaluation of Hemiparetic Arm Movement With a Laboratory-Based Quantitative Measurement of Kinematics as a Function of Limb Loading. Neurorehabil Neural Repair. 2008, 22 (4): 321-329.PubMedPubMedCentral Ellis MD, Sukal T, DeMott T, Dewald JPA: Augmenting Clinical Evaluation of Hemiparetic Arm Movement With a Laboratory-Based Quantitative Measurement of Kinematics as a Function of Limb Loading. Neurorehabil Neural Repair. 2008, 22 (4): 321-329.PubMedPubMedCentral
129.
go back to reference Shaw SE, Morris DM, Uswatte G, McKay S, Meythaler JM, Taub E: Constraint-induced movement therapy for recovery of upper-limb function following traumatic brain injury. J Rehabil Res Dev. 2005, 42 (6): 769-778.PubMed Shaw SE, Morris DM, Uswatte G, McKay S, Meythaler JM, Taub E: Constraint-induced movement therapy for recovery of upper-limb function following traumatic brain injury. J Rehabil Res Dev. 2005, 42 (6): 769-778.PubMed
130.
go back to reference Johnson MJ, Loos Van der HFM, Burgar CG, Shor P, Leifer LJ: Design and evaluation of Driver's SEAT: A car steering simulation environment for upper limb stroke therapy. Robotica. 2003, 21: 13-23. Johnson MJ, Loos Van der HFM, Burgar CG, Shor P, Leifer LJ: Design and evaluation of Driver's SEAT: A car steering simulation environment for upper limb stroke therapy. Robotica. 2003, 21: 13-23.
131.
go back to reference Simon AM, Gillespie RB, Ferris DP: Symmetry-based resistance as a novel means of lower limb rehabilitation. Journal of Biomechanics. 2007, 40 (6): 1286-1292.PubMed Simon AM, Gillespie RB, Ferris DP: Symmetry-based resistance as a novel means of lower limb rehabilitation. Journal of Biomechanics. 2007, 40 (6): 1286-1292.PubMed
132.
go back to reference Emken JL, Reinkensmeyer DJ: Robot-Enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005, 13: 33-39.PubMed Emken JL, Reinkensmeyer DJ: Robot-Enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2005, 13: 33-39.PubMed
133.
go back to reference Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Experimental Brain Research. 2006, 168 (3): 368-383.PubMed Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Experimental Brain Research. 2006, 168 (3): 368-383.PubMed
134.
go back to reference Reisman DS, Wityk R, Silver K, Bastian AJ: Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain. 2007, 130 (7): 1861-1872.PubMedPubMedCentral Reisman DS, Wityk R, Silver K, Bastian AJ: Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain. 2007, 130 (7): 1861-1872.PubMedPubMedCentral
135.
go back to reference Patton JL, Kovic M, Mussa-Ivaldi FA: Custom-designed haptic training for restoring reaching ability to individuals with poststroke hemiparesis. J Rehabil Res Dev. 2006, 43 (5): 643-56.PubMed Patton JL, Kovic M, Mussa-Ivaldi FA: Custom-designed haptic training for restoring reaching ability to individuals with poststroke hemiparesis. J Rehabil Res Dev. 2006, 43 (5): 643-56.PubMed
136.
go back to reference Wei Y, Bajaj P, Scheidt R, Patton J: Visual error augmentation for enhancing motor learning and rehabilitative relearning. 9th International Conference on Rehabilitation Robotics, ICORR. 2005, 505-510. Wei Y, Bajaj P, Scheidt R, Patton J: Visual error augmentation for enhancing motor learning and rehabilitative relearning. 9th International Conference on Rehabilitation Robotics, ICORR. 2005, 505-510.
137.
go back to reference Brewer BR, Klatzky R, Matsuoka Y: Visual feedback distortion in a robotic environment for hand rehabilitation. Brain Research Bulletin. 2008, 75 (6): 804-813.PubMed Brewer BR, Klatzky R, Matsuoka Y: Visual feedback distortion in a robotic environment for hand rehabilitation. Brain Research Bulletin. 2008, 75 (6): 804-813.PubMed
138.
go back to reference Patton JL, Dawe G, Scharver C, Mussa-Ivaldi FA, Kenyon R: Robotics and virtual reality: the development of a life-sized 3-D system for the rehabilitation of motor function. 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS. 2004, 4840-4843. Patton JL, Dawe G, Scharver C, Mussa-Ivaldi FA, Kenyon R: Robotics and virtual reality: the development of a life-sized 3-D system for the rehabilitation of motor function. 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS. 2004, 4840-4843.
139.
go back to reference Burdea GC: Virtual rehabilitation-benefits and challenges. Methods of Information in Medicine. 2003, 42 (5): 519-23.PubMed Burdea GC: Virtual rehabilitation-benefits and challenges. Methods of Information in Medicine. 2003, 42 (5): 519-23.PubMed
140.
go back to reference Adamovich SV, Merians AS, Boian R, Tremaine M, Burdea GS, Recce M, Poizner H: A virtual reality based exercise system for hand rehabilitation post-stroke: transfer to function. 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS. 2004, 4936-4939. Adamovich SV, Merians AS, Boian R, Tremaine M, Burdea GS, Recce M, Poizner H: A virtual reality based exercise system for hand rehabilitation post-stroke: transfer to function. 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS. 2004, 4936-4939.
141.
go back to reference Broeren J, Georgsson M, Rydmark M, Sunnerhagen KS: Virtual reality in stroke rehabilitation with the assistance of haptics and telemedicine. Proceedings of the 4th International Conference on Disability, Virtual Reality and Associated Technologies. 2002, 71-76. Broeren J, Georgsson M, Rydmark M, Sunnerhagen KS: Virtual reality in stroke rehabilitation with the assistance of haptics and telemedicine. Proceedings of the 4th International Conference on Disability, Virtual Reality and Associated Technologies. 2002, 71-76.
142.
go back to reference McLaughlin M, Rizzo A, Jung Y, Peng W, Yeh SC, Zhu W: Haptics-enhanced virtual environments for stroke rehabilitation. Procedings on IPSI 2005. 2005, Cambridge, MA McLaughlin M, Rizzo A, Jung Y, Peng W, Yeh SC, Zhu W: Haptics-enhanced virtual environments for stroke rehabilitation. Procedings on IPSI 2005. 2005, Cambridge, MA
143.
go back to reference Carignan C, Liszka M, Roderick S: Design of an arm exoskeleton with scapula motion for shoulder rehabilitation. Proceedings on the 12th International Conference on Advanced Robotics, ICAR. 2005, 524-531. Carignan C, Liszka M, Roderick S: Design of an arm exoskeleton with scapula motion for shoulder rehabilitation. Proceedings on the 12th International Conference on Advanced Robotics, ICAR. 2005, 524-531.
144.
go back to reference Reinkensmeyer D, Pang C, Nessler J, Painter C: Web-based telerehabilitation for the upper extremity after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2002, 10 (2): 102-108.PubMed Reinkensmeyer D, Pang C, Nessler J, Painter C: Web-based telerehabilitation for the upper extremity after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2002, 10 (2): 102-108.PubMed
145.
go back to reference Fung J, Malouin F, McFadyen BJ, Comeau F, Lamontagne A, Chapdelaine S, Beaudoin C, Laurendeau D, Hughey L, Richards CL: Locomotor rehabilitation in a complex virtual environment. Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS. 2004, 4859-4861. Fung J, Malouin F, McFadyen BJ, Comeau F, Lamontagne A, Chapdelaine S, Beaudoin C, Laurendeau D, Hughey L, Richards CL: Locomotor rehabilitation in a complex virtual environment. Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS. 2004, 4859-4861.
146.
go back to reference Boian RF, Deutsch JE, Su Lee C, Burdea GC, Lewis J: Haptic effects for virtual reality-based post-stroke rehabilitation. Proceedings on the 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS. 2003, 247-253. Boian RF, Deutsch JE, Su Lee C, Burdea GC, Lewis J: Haptic effects for virtual reality-based post-stroke rehabilitation. Proceedings on the 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS. 2003, 247-253.
147.
go back to reference Reeves B, Nass C: The Media Equation: How People Treat Computers, Television, and New Media Like Real People and Places. 1998, New York, NY: Cambridge University Press Reeves B, Nass C: The Media Equation: How People Treat Computers, Television, and New Media Like Real People and Places. 1998, New York, NY: Cambridge University Press
148.
go back to reference Huang VS, Shadmehr R, Diedrichsen J: Active learning: learning a motor skill without a coach. Journal of Neurophysiology. 2008, 100 (2): 879-887.PubMedPubMedCentral Huang VS, Shadmehr R, Diedrichsen J: Active learning: learning a motor skill without a coach. Journal of Neurophysiology. 2008, 100 (2): 879-887.PubMedPubMedCentral
149.
go back to reference Reinkensmeyer DJ, Patton JL: Can robots help the learning of skilled actions?. Exercise and Sports Sciences Reviews. 2009, 37: 43-51. Reinkensmeyer DJ, Patton JL: Can robots help the learning of skilled actions?. Exercise and Sports Sciences Reviews. 2009, 37: 43-51.
150.
go back to reference Prange GB, Jannink MJ, Groothuis-Oudshoorn CG, Hermens HJ, Ijzerman MJ: Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006, 43 (2): 171-84.PubMed Prange GB, Jannink MJ, Groothuis-Oudshoorn CG, Hermens HJ, Ijzerman MJ: Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006, 43 (2): 171-84.PubMed
151.
go back to reference Ferraro M, Palazzolo JJ, Krol J, Krebs HI, Hogan N, Volpek BT: Robot-aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology. 2003, 61: 1604-1607.PubMed Ferraro M, Palazzolo JJ, Krol J, Krebs HI, Hogan N, Volpek BT: Robot-aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology. 2003, 61: 1604-1607.PubMed
152.
go back to reference Meyer-Heim A, Borggraefe I, Ammann-Reiffer C, Berweck S, Sennhauser FH, Colombo G, Knecht B, Heinen F: Feasibility of robotic-assisted locomotor training in children with central gait impairment. Dev Med Child Neurol. 2007, 49 (12): 900-906.PubMed Meyer-Heim A, Borggraefe I, Ammann-Reiffer C, Berweck S, Sennhauser FH, Colombo G, Knecht B, Heinen F: Feasibility of robotic-assisted locomotor training in children with central gait impairment. Dev Med Child Neurol. 2007, 49 (12): 900-906.PubMed
153.
go back to reference Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005, 86 (4): 672-680.PubMed Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, Hornby TG: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005, 86 (4): 672-680.PubMed
154.
go back to reference Macclellan LR, Bradham DD, Whitall J, Volpe B, Wilson PD, Ohlhoff J, Meister C, Hogan N, Krebs HI, Bever CTJ: Robotic upper-limb neurorehabilitation in chronic stroke patients. J Rehabil Res Dev. 2005, 42 (6): 717-22.PubMed Macclellan LR, Bradham DD, Whitall J, Volpe B, Wilson PD, Ohlhoff J, Meister C, Hogan N, Krebs HI, Bever CTJ: Robotic upper-limb neurorehabilitation in chronic stroke patients. J Rehabil Res Dev. 2005, 42 (6): 717-22.PubMed
155.
go back to reference Finley MA, Fasoli SE, Dipietro L, Ohlhoff J, Macclellan L, Meister C, Withall J, Macko R, Bever C, Krebs HI, Hogan N: Short-duration robotic therapy in stroke patients with severe upper-limb motor impairment. J Rehabil Res Dev. 2005, 42 (5): 683-691.PubMed Finley MA, Fasoli SE, Dipietro L, Ohlhoff J, Macclellan L, Meister C, Withall J, Macko R, Bever C, Krebs HI, Hogan N: Short-duration robotic therapy in stroke patients with severe upper-limb motor impairment. J Rehabil Res Dev. 2005, 42 (5): 683-691.PubMed
156.
go back to reference Krebs H, Dipietro L, Levy-Tzedek S, Fasoli S, Rykman-Berland A, Zipse J, Fawcett J, Stein J, Poizner H, Lo A, Volpe B, Hogan N: A paradigm shift for rehabilitation robotics. IEEE Engineering in Medicine and Biology Magazine. 2008, 27 (4): 61-70.PubMedCentral Krebs H, Dipietro L, Levy-Tzedek S, Fasoli S, Rykman-Berland A, Zipse J, Fawcett J, Stein J, Poizner H, Lo A, Volpe B, Hogan N: A paradigm shift for rehabilitation robotics. IEEE Engineering in Medicine and Biology Magazine. 2008, 27 (4): 61-70.PubMedCentral
157.
go back to reference Takahashi CD, Der-Yeghiaian L, Vu L, Motiwala RR, Cramer SC: Robot-based hand motor therapy after stroke. Brain. 2008, 131 (Pt 2): 425-437.PubMed Takahashi CD, Der-Yeghiaian L, Vu L, Motiwala RR, Cramer SC: Robot-based hand motor therapy after stroke. Brain. 2008, 131 (Pt 2): 425-437.PubMed
158.
go back to reference Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, Hooelig G, Koch R, Hesse S: Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clinical Rehabilitation. 2007, 21: 17-27.PubMed Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, Hooelig G, Koch R, Hesse S: Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clinical Rehabilitation. 2007, 21: 17-27.PubMed
159.
go back to reference Husemann B, Mueller F, Krewer C, Heller S, Koenig E: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke. 2007, 38 (2): 349-54.PubMed Husemann B, Mueller F, Krewer C, Heller S, Koenig E: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke. 2007, 38 (2): 349-54.PubMed
160.
go back to reference Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the lokomat gait orthosis. Neurorehabil Neural Repair. 2007, 21 (4): 307-314.PubMed Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L: Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the lokomat gait orthosis. Neurorehabil Neural Repair. 2007, 21 (4): 307-314.PubMed
161.
go back to reference Kwakkel G, Kollen BJ, Krebs HI: Effects of Robot-Assisted Therapy on Upper Limb Recovery After Stroke: A Systematic Review. Neurorehabil Neural Repair. 2008, 22 (2): 111-121.PubMedPubMedCentral Kwakkel G, Kollen BJ, Krebs HI: Effects of Robot-Assisted Therapy on Upper Limb Recovery After Stroke: A Systematic Review. Neurorehabil Neural Repair. 2008, 22 (2): 111-121.PubMedPubMedCentral
162.
go back to reference Lum PS, Burgar CG, Loos Van der M, Shor PC, Majmundar M, Yap R: Links MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. J Rehabil Res Dev. 2006, 43 (5): 631-42.PubMed Lum PS, Burgar CG, Loos Van der M, Shor PC, Majmundar M, Yap R: Links MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. J Rehabil Res Dev. 2006, 43 (5): 631-42.PubMed
163.
go back to reference Stein J, Krebs HI, Frontera WR, Fasoli SE, Hughes R, Hogan N: Comparison of two techniques of robot-aided upper limb exercise training after stroke. Am J Phys Med Rehabil. 2004, 83 (9): 720-728.PubMed Stein J, Krebs HI, Frontera WR, Fasoli SE, Hughes R, Hogan N: Comparison of two techniques of robot-aided upper limb exercise training after stroke. Am J Phys Med Rehabil. 2004, 83 (9): 720-728.PubMed
164.
go back to reference Housman SJ, Scott K, Reinkensmeyer DJ: A Randomized Controlled Trial of Gravity-Supported, Computer-Enhanced Arm Exercise for Individuals With Severe Hemiparesis. Neurorehabilitation Neural Repair. 2009, 505-514. 5 Housman SJ, Scott K, Reinkensmeyer DJ: A Randomized Controlled Trial of Gravity-Supported, Computer-Enhanced Arm Exercise for Individuals With Severe Hemiparesis. Neurorehabilitation Neural Repair. 2009, 505-514. 5
165.
go back to reference Coote S, Murphy B, Harwin W, Stokes E: The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clinical Rehabilitation. 2008, 22 (5): 395-405.PubMed Coote S, Murphy B, Harwin W, Stokes E: The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clinical Rehabilitation. 2008, 22 (5): 395-405.PubMed
166.
go back to reference Hesse S, Werner C, Uhlenbrock D, Frankenberg SV, Bardeleben A, Brandl-Hesse B: An electromechanical gait trainer for restoration of gait in hemiparetic stroke patients: Preliminary results. Neurorehabil Neural Repair. 2001, 15 (1): 39-50.PubMed Hesse S, Werner C, Uhlenbrock D, Frankenberg SV, Bardeleben A, Brandl-Hesse B: An electromechanical gait trainer for restoration of gait in hemiparetic stroke patients: Preliminary results. Neurorehabil Neural Repair. 2001, 15 (1): 39-50.PubMed
167.
go back to reference Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR: Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008, 39 (6): 1786-92.PubMed Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR: Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008, 39 (6): 1786-92.PubMed
168.
go back to reference Hidler J, Nichols D, Pelliccio M, Brady K, Campbell D, Kahn J, Hornby T: Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009, 23: 5-13.PubMed Hidler J, Nichols D, Pelliccio M, Brady K, Campbell D, Kahn J, Hornby T: Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009, 23: 5-13.PubMed
169.
go back to reference Fischer H, Kahn L, Pelosin E, Roth H, Barbas J, Rymer W, Reinkensmeyer D: Can Robot-Assisted Therapy Promote Generalization of Motor Learning Following Stroke?: Preliminary Results. The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob. 2006, 865-868. Fischer H, Kahn L, Pelosin E, Roth H, Barbas J, Rymer W, Reinkensmeyer D: Can Robot-Assisted Therapy Promote Generalization of Motor Learning Following Stroke?: Preliminary Results. The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob. 2006, 865-868.
170.
go back to reference Krebs HI, Mernoff S, Fasoli SE, Hughes R, Stein J, Hogan N: A comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: a pilot study. NeuroRehabilitation. 2008, 23: 81-87.PubMedPubMedCentral Krebs HI, Mernoff S, Fasoli SE, Hughes R, Stein J, Hogan N: A comparison of functional and impairment-based robotic training in severe to moderate chronic stroke: a pilot study. NeuroRehabilitation. 2008, 23: 81-87.PubMedPubMedCentral
171.
go back to reference Sugarman H, Dayan E, Lauden A, Weisel-Eichler A, Tiran J: Investigating the use of force feedback joysticks for low-cost, robot-mediated therapy. International Journal on Disability and Human Development. 2008, 7: 95-100. Sugarman H, Dayan E, Lauden A, Weisel-Eichler A, Tiran J: Investigating the use of force feedback joysticks for low-cost, robot-mediated therapy. International Journal on Disability and Human Development. 2008, 7: 95-100.
172.
go back to reference Deutsch JA, Lewis JA, Whitworth E, Boian R, Burdea G, Tremaine M: Formative evaluation and preliminary findings of a virtual reality telerehabilitation system for the lower extremity. Presence: Teleoperators and Virtual Environments. 2005, 14 (2): 198-213. Deutsch JA, Lewis JA, Whitworth E, Boian R, Burdea G, Tremaine M: Formative evaluation and preliminary findings of a virtual reality telerehabilitation system for the lower extremity. Presence: Teleoperators and Virtual Environments. 2005, 14 (2): 198-213.
173.
go back to reference Mirelman A, Bonato P, Deutsch J: Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke. 2009, 40: 169-74.PubMed Mirelman A, Bonato P, Deutsch J: Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke. 2009, 40: 169-74.PubMed
174.
go back to reference Kahn LE, Lum PS, Rymer WZ, Reinkensmeyer DJ: Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does?. J Rehabil Res Dev. 2006, 43 (5): 619-630.PubMed Kahn LE, Lum PS, Rymer WZ, Reinkensmeyer DJ: Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does?. J Rehabil Res Dev. 2006, 43 (5): 619-630.PubMed
Metadata
Title
Review of control strategies for robotic movement training after neurologic injury
Authors
Laura Marchal-Crespo
David J Reinkensmeyer
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2009
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-6-20

Other articles of this Issue 1/2009

Journal of NeuroEngineering and Rehabilitation 1/2009 Go to the issue