Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2013

Open Access 01-12-2013 | Research

Absence of IL-1β positively affects neurological outcome, lesion development and axonal plasticity after spinal cord injury

Authors: Francesco Boato, Karen Rosenberger, Sofie Nelissen, Lies Geboes, Eva M Peters, Robert Nitsch, Sven Hendrix

Published in: Journal of Neuroinflammation | Issue 1/2013

Login to get access

Abstract

Precise crosstalk between the nervous and immune systems is important for neuroprotection and axon plasticity after injury. Recently, we demonstrated that IL-1β acts as a potent inducer of neurite outgrowth from organotypic brain slices in vitro, suggesting a potential function of IL-1β in axonal plasticity. Here, we have investigated the effects of IL-1β on axon plasticity during glial scar formation and on functional recovery in a mouse model of spinal cord compression injury (SCI). We used an IL-1β deficiency model (IL-1βKO mice) and administered recombinant IL-1β. In contrast to our hypothesis, the histological analysis revealed a significantly increased lesion width and a reduced number of corticospinal tract fibers caudal to the lesion center after local application of recombinant IL-1β. Consistently, the treatment significantly worsened the neurological outcome after SCI in mice compared with PBS controls. In contrast, the absence of IL-1β in IL-1βKO mice significantly improved recovery from SCI compared with wildtype mice. Histological analysis revealed a smaller lesion size, reduced lesion width and greatly decreased astrogliosis in the white matter, while the number of corticospinal tract fibers increased significantly 5 mm caudal to the lesion in IL-1βKO mice relative to controls. Our study for the first time characterizes the detrimental effects of IL-1β not only on lesion development (in terms of size and glia activation), but also on the plasticity of central nervous system axons after injury.
Literature
1.
go back to reference Allan SM, Tyrrell PJ, Rothwell NJ: Interleukin-1 and neuronal injury. Nat Rev Immunol 2005, 5:629–640.CrossRefPubMed Allan SM, Tyrrell PJ, Rothwell NJ: Interleukin-1 and neuronal injury. Nat Rev Immunol 2005, 5:629–640.CrossRefPubMed
2.
go back to reference Bauer J, Berkenbosch F, Van Dam AM, Dijkstra CD: Demonstration of interleukin-1 beta in Lewis rat brain during experimental allergic encephalomyelitis by immunocytochemistry at the light and ultrastructural level. J Neuroimmunol 1993, 48:13–21.CrossRefPubMed Bauer J, Berkenbosch F, Van Dam AM, Dijkstra CD: Demonstration of interleukin-1 beta in Lewis rat brain during experimental allergic encephalomyelitis by immunocytochemistry at the light and ultrastructural level. J Neuroimmunol 1993, 48:13–21.CrossRefPubMed
3.
go back to reference Desson SE, Ferguson AV: Interleukin 1β modulates rat subfornical organ neurons as a result of activation of a non-selective cationic conductance. J Physiol 2003,550(Pt 1):113–122.CrossRefPubMedPubMedCentral Desson SE, Ferguson AV: Interleukin 1β modulates rat subfornical organ neurons as a result of activation of a non-selective cationic conductance. J Physiol 2003,550(Pt 1):113–122.CrossRefPubMedPubMedCentral
4.
go back to reference Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, Binaglia M, Corsini E, Di Luca M, Galli CL, Marinovich M: Interleukin-1β enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 2003, 23:8692–8700.PubMed Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, Binaglia M, Corsini E, Di Luca M, Galli CL, Marinovich M: Interleukin-1β enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 2003, 23:8692–8700.PubMed
5.
go back to reference Boato F, Hechler D, Rosenberger K, Lüdecke D, Peters EM, Nitsch R, Hendrix S: Interleukin-1 beta and neurotrophin-3 synergistically promote neurite growth in vitro. J Neuroinflammation 2011, 8:183.CrossRefPubMedPubMedCentral Boato F, Hechler D, Rosenberger K, Lüdecke D, Peters EM, Nitsch R, Hendrix S: Interleukin-1 beta and neurotrophin-3 synergistically promote neurite growth in vitro. J Neuroinflammation 2011, 8:183.CrossRefPubMedPubMedCentral
6.
go back to reference Edoff K, Jerregard H: Effects of IL-1β, IL-6 or LIF on rat sensory neurons co-cultured with fibroblast-like cells. J Neurosci Res 2002, 67:255–263.CrossRefPubMed Edoff K, Jerregard H: Effects of IL-1β, IL-6 or LIF on rat sensory neurons co-cultured with fibroblast-like cells. J Neurosci Res 2002, 67:255–263.CrossRefPubMed
7.
go back to reference Zeise ML, Madamba S, Siggins GR: Interleukin-1 beta increases synaptic inhibition in rat hippocampal pyramidal neurons in vitro. Regul Pept 1992, 39:1–7.CrossRefPubMed Zeise ML, Madamba S, Siggins GR: Interleukin-1 beta increases synaptic inhibition in rat hippocampal pyramidal neurons in vitro. Regul Pept 1992, 39:1–7.CrossRefPubMed
8.
go back to reference John GR, Lee SC, Song X, Rivieccio M, Brosnan CF: IL-1-regulated responses in astrocytes: relevance to injury and recovery. Glia 2005, 49:161–176.CrossRefPubMed John GR, Lee SC, Song X, Rivieccio M, Brosnan CF: IL-1-regulated responses in astrocytes: relevance to injury and recovery. Glia 2005, 49:161–176.CrossRefPubMed
9.
go back to reference Gölz G, Uhlmann L, Lüdecke D, Markgraf N, Nitsch R, Hendrix S: The cytokine/neurotrophin axis in peripheral axon outgrowth. Eur J Neurosci 2006, 24:2721–2730.CrossRefPubMed Gölz G, Uhlmann L, Lüdecke D, Markgraf N, Nitsch R, Hendrix S: The cytokine/neurotrophin axis in peripheral axon outgrowth. Eur J Neurosci 2006, 24:2721–2730.CrossRefPubMed
10.
go back to reference Loddick SA, Rothwell NJ: Neuroprotective effects of human recombinant interleukin-1 receptor antagonist in focal cerebral ischaemia in the rat. J Cereb Blood Flow Metab 1996, 16:932–940.CrossRefPubMed Loddick SA, Rothwell NJ: Neuroprotective effects of human recombinant interleukin-1 receptor antagonist in focal cerebral ischaemia in the rat. J Cereb Blood Flow Metab 1996, 16:932–940.CrossRefPubMed
11.
go back to reference McColl BW, Rothwell NJ, Allan SM: Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J Neurosci 2007, 27:4403–4412.CrossRefPubMed McColl BW, Rothwell NJ, Allan SM: Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J Neurosci 2007, 27:4403–4412.CrossRefPubMed
12.
go back to reference Yamasaki Y, Matsuura N, Shozuhara H, Onodera H, Itoyama Y, Kogure K: Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke 1995, 26:676–680. discussion 681CrossRefPubMed Yamasaki Y, Matsuura N, Shozuhara H, Onodera H, Itoyama Y, Kogure K: Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke 1995, 26:676–680. discussion 681CrossRefPubMed
13.
go back to reference Wang CX, Olschowka JA, Wrathall JR: Increase of interleukin-1β mRNA and protein in the spinal cord following experimental traumatic injury in the rat. Brain Res 1997, 759:190–196.CrossRefPubMed Wang CX, Olschowka JA, Wrathall JR: Increase of interleukin-1β mRNA and protein in the spinal cord following experimental traumatic injury in the rat. Brain Res 1997, 759:190–196.CrossRefPubMed
14.
go back to reference Wang XJ, Kong KM, Qi WL, Ye WL, Song PS: Interleukin-1 beta induction of neuron apoptosis depends on p38 mitogen-activated protein kinase activity after spinal cord injury. Acta Pharmacol Sin 2005, 26:934–942.CrossRefPubMed Wang XJ, Kong KM, Qi WL, Ye WL, Song PS: Interleukin-1 beta induction of neuron apoptosis depends on p38 mitogen-activated protein kinase activity after spinal cord injury. Acta Pharmacol Sin 2005, 26:934–942.CrossRefPubMed
15.
go back to reference Mason JL, Suzuki K, Chaplin DD, Matsushima GK: Interleukin-1β promotes repair of the CNS. J Neurosci 2001, 21:7046–7052.PubMed Mason JL, Suzuki K, Chaplin DD, Matsushima GK: Interleukin-1β promotes repair of the CNS. J Neurosci 2001, 21:7046–7052.PubMed
16.
go back to reference Temporin K, Tanaka H, Kuroda Y, Okada K, Yachi K, Moritomo H, Murase T, Yoshikawa H: IL-1β promotes neurite outgrowth by deactivating RhoA via p38 MAPK pathway. Biochem Biophys Res Commun 2008, 365:375–380.CrossRefPubMed Temporin K, Tanaka H, Kuroda Y, Okada K, Yachi K, Moritomo H, Murase T, Yoshikawa H: IL-1β promotes neurite outgrowth by deactivating RhoA via p38 MAPK pathway. Biochem Biophys Res Commun 2008, 365:375–380.CrossRefPubMed
17.
go back to reference Temporin K, Tanaka H, Kuroda Y, Okada K, Yachi K, Moritomo H, Murase T, Yoshikawa H: Interleukin-1 beta promotes sensory nerve regeneration after sciatic nerve injury. Neurosci Lett 2008, 440:130–133.CrossRefPubMed Temporin K, Tanaka H, Kuroda Y, Okada K, Yachi K, Moritomo H, Murase T, Yoshikawa H: Interleukin-1 beta promotes sensory nerve regeneration after sciatic nerve injury. Neurosci Lett 2008, 440:130–133.CrossRefPubMed
18.
go back to reference Boato F, Hendrix S, Huelsenbeck SC, Hofmann F, Grosse G, Djalali S, Klimaschewski L, Auer M, Just I, Ahnert-Hilger G, Höltje M: C3 peptide enhances recovery from spinal cord injury by improved regenerative growth of descending fiber tracts. J Cell Sci 2010,123(Pt 10):1652–1662.CrossRefPubMed Boato F, Hendrix S, Huelsenbeck SC, Hofmann F, Grosse G, Djalali S, Klimaschewski L, Auer M, Just I, Ahnert-Hilger G, Höltje M: C3 peptide enhances recovery from spinal cord injury by improved regenerative growth of descending fiber tracts. J Cell Sci 2010,123(Pt 10):1652–1662.CrossRefPubMed
19.
go back to reference Sato A, Ohtaki H, Tsumuraya T, Song D, Ohara K, Asano M, Iwakura Y, Atsumi T, Shioda S: Interleukin-1 participates in the classical and alternative activation of microglia/macrophages after spinal cord injury. J Neuroinflammation 2012, 9:65.CrossRefPubMedPubMedCentral Sato A, Ohtaki H, Tsumuraya T, Song D, Ohara K, Asano M, Iwakura Y, Atsumi T, Shioda S: Interleukin-1 participates in the classical and alternative activation of microglia/macrophages after spinal cord injury. J Neuroinflammation 2012, 9:65.CrossRefPubMedPubMedCentral
20.
go back to reference Shornick LP, De Togni P, Mariathasan S, Goellner J, Strauss-Schoenberger J, Karr RW, Ferguson TA, Chaplin DD: Mice deficient in IL-1β manifest impaired contact hypersensitivity to trinitrochlorobenzone. J Exp Med 1996, 183:1427–1436.CrossRefPubMed Shornick LP, De Togni P, Mariathasan S, Goellner J, Strauss-Schoenberger J, Karr RW, Ferguson TA, Chaplin DD: Mice deficient in IL-1β manifest impaired contact hypersensitivity to trinitrochlorobenzone. J Exp Med 1996, 183:1427–1436.CrossRefPubMed
21.
go back to reference Loske P, Boato F, Hendrix S, Piepgras J, Just I, Ahnert-Hilger G, Höltje M: Minimal essential length of Clostridium botulinum C3 peptides to enhance neuronal regenerative growth and connectivity in a non-enzymatic mode. J Neurochem 2012, 120:1084–1096.PubMed Loske P, Boato F, Hendrix S, Piepgras J, Just I, Ahnert-Hilger G, Höltje M: Minimal essential length of Clostridium botulinum C3 peptides to enhance neuronal regenerative growth and connectivity in a non-enzymatic mode. J Neurochem 2012, 120:1084–1096.PubMed
22.
go back to reference Hechler D, Boato F, Nitsch R, Hendrix S: Differential regulation of axon outgrowth and reinnervation by neurotrophin-3 and neurotrophin-4 in the hippocampal formation. Exp Brain Res 2010, 205:215–221.CrossRefPubMed Hechler D, Boato F, Nitsch R, Hendrix S: Differential regulation of axon outgrowth and reinnervation by neurotrophin-3 and neurotrophin-4 in the hippocampal formation. Exp Brain Res 2010, 205:215–221.CrossRefPubMed
23.
go back to reference Höltje M, Djalali S, Hofmann F, Münster-Wandowski A, Hendrix S, Boato F, Dreger SC, Grosse G, Henneberger C, Grantyn R, Just I, Ahnert-Hilger G: A 29-amino acid fragment of Clostridium botulinum C3 protein enhances neuronal outgrowth, connectivity, and reinnervation. FASEB J 2009, 23:1115–1126.CrossRefPubMed Höltje M, Djalali S, Hofmann F, Münster-Wandowski A, Hendrix S, Boato F, Dreger SC, Grosse G, Henneberger C, Grantyn R, Just I, Ahnert-Hilger G: A 29-amino acid fragment of Clostridium botulinum C3 protein enhances neuronal outgrowth, connectivity, and reinnervation. FASEB J 2009, 23:1115–1126.CrossRefPubMed
24.
go back to reference Schmitt KR, Boato F, Diestel A, Hechler D, Kruglov A, Berger F, Hendrix S: Hypothermia-induced neurite outgrowth is mediated by tumor necrosis factor-alpha. Brain Pathol 2010, 20:771–779.CrossRefPubMed Schmitt KR, Boato F, Diestel A, Hechler D, Kruglov A, Berger F, Hendrix S: Hypothermia-induced neurite outgrowth is mediated by tumor necrosis factor-alpha. Brain Pathol 2010, 20:771–779.CrossRefPubMed
25.
go back to reference Schmitt KR, Kern C, Lange PE, Berger F, Abdul-Khaliq H, Hendrix S: S100B modulates IL-6 release and cytotoxicity from hypothermic brain cells and inhibits hypothermia-induced axonal outgrowth. Neurosci Res 2007, 59:68–73.CrossRefPubMed Schmitt KR, Kern C, Lange PE, Berger F, Abdul-Khaliq H, Hendrix S: S100B modulates IL-6 release and cytotoxicity from hypothermic brain cells and inhibits hypothermia-induced axonal outgrowth. Neurosci Res 2007, 59:68–73.CrossRefPubMed
26.
go back to reference Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG: Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 2006,23(5):635–659.CrossRefPubMed Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG: Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 2006,23(5):635–659.CrossRefPubMed
27.
go back to reference De Ryck M, Van Reempts J, Duytschaever H, Van Deuren B, Clincke G: Neocortical localization of tactile/proprioceptive limb placing reactions in the rat. Brain Res 1992, 573:44–60.CrossRefPubMed De Ryck M, Van Reempts J, Duytschaever H, Van Deuren B, Clincke G: Neocortical localization of tactile/proprioceptive limb placing reactions in the rat. Brain Res 1992, 573:44–60.CrossRefPubMed
28.
go back to reference Metz GA, Whishaw IQ: Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods 2002, 115:169–179.CrossRefPubMed Metz GA, Whishaw IQ: Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods 2002, 115:169–179.CrossRefPubMed
29.
go back to reference Steward O, Zheng B, Tessier-Lavigne M: False resurrections: distinguishing regenerated from spared axons in the injured central nervous system. J Comp Neurol 2003, 459:1–8.CrossRefPubMed Steward O, Zheng B, Tessier-Lavigne M: False resurrections: distinguishing regenerated from spared axons in the injured central nervous system. J Comp Neurol 2003, 459:1–8.CrossRefPubMed
30.
go back to reference Wang X, Budel S, Baughman K, Gould G, Song KH, Strittmatter SM: Ibuprofen enhances recovery from spinal cord injury by limiting tissue loss and stimulating axonal growth. J Neurotrauma 2009, 26:81–95.CrossRefPubMedPubMedCentral Wang X, Budel S, Baughman K, Gould G, Song KH, Strittmatter SM: Ibuprofen enhances recovery from spinal cord injury by limiting tissue loss and stimulating axonal growth. J Neurotrauma 2009, 26:81–95.CrossRefPubMedPubMedCentral
31.
go back to reference Pineau I, Lacroix S: Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J Comp Neurol 2007, 500:267–285.CrossRefPubMed Pineau I, Lacroix S: Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J Comp Neurol 2007, 500:267–285.CrossRefPubMed
32.
go back to reference Nesic O, Xu GY, McAdoo D, High KW, Hulsebosch C, Perez-Pol R: IL-1 receptor antagonist prevents apoptosis and caspase-3 activation after spinal cord injury. J Neurotrauma 2001, 18:947–956.CrossRefPubMed Nesic O, Xu GY, McAdoo D, High KW, Hulsebosch C, Perez-Pol R: IL-1 receptor antagonist prevents apoptosis and caspase-3 activation after spinal cord injury. J Neurotrauma 2001, 18:947–956.CrossRefPubMed
33.
go back to reference Liu S, Xu GY, Johnson KM, Echetebu C, Ye ZS, Hulsebosch CE, McAdoo DJ: Regulation of interleukin-1β by the interleukin-1 receptor antagonist in the glutamate-injured spinal cord: endogenous neuroprotection. Brain Res 2008, 1231:63–74.CrossRefPubMed Liu S, Xu GY, Johnson KM, Echetebu C, Ye ZS, Hulsebosch CE, McAdoo DJ: Regulation of interleukin-1β by the interleukin-1 receptor antagonist in the glutamate-injured spinal cord: endogenous neuroprotection. Brain Res 2008, 1231:63–74.CrossRefPubMed
34.
go back to reference Perrin FE, Lacroix S, Avilés-Trigueros M, David S: Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1α and interleukin-1β in Wallerian degeneration. Brain 2005,128(Pt 4):854–866.CrossRefPubMed Perrin FE, Lacroix S, Avilés-Trigueros M, David S: Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1α and interleukin-1β in Wallerian degeneration. Brain 2005,128(Pt 4):854–866.CrossRefPubMed
35.
go back to reference Soiampornkul R, Tong L, Thangnipon W, Balazs R, Cotman CW: Interleukin-1β interferes with signal transduction induced by neurotrophin-3 in cortical neurons. Brain Res 2008, 1188:189–197.CrossRefPubMed Soiampornkul R, Tong L, Thangnipon W, Balazs R, Cotman CW: Interleukin-1β interferes with signal transduction induced by neurotrophin-3 in cortical neurons. Brain Res 2008, 1188:189–197.CrossRefPubMed
36.
go back to reference Tong L, Balazs R, Soiampornkul R, Thangnipon W, Cotman CW: Interleukin-1 beta impairs brain derived neurotrophic factor-induced signal transduction. Neurobiol Aging 2008, 29:1380–1393.CrossRefPubMed Tong L, Balazs R, Soiampornkul R, Thangnipon W, Cotman CW: Interleukin-1 beta impairs brain derived neurotrophic factor-induced signal transduction. Neurobiol Aging 2008, 29:1380–1393.CrossRefPubMed
37.
go back to reference Sung CS, Wong CS: Cellular mechanisms of neuroinflammatory pain: the role of interleukin-1beta. Acta Anaesthesiol Taiwan 2007, 45:103–109.PubMed Sung CS, Wong CS: Cellular mechanisms of neuroinflammatory pain: the role of interleukin-1beta. Acta Anaesthesiol Taiwan 2007, 45:103–109.PubMed
38.
go back to reference Sekhon LH, Fehlings MG: Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine (Phila Pa 1976) 2001,26(24 Suppl):S2-S12.CrossRef Sekhon LH, Fehlings MG: Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine (Phila Pa 1976) 2001,26(24 Suppl):S2-S12.CrossRef
39.
go back to reference Eyupoglu IY, Savaskan NE, Bräuer AU, Nitsch R, Heimrich B: Identification of neuronal cell death in a model of degeneration in the hippocampus. Brain Res Brain Res Protoc 2003, 11:1–8.CrossRefPubMed Eyupoglu IY, Savaskan NE, Bräuer AU, Nitsch R, Heimrich B: Identification of neuronal cell death in a model of degeneration in the hippocampus. Brain Res Brain Res Protoc 2003, 11:1–8.CrossRefPubMed
40.
go back to reference Wolf SA, Fisher J, Bechmann I, Steiner B, Kwidzinski E, Nitsch R: Neuroprotection by T-cells depends on their subtype and activation state. J Neuroimmunol 2002, 133:72–80.CrossRefPubMed Wolf SA, Fisher J, Bechmann I, Steiner B, Kwidzinski E, Nitsch R: Neuroprotection by T-cells depends on their subtype and activation state. J Neuroimmunol 2002, 133:72–80.CrossRefPubMed
41.
go back to reference Vidal PM, Lemmens E, Geboes L, Vangansewinkel T, Nelissen S, Hendrix S: Late blocking of peripheral TNF-α is ineffective after spinal cord injury in mice. Immunobiology 2012. Vidal PM, Lemmens E, Geboes L, Vangansewinkel T, Nelissen S, Hendrix S: Late blocking of peripheral TNF-α is ineffective after spinal cord injury in mice. Immunobiology 2012.
42.
go back to reference Prang P, Del Turco D, Kapfhammer JP: Regeneration of entorhinal fibers in mouse slice cultures is age dependent and can be stimulated by NT-4, GDNF, and modulators of G-proteins and protein kinase C. Exp Neurol 2001, 169:135–147.CrossRefPubMed Prang P, Del Turco D, Kapfhammer JP: Regeneration of entorhinal fibers in mouse slice cultures is age dependent and can be stimulated by NT-4, GDNF, and modulators of G-proteins and protein kinase C. Exp Neurol 2001, 169:135–147.CrossRefPubMed
43.
go back to reference Giulian D, Young DG, Woodward J, Brown DC, Lachman LB: Interleukin-1 is an astroglial growth factor in the developing brain. J Neurosci 1988, 8:709–714.PubMed Giulian D, Young DG, Woodward J, Brown DC, Lachman LB: Interleukin-1 is an astroglial growth factor in the developing brain. J Neurosci 1988, 8:709–714.PubMed
44.
go back to reference Herx LM, Yong VW: Interleukin-1 beta is required for the early evolution of reactive astrogliosis following CNS lesion. J Neuropathol Exp Neurol 2001, 60:961–971.CrossRefPubMed Herx LM, Yong VW: Interleukin-1 beta is required for the early evolution of reactive astrogliosis following CNS lesion. J Neuropathol Exp Neurol 2001, 60:961–971.CrossRefPubMed
Metadata
Title
Absence of IL-1β positively affects neurological outcome, lesion development and axonal plasticity after spinal cord injury
Authors
Francesco Boato
Karen Rosenberger
Sofie Nelissen
Lies Geboes
Eva M Peters
Robert Nitsch
Sven Hendrix
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2013
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-10-6

Other articles of this Issue 1/2013

Journal of Neuroinflammation 1/2013 Go to the issue