Skip to main content
Top
Published in: Journal of Translational Medicine 1/2013

Open Access 01-12-2013 | Research

Leukemia cells induce changes in human bone marrow stromal cells

Authors: Sara Civini, Ping Jin, Jiaqiang Ren, Marianna Sabatino, Luciano Castiello, Jianjian Jin, Huan Wang, Yuanlong Zhao, Francesco Marincola, David Stroncek

Published in: Journal of Translational Medicine | Issue 1/2013

Login to get access

Abstract

Background

Bone marrow stromal cells (BMSCs) are multipotent cells that support angiogenesis, wound healing, and immunomodulation. In the hematopoietic niche, they nurture hematopoietic cells, leukemia, tumors and metastasis. BMSCs secrete of a wide range of cytokines, growth factors and matrix proteins which contribute to the pro-tumorigenic marrow microenvironment. The inflammatory cytokines IFN-γ and TNF-α change the BMSC secretome and we hypothesized that factors produced by tumors or leukemia would also affect the BMSC secretome and investigated the interaction of leukemia cells with BMSCs.

Methods

BMSCs from healthy subjects were co-cultured with three myeloid leukemia cell lines (TF-1, TF-1α and K562) using a trans-well system. Following co-culture, the BMSCs and leukemia cells were analyzed by global gene expression analysis and culture supernatants were analyzed for protein expression. As a control, CD34+ cells were also cocultured with BMSCs.

Results

Co-culture induced leukemia cell gene expression changes in stem cell pluripotency, TGF-β signaling and carcinoma signaling pathways. BMSCs co-cultured with leukemia cells up-regulated a number of proinflammatory genes including IL-17 signaling-related genes and IL-8 and CCL2 levels were increased in co-culture supernatants. In contrast, purine metabolism, mTOR signaling and EIF2 signaling pathways genes were up-regulated in BMSCs co-cultured with CD34+ cells.

Conclusions

BMSCs react to the presence of leukemia cells undergoing changes in the cytokine and chemokine secretion profiles. Thus, BMSCs and leukemia cells both contribute to the creation of a competitive niche more favorable for leukemia stem cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z: The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010, 327 (5973): 1650-1653. 10.1126/science.1186624.PubMedCentralCrossRefPubMed Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z: The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010, 327 (5973): 1650-1653. 10.1126/science.1186624.PubMedCentralCrossRefPubMed
2.
go back to reference Hoang VT, Zepeda-Moreno A, Ho AD: Identification of leukemia stem cells in acute myeloid leukemia and their clinical relevance. Biotechnol J. 2012, 7 (6): 779-788. 10.1002/biot.201100350.CrossRefPubMed Hoang VT, Zepeda-Moreno A, Ho AD: Identification of leukemia stem cells in acute myeloid leukemia and their clinical relevance. Biotechnol J. 2012, 7 (6): 779-788. 10.1002/biot.201100350.CrossRefPubMed
3.
go back to reference Ashton JM, Balys M, Neering SJ, Hassane DC, Cowley G, Root DE: Gene sets identified with oncogene cooperativity analysis regulate in vivo growth and survival of leukemia stem cells. Cell Stem Cell. 2012, 11 (3): 359-372. 10.1016/j.stem.2012.05.024.PubMedCentralCrossRefPubMed Ashton JM, Balys M, Neering SJ, Hassane DC, Cowley G, Root DE: Gene sets identified with oncogene cooperativity analysis regulate in vivo growth and survival of leukemia stem cells. Cell Stem Cell. 2012, 11 (3): 359-372. 10.1016/j.stem.2012.05.024.PubMedCentralCrossRefPubMed
4.
go back to reference Ferretti E, Cocco C, Airoldi I, Pistoia V: Targeting acute myeloid leukemia cells with cytokines. J Leukoc Biol. 2012, 92 (3): 567-575. 10.1189/jlb.0112036.CrossRefPubMed Ferretti E, Cocco C, Airoldi I, Pistoia V: Targeting acute myeloid leukemia cells with cytokines. J Leukoc Biol. 2012, 92 (3): 567-575. 10.1189/jlb.0112036.CrossRefPubMed
5.
go back to reference Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL: The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia: official journal of the Leukemia Society of America. Leukemia. 2000, 14 (10): 1777-1784. 10.1038/sj.leu.2401903.CrossRefPubMed Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL: The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia: official journal of the Leukemia Society of America. Leukemia. 2000, 14 (10): 1777-1784. 10.1038/sj.leu.2401903.CrossRefPubMed
6.
go back to reference van Rhenen A, Moshaver B, Kelder A, Feller N, Nieuwint AW, Zweegman S: Aberrant marker expression patterns on the CD34+CD38- stem cell compartment in acute myeloid leukemia allows to distinguish the malignant from the normal stem cell compartment both at diagnosis and in remission. Leukemia. 2007, 21 (8): 1700-1707. 10.1038/sj.leu.2404754.CrossRefPubMed van Rhenen A, Moshaver B, Kelder A, Feller N, Nieuwint AW, Zweegman S: Aberrant marker expression patterns on the CD34+CD38- stem cell compartment in acute myeloid leukemia allows to distinguish the malignant from the normal stem cell compartment both at diagnosis and in remission. Leukemia. 2007, 21 (8): 1700-1707. 10.1038/sj.leu.2404754.CrossRefPubMed
7.
go back to reference Hosen N, Park CY, Tatsumi N, Oji Y, Sugiyama H, Gramatzki M: CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci USA. 2007, 104 (26): 11008-11013. 10.1073/pnas.0704271104.PubMedCentralCrossRefPubMed Hosen N, Park CY, Tatsumi N, Oji Y, Sugiyama H, Gramatzki M: CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci USA. 2007, 104 (26): 11008-11013. 10.1073/pnas.0704271104.PubMedCentralCrossRefPubMed
8.
go back to reference Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD: CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009, 138 (2): 286-299. 10.1016/j.cell.2009.05.045.PubMedCentralCrossRefPubMed Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD: CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009, 138 (2): 286-299. 10.1016/j.cell.2009.05.045.PubMedCentralCrossRefPubMed
9.
go back to reference Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R: CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009, 138 (2): 271-285. 10.1016/j.cell.2009.05.046.PubMedCentralCrossRefPubMed Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R: CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009, 138 (2): 271-285. 10.1016/j.cell.2009.05.046.PubMedCentralCrossRefPubMed
10.
go back to reference Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA: Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science. 2008, 322 (5909): 1861-1865. 10.1126/science.1164390.CrossRefPubMed Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA: Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science. 2008, 322 (5909): 1861-1865. 10.1126/science.1164390.CrossRefPubMed
11.
go back to reference Konopleva MY, Jordan CT: Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol. 2011, 29 (5): 591-599. 10.1200/JCO.2010.31.0904.CrossRefPubMed Konopleva MY, Jordan CT: Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol. 2011, 29 (5): 591-599. 10.1200/JCO.2010.31.0904.CrossRefPubMed
12.
go back to reference Kojima K, McQueen T, Chen Y, Jacamo R, Konopleva M, Shinojima N: p53 activation of mesenchymal stromal cells partially abrogates microenvironment-mediated resistance to FLT3 inhibition in AML through HIF-1alpha-mediated down-regulation of CXCL12. Blood. 2011, 118 (16): 4431-4439. 10.1182/blood-2011-02-334136.PubMedCentralCrossRefPubMed Kojima K, McQueen T, Chen Y, Jacamo R, Konopleva M, Shinojima N: p53 activation of mesenchymal stromal cells partially abrogates microenvironment-mediated resistance to FLT3 inhibition in AML through HIF-1alpha-mediated down-regulation of CXCL12. Blood. 2011, 118 (16): 4431-4439. 10.1182/blood-2011-02-334136.PubMedCentralCrossRefPubMed
13.
go back to reference Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O: Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 2009, 113 (24): 6215-6224. 10.1182/blood-2008-05-158311.PubMedCentralCrossRefPubMed Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O: Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 2009, 113 (24): 6215-6224. 10.1182/blood-2008-05-158311.PubMedCentralCrossRefPubMed
14.
go back to reference Tabe Y, Jin L, Iwabuchi K, Wang RY, Ichikawa N, Miida T: Role of stromal microenvironment in nonpharmacological resistance of CML to imatinib through Lyn/CXCR4 interactions in lipid rafts. Leukemia: official journal of the Leukemia Society of America. Leukemia. 2012, 26 (5): 883-892. 10.1038/leu.2011.291.CrossRefPubMed Tabe Y, Jin L, Iwabuchi K, Wang RY, Ichikawa N, Miida T: Role of stromal microenvironment in nonpharmacological resistance of CML to imatinib through Lyn/CXCR4 interactions in lipid rafts. Leukemia: official journal of the Leukemia Society of America. Leukemia. 2012, 26 (5): 883-892. 10.1038/leu.2011.291.CrossRefPubMed
15.
go back to reference Sansonetti A, Bourcier S, Durand L, Chomienne C, Smadja-Joffe F, Robert-Lezenes J: CD44 activation enhances acute monoblastic leukemia cell survival via Mcl-1 upregulation. Leuk Res. 2012, 36 (3): 358-362. 10.1016/j.leukres.2011.09.022.CrossRefPubMed Sansonetti A, Bourcier S, Durand L, Chomienne C, Smadja-Joffe F, Robert-Lezenes J: CD44 activation enhances acute monoblastic leukemia cell survival via Mcl-1 upregulation. Leuk Res. 2012, 36 (3): 358-362. 10.1016/j.leukres.2011.09.022.CrossRefPubMed
16.
17.
go back to reference Nagahisa H, Nagata Y, Ohnuki T, Osada M, Nagasawa T, Abe T: Bone marrow stromal cells produce thrombopoietin and stimulate megakaryocyte growth and maturation but suppress proplatelet formation. Blood. 1996, 87 (4): 1309-1316.PubMed Nagahisa H, Nagata Y, Ohnuki T, Osada M, Nagasawa T, Abe T: Bone marrow stromal cells produce thrombopoietin and stimulate megakaryocyte growth and maturation but suppress proplatelet formation. Blood. 1996, 87 (4): 1309-1316.PubMed
18.
go back to reference Bianco P, Robey PG, Simmons PJ: Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008, 2 (4): 313-319. 10.1016/j.stem.2008.03.002.PubMedCentralCrossRefPubMed Bianco P, Robey PG, Simmons PJ: Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008, 2 (4): 313-319. 10.1016/j.stem.2008.03.002.PubMedCentralCrossRefPubMed
19.
go back to reference Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010, 466 (7308): 829-834. 10.1038/nature09262.PubMedCentralCrossRefPubMed Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA: Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010, 466 (7308): 829-834. 10.1038/nature09262.PubMedCentralCrossRefPubMed
20.
go back to reference Nagasawa T, Omatsu Y, Sugiyama T: Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends Immunol. 2011, 32 (7): 315-320. 10.1016/j.it.2011.03.009.CrossRefPubMed Nagasawa T, Omatsu Y, Sugiyama T: Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends Immunol. 2011, 32 (7): 315-320. 10.1016/j.it.2011.03.009.CrossRefPubMed
21.
go back to reference Westerterp M, Gourion-Arsiquaud S, Murphy AJ, Shih A, Cremers S, Levine RL: Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell. 2012, 11 (2): 195-206. 10.1016/j.stem.2012.04.024.PubMedCentralCrossRefPubMed Westerterp M, Gourion-Arsiquaud S, Murphy AJ, Shih A, Cremers S, Levine RL: Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell. 2012, 11 (2): 195-206. 10.1016/j.stem.2012.04.024.PubMedCentralCrossRefPubMed
22.
go back to reference Bianco P: Minireview: The stem cell next door: skeletal and hematopoietic stem cell “niches” in bone. Endocrinology. 2011, 152 (8): 2957-2962. 10.1210/en.2011-0217.CrossRefPubMed Bianco P: Minireview: The stem cell next door: skeletal and hematopoietic stem cell “niches” in bone. Endocrinology. 2011, 152 (8): 2957-2962. 10.1210/en.2011-0217.CrossRefPubMed
23.
go back to reference Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006, 8 (4): 315-317. 10.1080/14653240600855905.CrossRefPubMed Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006, 8 (4): 315-317. 10.1080/14653240600855905.CrossRefPubMed
24.
go back to reference Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC: Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005, 7 (5): 393-395. 10.1080/14653240500319234.CrossRefPubMed Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC: Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005, 7 (5): 393-395. 10.1080/14653240500319234.CrossRefPubMed
25.
go back to reference Aggarwal S, Pittenger MF: Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005, 105 (4): 1815-1822. 10.1182/blood-2004-04-1559.CrossRefPubMed Aggarwal S, Pittenger MF: Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005, 105 (4): 1815-1822. 10.1182/blood-2004-04-1559.CrossRefPubMed
26.
go back to reference Caplan AI, Dennis JE: Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006, 98 (5): 1076-1084. 10.1002/jcb.20886.CrossRefPubMed Caplan AI, Dennis JE: Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006, 98 (5): 1076-1084. 10.1002/jcb.20886.CrossRefPubMed
27.
go back to reference Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI: Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008, 2 (2): 141-150. 10.1016/j.stem.2007.11.014.CrossRefPubMed Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI: Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008, 2 (2): 141-150. 10.1016/j.stem.2007.11.014.CrossRefPubMed
28.
go back to reference Horwitz EM, Dominici M: How do mesenchymal stromal cells exert their therapeutic benefit?. Cytotherapy. 2008, 10 (8): 771-774. 10.1080/14653240802618085.CrossRefPubMed Horwitz EM, Dominici M: How do mesenchymal stromal cells exert their therapeutic benefit?. Cytotherapy. 2008, 10 (8): 771-774. 10.1080/14653240802618085.CrossRefPubMed
29.
go back to reference Ren J, Jin P, Sabatino M, Balakumaran A, Feng J, Kuznetsov SA: Global transcriptome analysis of human bone marrow stromal cells (BMSC) reveals proliferative, mobile and interactive cells that produce abundant extracellular matrix proteins, some of which may affect BMSC potency. Cytotherapy. 2011, 13 (6): 661-674. 10.3109/14653249.2010.548379.PubMedCentralCrossRefPubMed Ren J, Jin P, Sabatino M, Balakumaran A, Feng J, Kuznetsov SA: Global transcriptome analysis of human bone marrow stromal cells (BMSC) reveals proliferative, mobile and interactive cells that produce abundant extracellular matrix proteins, some of which may affect BMSC potency. Cytotherapy. 2011, 13 (6): 661-674. 10.3109/14653249.2010.548379.PubMedCentralCrossRefPubMed
30.
go back to reference Mercier FE, Ragu C, Scadden DT: The bone marrow at the crossroads of blood and immunity. Nature reviews. Immunology. 2012, 12 (1): 49-60. Mercier FE, Ragu C, Scadden DT: The bone marrow at the crossroads of blood and immunity. Nature reviews. Immunology. 2012, 12 (1): 49-60.
31.
go back to reference Zhang W, Trachootham D, Liu J, Chen G, Pelicano H, Garcia-Prieto C: Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat Cell Biol. 2012, 14 (3): 276-286. 10.1038/ncb2432.PubMedCentralCrossRefPubMed Zhang W, Trachootham D, Liu J, Chen G, Pelicano H, Garcia-Prieto C: Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat Cell Biol. 2012, 14 (3): 276-286. 10.1038/ncb2432.PubMedCentralCrossRefPubMed
32.
33.
go back to reference Shain KH, Yarde DN, Meads MB, Huang M, Jove R, Hazlehurst LA: Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res. 2009, 69 (3): 1009-1015. 10.1158/0008-5472.CAN-08-2419.PubMedCentralCrossRefPubMed Shain KH, Yarde DN, Meads MB, Huang M, Jove R, Hazlehurst LA: Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res. 2009, 69 (3): 1009-1015. 10.1158/0008-5472.CAN-08-2419.PubMedCentralCrossRefPubMed
34.
go back to reference Bergfeld SA, DeClerck YA: Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev. 2010, 29 (2): 249-261. 10.1007/s10555-010-9222-7.CrossRefPubMed Bergfeld SA, DeClerck YA: Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev. 2010, 29 (2): 249-261. 10.1007/s10555-010-9222-7.CrossRefPubMed
35.
go back to reference Anderson KC, Carrasco RD: Pathogenesis of myeloma. Annu Rev Pathol. 2011, 6: 249-274. 10.1146/annurev-pathol-011110-130249.CrossRefPubMed Anderson KC, Carrasco RD: Pathogenesis of myeloma. Annu Rev Pathol. 2011, 6: 249-274. 10.1146/annurev-pathol-011110-130249.CrossRefPubMed
36.
go back to reference Sabatino M, Ren J, David-Ocampo V, England L, McGann M, Tran M: The establishment of a bank of stored clinical bone marrow stromal cell products. J Transl Med. 2012, 10: 23-10.1186/1479-5876-10-23.PubMedCentralCrossRefPubMed Sabatino M, Ren J, David-Ocampo V, England L, McGann M, Tran M: The establishment of a bank of stored clinical bone marrow stromal cell products. J Transl Med. 2012, 10: 23-10.1186/1479-5876-10-23.PubMedCentralCrossRefPubMed
37.
go back to reference Garrido SM, Appelbaum FR, Willman CL, Banker DE: Acute myeloid leukemia cells are protected from spontaneous and drug-induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5). Exp Hematol. 2001, 29 (4): 448-457. 10.1016/S0301-472X(01)00612-9.CrossRefPubMed Garrido SM, Appelbaum FR, Willman CL, Banker DE: Acute myeloid leukemia cells are protected from spontaneous and drug-induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5). Exp Hematol. 2001, 29 (4): 448-457. 10.1016/S0301-472X(01)00612-9.CrossRefPubMed
38.
go back to reference Weisberg E, Liu Q, Nelson E, Kung AL, Christie AL, Bronson R: Using combination therapy to override stromal-mediated chemoresistance in mutant FLT3-positive AML: synergism between FLT3 inhibitors, dasatinib/multi-targeted inhibitors and JAK inhibitors. Leukemia. 2012, 26 (10): 2233-2244. 10.1038/leu.2012.96.PubMedCentralCrossRefPubMed Weisberg E, Liu Q, Nelson E, Kung AL, Christie AL, Bronson R: Using combination therapy to override stromal-mediated chemoresistance in mutant FLT3-positive AML: synergism between FLT3 inhibitors, dasatinib/multi-targeted inhibitors and JAK inhibitors. Leukemia. 2012, 26 (10): 2233-2244. 10.1038/leu.2012.96.PubMedCentralCrossRefPubMed
39.
go back to reference Tabe Y, Jin L, Tsutsumi-Ishii Y, Xu Y, McQueen T, Priebe W: Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. Cancer Res. 2007, 67 (2): 684-694. 10.1158/0008-5472.CAN-06-3166.CrossRefPubMed Tabe Y, Jin L, Tsutsumi-Ishii Y, Xu Y, McQueen T, Priebe W: Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. Cancer Res. 2007, 67 (2): 684-694. 10.1158/0008-5472.CAN-06-3166.CrossRefPubMed
40.
go back to reference Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M: Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia. 2002, 16 (9): 1713-1724. 10.1038/sj.leu.2402608.CrossRefPubMed Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M: Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia. 2002, 16 (9): 1713-1724. 10.1038/sj.leu.2402608.CrossRefPubMed
41.
go back to reference Nefedova Y, Landowski TH, Dalton WS: Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia. 2003, 17 (6): 1175-1182. 10.1038/sj.leu.2402924.CrossRefPubMed Nefedova Y, Landowski TH, Dalton WS: Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia. 2003, 17 (6): 1175-1182. 10.1038/sj.leu.2402924.CrossRefPubMed
42.
43.
go back to reference Parmar A, Marz S, Rushton S, Holzwarth C, Lind K, Kayser S: Stromal niche cells protect early leukemic FLT3-ITD + progenitor cells against first-generation FLT3 tyrosine kinase inhibitors. Cancer Res. 2011, 71 (13): 4696-4706. 10.1158/0008-5472.CAN-10-4136.CrossRefPubMed Parmar A, Marz S, Rushton S, Holzwarth C, Lind K, Kayser S: Stromal niche cells protect early leukemic FLT3-ITD + progenitor cells against first-generation FLT3 tyrosine kinase inhibitors. Cancer Res. 2011, 71 (13): 4696-4706. 10.1158/0008-5472.CAN-10-4136.CrossRefPubMed
44.
go back to reference Reikvam H, Mosevoll KA, Melve GK, Gunther CC, Sjo M, Bentsen PT: The pretransplantation serum cytokine profile in allogeneic stem cell recipients differs from healthy individuals, and various profiles are associated with different risks of posttransplantation complications. Biol Blood Marrow Transplant. 2012, 18 (2): 190-199. 10.1016/j.bbmt.2011.10.007.CrossRefPubMed Reikvam H, Mosevoll KA, Melve GK, Gunther CC, Sjo M, Bentsen PT: The pretransplantation serum cytokine profile in allogeneic stem cell recipients differs from healthy individuals, and various profiles are associated with different risks of posttransplantation complications. Biol Blood Marrow Transplant. 2012, 18 (2): 190-199. 10.1016/j.bbmt.2011.10.007.CrossRefPubMed
45.
go back to reference Kornblau SM, McCue D, Singh N, Chen W, Estrov Z, Coombes KR: Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia. Blood. 2010, 116 (20): 4251-4261. 10.1182/blood-2010-01-262071.PubMedCentralCrossRefPubMed Kornblau SM, McCue D, Singh N, Chen W, Estrov Z, Coombes KR: Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia. Blood. 2010, 116 (20): 4251-4261. 10.1182/blood-2010-01-262071.PubMedCentralCrossRefPubMed
46.
go back to reference Burgess M, Cheung C, Chambers L, Ravindranath K, Minhas G, Knop L: CCL2 and CXCL2 enhance survival of primary chronic lymphocytic leukemia cells in vitro. Leuk Lymphoma. 2012, 53 (10): 1988-1998. 10.3109/10428194.2012.672735.CrossRefPubMed Burgess M, Cheung C, Chambers L, Ravindranath K, Minhas G, Knop L: CCL2 and CXCL2 enhance survival of primary chronic lymphocytic leukemia cells in vitro. Leuk Lymphoma. 2012, 53 (10): 1988-1998. 10.3109/10428194.2012.672735.CrossRefPubMed
47.
go back to reference Cashman JD, Eaves CJ, Sarris AH, Eaves AC: MCP-1, not MIP-1alpha, is the endogenous chemokine that cooperates with TGF-beta to inhibit the cycling of primitive normal but not leukemic (CML) progenitors in long-term human marrow cultures. Blood. 1998, 92 (7): 2338-2344.PubMed Cashman JD, Eaves CJ, Sarris AH, Eaves AC: MCP-1, not MIP-1alpha, is the endogenous chemokine that cooperates with TGF-beta to inhibit the cycling of primitive normal but not leukemic (CML) progenitors in long-term human marrow cultures. Blood. 1998, 92 (7): 2338-2344.PubMed
48.
go back to reference Broxmeyer HE, Cooper S, Cacalano G, Hague NL, Bailish E, Moore MW: Involvement of Interleukin (IL) 8 receptor in negative regulation of myeloid progenitor cells in vivo: evidence from mice lacking the murine IL-8 receptor homologue. J Exp Med. 1996, 184 (5): 1825-1832. 10.1084/jem.184.5.1825.CrossRefPubMed Broxmeyer HE, Cooper S, Cacalano G, Hague NL, Bailish E, Moore MW: Involvement of Interleukin (IL) 8 receptor in negative regulation of myeloid progenitor cells in vivo: evidence from mice lacking the murine IL-8 receptor homologue. J Exp Med. 1996, 184 (5): 1825-1832. 10.1084/jem.184.5.1825.CrossRefPubMed
49.
go back to reference Schwartz GN, Kammula U, Warren MK, Park MK, Yan XY, Marincola FM: Thrombopoietin and chemokine mRNA expression in patient post-chemotherapy and in vitro cytokine-treated marrow stromal cell layers. Stem Cells. 2000, 18( (5): 331-342.CrossRef Schwartz GN, Kammula U, Warren MK, Park MK, Yan XY, Marincola FM: Thrombopoietin and chemokine mRNA expression in patient post-chemotherapy and in vitro cytokine-treated marrow stromal cell layers. Stem Cells. 2000, 18( (5): 331-342.CrossRef
50.
go back to reference Ren J, Stroncek DF, Zhao Y, Jin P, Castiello L, Civini S: Intra-subject variability in human bone marrow stromal cell (BMSC) replicative senescence: Molecular changes associated with BMSC senescence. Stem Cell Res. 2013, 11 (3): 1060-1073. 10.1016/j.scr.2013.07.005.CrossRefPubMed Ren J, Stroncek DF, Zhao Y, Jin P, Castiello L, Civini S: Intra-subject variability in human bone marrow stromal cell (BMSC) replicative senescence: Molecular changes associated with BMSC senescence. Stem Cell Res. 2013, 11 (3): 1060-1073. 10.1016/j.scr.2013.07.005.CrossRefPubMed
51.
go back to reference Zhukareva V, Obrocka M, Houle JD, Fischer I, Neuhuber B: Secretion profile of human bone marrow stromal cells: donor variability and response to inflammatory stimuli. Cytokine. 2010, 50 (3): 317-321. 10.1016/j.cyto.2010.01.004.CrossRefPubMed Zhukareva V, Obrocka M, Houle JD, Fischer I, Neuhuber B: Secretion profile of human bone marrow stromal cells: donor variability and response to inflammatory stimuli. Cytokine. 2010, 50 (3): 317-321. 10.1016/j.cyto.2010.01.004.CrossRefPubMed
52.
go back to reference Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS: Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell. 2008, 13 (6): 483-495. 10.1016/j.ccr.2008.04.020.PubMedCentralCrossRefPubMed Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS: Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell. 2008, 13 (6): 483-495. 10.1016/j.ccr.2008.04.020.PubMedCentralCrossRefPubMed
53.
go back to reference Hole PS, Darley RL, Tonks A: Do reactive oxygen species play a role in myeloid leukemias?. Blood. 2011, 117 (22): 5816-5826. 10.1182/blood-2011-01-326025.CrossRefPubMed Hole PS, Darley RL, Tonks A: Do reactive oxygen species play a role in myeloid leukemias?. Blood. 2011, 117 (22): 5816-5826. 10.1182/blood-2011-01-326025.CrossRefPubMed
Metadata
Title
Leukemia cells induce changes in human bone marrow stromal cells
Authors
Sara Civini
Ping Jin
Jiaqiang Ren
Marianna Sabatino
Luciano Castiello
Jianjian Jin
Huan Wang
Yuanlong Zhao
Francesco Marincola
David Stroncek
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2013
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-11-298

Other articles of this Issue 1/2013

Journal of Translational Medicine 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.