Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2010

01-06-2010

Bone marrow-derived mesenchymal stem cells and the tumor microenvironment

Authors: Scott A. Bergfeld, Yves A. DeClerck

Published in: Cancer and Metastasis Reviews | Issue 2/2010

Login to get access

Abstract

Over the last decade, there has been a growing interest in the role of mesenchymal stem cells (MSC) in cancer progression. These cells have the potential to give rise to a variety of mesenchymal cells like osteoblasts, chondrocytes, adipocytes, fibroblasts, and muscle cells. In contrast to their hematopoetic counterparts, MSC are not as clearly defined, which makes the interpretation of their role in cancer progression more complex. However, the nature of the relationship between MSC and tumor cells appears dual. Primary and metastatic tumors attract MSC in their microenvironment where they become tumor-associated fibroblasts, affect tumor cell survival and angiogenesis, and have an immunomodulatory function, and vice versa in the bone marrow MSC attract tumor cells and contribute to a microenvironment that promotes osteolysis, tumor growth, survival, and drug resistance. Whether MSC are pro- or anti-tumorigenic is a subject of controversial reports that is in part explained by the complexity of their interaction with tumor cells and the large range of cytokines and growth factors they produce. The study of these interactions is a fertile ground of investigation that—as already demonstrated in the case of myeloma—should lead to novel therapeutic approaches in cancer. In this article, the biology and role of MSC in cancer is reviewed with a primary focus on bone marrow-derived MSC.
Literature
1.
go back to reference Prockop, D. J. (2009). Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Molecular Therapy, 17, 939–946.PubMedCrossRef Prockop, D. J. (2009). Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Molecular Therapy, 17, 939–946.PubMedCrossRef
2.
go back to reference Caplan, A. I. (1994). The mesengenic process. Clinics in Plastic Surgery, 21, 429–435.PubMed Caplan, A. I. (1994). The mesengenic process. Clinics in Plastic Surgery, 21, 429–435.PubMed
3.
go back to reference Valtieri, M., & Sorrentino, A. (2008). The mesenchymal stromal cell contribution to homeostasis. Journal of Cellular Physiology, 217, 296–300.PubMedCrossRef Valtieri, M., & Sorrentino, A. (2008). The mesenchymal stromal cell contribution to homeostasis. Journal of Cellular Physiology, 217, 296–300.PubMedCrossRef
4.
go back to reference Dennis, J. E., & Charbord, P. (2002). Origin and differentiation of human and murine stroma. Stem Cells, 20, 205–214.PubMedCrossRef Dennis, J. E., & Charbord, P. (2002). Origin and differentiation of human and murine stroma. Stem Cells, 20, 205–214.PubMedCrossRef
5.
go back to reference Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.PubMedCrossRef Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.PubMedCrossRef
6.
go back to reference Civin, C. I., Trischmann, T., Kadan, N. S., Davis, J., Noga, S., Cohen, K., et al. (1996). Highly purified CD34-positive cells reconstitute hematopoiesis. Journal of Clinical Oncology, 14, 2224–2233.PubMed Civin, C. I., Trischmann, T., Kadan, N. S., Davis, J., Noga, S., Cohen, K., et al. (1996). Highly purified CD34-positive cells reconstitute hematopoiesis. Journal of Clinical Oncology, 14, 2224–2233.PubMed
7.
go back to reference Shi, S., & Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. Journal of Bone and Mineral Research, 18, 696–704.PubMedCrossRef Shi, S., & Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. Journal of Bone and Mineral Research, 18, 696–704.PubMedCrossRef
8.
go back to reference Wagner, W., & Ho, A. D. (2007). Mesenchymal stem cell preparations—comparing apples and oranges. Stem Cell Reviews and Reports, 3, 239–248.PubMedCrossRef Wagner, W., & Ho, A. D. (2007). Mesenchymal stem cell preparations—comparing apples and oranges. Stem Cell Reviews and Reports, 3, 239–248.PubMedCrossRef
10.
go back to reference Friedenstein, A. J., Piatetzky-Shapiro, I. I., & Petrakova, K. V. (1966). Osteogenesis in transplants of bone marrow cells. Journal of Embryology and Experimental Morphology, 16, 381–390.PubMed Friedenstein, A. J., Piatetzky-Shapiro, I. I., & Petrakova, K. V. (1966). Osteogenesis in transplants of bone marrow cells. Journal of Embryology and Experimental Morphology, 16, 381–390.PubMed
11.
go back to reference Friedenstein, A. J., Chailakhyan, R. K., Latsinik, N. V., Panasyuk, A. F., & Keiliss-Borok, I. V. (1974). Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation, 17, 331–340.PubMedCrossRef Friedenstein, A. J., Chailakhyan, R. K., Latsinik, N. V., Panasyuk, A. F., & Keiliss-Borok, I. V. (1974). Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation, 17, 331–340.PubMedCrossRef
12.
go back to reference Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., et al. (2005). Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 7, 393–395.PubMedCrossRef Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., et al. (2005). Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 7, 393–395.PubMedCrossRef
13.
go back to reference Wagner, W., Feldmann, R. E., Jr., Seckinger, A., Maurer, M. H., Wein, F., Blake, J., et al. (2006). The heterogeneity of human mesenchymal stem cell preparations—evidence from simultaneous analysis of proteomes and transcriptomes. Experimental Hematology, 34, 536–548.PubMedCrossRef Wagner, W., Feldmann, R. E., Jr., Seckinger, A., Maurer, M. H., Wein, F., Blake, J., et al. (2006). The heterogeneity of human mesenchymal stem cell preparations—evidence from simultaneous analysis of proteomes and transcriptomes. Experimental Hematology, 34, 536–548.PubMedCrossRef
14.
go back to reference Lodie, T. A., Blickarz, C. E., Devarakonda, T. J., He, C., Dash, A. B., Clarke, J., et al. (2002). Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction. Tissue Engineering, 8, 739–751.PubMedCrossRef Lodie, T. A., Blickarz, C. E., Devarakonda, T. J., He, C., Dash, A. B., Clarke, J., et al. (2002). Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction. Tissue Engineering, 8, 739–751.PubMedCrossRef
15.
go back to reference Tropel, P., Noel, D., Platet, N., Legrand, P., Benabid, A. L., & Berger, F. (2004). Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Experimental Cell Research, 295, 395–406.PubMedCrossRef Tropel, P., Noel, D., Platet, N., Legrand, P., Benabid, A. L., & Berger, F. (2004). Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Experimental Cell Research, 295, 395–406.PubMedCrossRef
16.
go back to reference Colter, D. C., Sekiya, I., & Prockop, D. J. (2001). Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 7841–7845.PubMedCrossRef Colter, D. C., Sekiya, I., & Prockop, D. J. (2001). Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 7841–7845.PubMedCrossRef
17.
go back to reference Battula, V. L., Treml, S., Bareiss, P. M., Gieseke, F., Roelofs, H., de Zwart, P., et al. (2009). Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica, 94, 173–184.PubMedCrossRef Battula, V. L., Treml, S., Bareiss, P. M., Gieseke, F., Roelofs, H., de Zwart, P., et al. (2009). Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica, 94, 173–184.PubMedCrossRef
18.
go back to reference Kaiser, S., Hackanson, B., Follo, M., Mehlhorn, A., Geiger, K., Ihorst, G., et al. (2007). BM cells giving rise to MSC in culture have a heterogeneous CD34 and CD45 phenotype. Cytotherapy, 9, 439–450.PubMedCrossRef Kaiser, S., Hackanson, B., Follo, M., Mehlhorn, A., Geiger, K., Ihorst, G., et al. (2007). BM cells giving rise to MSC in culture have a heterogeneous CD34 and CD45 phenotype. Cytotherapy, 9, 439–450.PubMedCrossRef
19.
go back to reference Copland, I., Sharma, K., Lejeune, L., Eliopoulos, N., Stewart, D., Liu, P., et al. (2008). CD34 expression on murine marrow-derived mesenchymal stromal cells: impact on neovascularization. Experimental Hematology, 36, 93–103.PubMedCrossRef Copland, I., Sharma, K., Lejeune, L., Eliopoulos, N., Stewart, D., Liu, P., et al. (2008). CD34 expression on murine marrow-derived mesenchymal stromal cells: impact on neovascularization. Experimental Hematology, 36, 93–103.PubMedCrossRef
20.
go back to reference Conget, P. A., & Minguell, J. J. (1999). Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. Journal of Cellular Physiology, 181, 67–73.PubMedCrossRef Conget, P. A., & Minguell, J. J. (1999). Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. Journal of Cellular Physiology, 181, 67–73.PubMedCrossRef
21.
go back to reference Roche, S., Delorme, B., Oostendorp, R. A., Barbet, R., Caton, D., Noel, D., et al. (2009). Comparative proteomic analysis of human mesenchymal and embryonic stem cells: towards the definition of a mesenchymal stem cell proteomic signature. Proteomics, 9, 223–232.PubMedCrossRef Roche, S., Delorme, B., Oostendorp, R. A., Barbet, R., Caton, D., Noel, D., et al. (2009). Comparative proteomic analysis of human mesenchymal and embryonic stem cells: towards the definition of a mesenchymal stem cell proteomic signature. Proteomics, 9, 223–232.PubMedCrossRef
22.
go back to reference Kemp, K. C., Hows, J., & Donaldson, C. (2005). Bone marrow-derived mesenchymal stem cells. Leukaemia & Lymphoma, 46, 1531–1544.CrossRef Kemp, K. C., Hows, J., & Donaldson, C. (2005). Bone marrow-derived mesenchymal stem cells. Leukaemia & Lymphoma, 46, 1531–1544.CrossRef
23.
go back to reference Simmons, P. J., & Torok-Storb, B. (1991). Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood, 78, 55–62.PubMed Simmons, P. J., & Torok-Storb, B. (1991). Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood, 78, 55–62.PubMed
24.
go back to reference Jones, E., & McGonagle, D. (2008). Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford), 47, 126–131.CrossRef Jones, E., & McGonagle, D. (2008). Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford), 47, 126–131.CrossRef
25.
go back to reference Rider, D. A., Nalathamby, T., Nurcombe, V., & Cool, S. M. (2007). Selection using the alpha-1 integrin (CD49a) enhances the multipotentiality of the mesenchymal stem cell population from heterogeneous bone marrow stromal cells. Journal of Molecular Histology, 38, 449–458.PubMedCrossRef Rider, D. A., Nalathamby, T., Nurcombe, V., & Cool, S. M. (2007). Selection using the alpha-1 integrin (CD49a) enhances the multipotentiality of the mesenchymal stem cell population from heterogeneous bone marrow stromal cells. Journal of Molecular Histology, 38, 449–458.PubMedCrossRef
26.
go back to reference Stewart, K., Monk, P., Walsh, S., Jefferiss, C. M., Letchford, J., & Beresford, J. N. (2003). STRO-1, HOP-26 (CD63), CD49a and SB-10 (CD166) as markers of primitive human marrow stromal cells and their more differentiated progeny: a comparative investigation in vitro. Cell and Tissue Research, 313, 281–290.PubMedCrossRef Stewart, K., Monk, P., Walsh, S., Jefferiss, C. M., Letchford, J., & Beresford, J. N. (2003). STRO-1, HOP-26 (CD63), CD49a and SB-10 (CD166) as markers of primitive human marrow stromal cells and their more differentiated progeny: a comparative investigation in vitro. Cell and Tissue Research, 313, 281–290.PubMedCrossRef
27.
go back to reference Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276, 71–74.PubMedCrossRef Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276, 71–74.PubMedCrossRef
28.
go back to reference Izadpanah, R., Trygg, C., Patel, B., Kriedt, C., Dufour, J., Gimble, J. M., et al. (2006). Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. Journal of Cellular Biochemistry, 99, 1285–1297.PubMedCrossRef Izadpanah, R., Trygg, C., Patel, B., Kriedt, C., Dufour, J., Gimble, J. M., et al. (2006). Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. Journal of Cellular Biochemistry, 99, 1285–1297.PubMedCrossRef
29.
go back to reference Gang, E. J., Bosnakovski, D., Figueiredo, C. A., Visser, J. W., & Perlingeiro, R. C. (2007). SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood, 109, 1743–1751.PubMedCrossRef Gang, E. J., Bosnakovski, D., Figueiredo, C. A., Visser, J. W., & Perlingeiro, R. C. (2007). SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood, 109, 1743–1751.PubMedCrossRef
30.
go back to reference Mackay, A. M., Beck, S. C., Murphy, J. M., Barry, F. P., Chichester, C. O., & Pittenger, M. F. (1998). Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Engineering, 4, 415–428.PubMedCrossRef Mackay, A. M., Beck, S. C., Murphy, J. M., Barry, F. P., Chichester, C. O., & Pittenger, M. F. (1998). Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Engineering, 4, 415–428.PubMedCrossRef
31.
go back to reference Denker, A. E., Haas, A. R., Nicoll, S. B., & Tuan, R. S. (1999). Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: I. Stimulation by bone morphogenetic protein-2 in high-density micromass cultures. Differentiation, 64, 67–76.PubMedCrossRef Denker, A. E., Haas, A. R., Nicoll, S. B., & Tuan, R. S. (1999). Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: I. Stimulation by bone morphogenetic protein-2 in high-density micromass cultures. Differentiation, 64, 67–76.PubMedCrossRef
32.
go back to reference Goessler, U. R., Bieback, K., Bugert, P., Heller, T., Sadick, H., Hormann, K., et al. (2006). In vitro analysis of integrin expression during chondrogenic differentiation of mesenchymal stem cells and chondrocytes upon dedifferentiation in cell culture. International Journal of Molecular Medicine, 17, 301–307.PubMed Goessler, U. R., Bieback, K., Bugert, P., Heller, T., Sadick, H., Hormann, K., et al. (2006). In vitro analysis of integrin expression during chondrogenic differentiation of mesenchymal stem cells and chondrocytes upon dedifferentiation in cell culture. International Journal of Molecular Medicine, 17, 301–307.PubMed
33.
go back to reference Menicanin, D., Bartold, P. M., Zannettino, A. C., & Gronthos, S. (2009). Genomic profiling of mesenchymal stem cells. Stem Cell Reviews and Reports, 5, 36–50.PubMedCrossRef Menicanin, D., Bartold, P. M., Zannettino, A. C., & Gronthos, S. (2009). Genomic profiling of mesenchymal stem cells. Stem Cell Reviews and Reports, 5, 36–50.PubMedCrossRef
34.
go back to reference Rich, J. T., Rosova, I., Nolta, J. A., Myckatyn, T. M., Sandell, L. J., & McAlinden, A. (2008). Upregulation of Runx2 and Osterix during in vitro chondrogenesis of human adipose-derived stromal cells. Biochemical and Biophysical Research Communications, 372, 230–235.PubMedCrossRef Rich, J. T., Rosova, I., Nolta, J. A., Myckatyn, T. M., Sandell, L. J., & McAlinden, A. (2008). Upregulation of Runx2 and Osterix during in vitro chondrogenesis of human adipose-derived stromal cells. Biochemical and Biophysical Research Communications, 372, 230–235.PubMedCrossRef
35.
go back to reference Sekiya, I., Larson, B. L., Vuoristo, J. T., Cui, J. G., & Prockop, D. J. (2004). Adipogenic differentiation of human adult stem cells from bone marrow stroma (MSCs). Journal of Bone and Mineral Research, 19, 256–264.PubMedCrossRef Sekiya, I., Larson, B. L., Vuoristo, J. T., Cui, J. G., & Prockop, D. J. (2004). Adipogenic differentiation of human adult stem cells from bone marrow stroma (MSCs). Journal of Bone and Mineral Research, 19, 256–264.PubMedCrossRef
36.
go back to reference McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., & Chen, C. S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell, 6, 483–495.PubMedCrossRef McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., & Chen, C. S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell, 6, 483–495.PubMedCrossRef
37.
go back to reference Schilling, T., Noth, U., Klein-Hitpass, L., Jakob, F., & Schutze, N. (2007). Plasticity in adipogenesis and osteogenesis of human mesenchymal stem cells. Molecular and Cellular Endocrinology, 271, 1–17.PubMedCrossRef Schilling, T., Noth, U., Klein-Hitpass, L., Jakob, F., & Schutze, N. (2007). Plasticity in adipogenesis and osteogenesis of human mesenchymal stem cells. Molecular and Cellular Endocrinology, 271, 1–17.PubMedCrossRef
38.
go back to reference Akavia, U. D., Veinblat, O., & Benayahu, D. (2008). Comparing the transcriptional profile of mesenchymal cells to cardiac and skeletal muscle cells. Journal of Cellular Physiology, 216, 663–672.PubMedCrossRef Akavia, U. D., Veinblat, O., & Benayahu, D. (2008). Comparing the transcriptional profile of mesenchymal cells to cardiac and skeletal muscle cells. Journal of Cellular Physiology, 216, 663–672.PubMedCrossRef
39.
go back to reference Park, J. S., Chu, J. S., Cheng, C., Chen, F., Chen, D., & Li, S. (2004). Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnology and Bioengineering, 88, 359–368.PubMedCrossRef Park, J. S., Chu, J. S., Cheng, C., Chen, F., Chen, D., & Li, S. (2004). Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnology and Bioengineering, 88, 359–368.PubMedCrossRef
40.
go back to reference Ball, S. G., Shuttleworth, C. A., & Kielty, C. M. (2007). Platelet-derived growth factor receptor-alpha is a key determinant of smooth muscle alpha-actin filaments in bone marrow-derived mesenchymal stem cells. International Journal of Biochemistry and Cell Biology, 39, 379–391.PubMedCrossRef Ball, S. G., Shuttleworth, C. A., & Kielty, C. M. (2007). Platelet-derived growth factor receptor-alpha is a key determinant of smooth muscle alpha-actin filaments in bone marrow-derived mesenchymal stem cells. International Journal of Biochemistry and Cell Biology, 39, 379–391.PubMedCrossRef
41.
go back to reference Wang, E. A., Israel, D. I., Kelly, S., & Luxenberg, D. P. (1993). Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3 T3 cells. Growth Factors, 9, 57–71.PubMedCrossRef Wang, E. A., Israel, D. I., Kelly, S., & Luxenberg, D. P. (1993). Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3 T3 cells. Growth Factors, 9, 57–71.PubMedCrossRef
42.
go back to reference Chen, D., Ji, X., Harris, M. A., Feng, J. Q., Karsenty, G., Celeste, A. J., et al. (1998). Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. Developments in Cell Biology, 142, 295–305. Chen, D., Ji, X., Harris, M. A., Feng, J. Q., Karsenty, G., Celeste, A. J., et al. (1998). Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. Developments in Cell Biology, 142, 295–305.
43.
go back to reference Liu, Z., Tang, Y., Qiu, T., Cao, X., & Clemens, T. L. (2006). A dishevelled-1/Smad1 interaction couples WNT and bone morphogenetic protein signaling pathways in uncommitted bone marrow stromal cells. Journal of Biological Chemistry, 281, 17156–17163.PubMedCrossRef Liu, Z., Tang, Y., Qiu, T., Cao, X., & Clemens, T. L. (2006). A dishevelled-1/Smad1 interaction couples WNT and bone morphogenetic protein signaling pathways in uncommitted bone marrow stromal cells. Journal of Biological Chemistry, 281, 17156–17163.PubMedCrossRef
44.
go back to reference Locklin, R. M., Oreffo, R. O., & Triffitt, J. T. (1999). Effects of TGFbeta and bFGF on the differentiation of human bone marrow stromal fibroblasts. Cell Biology International, 23, 185–194.PubMedCrossRef Locklin, R. M., Oreffo, R. O., & Triffitt, J. T. (1999). Effects of TGFbeta and bFGF on the differentiation of human bone marrow stromal fibroblasts. Cell Biology International, 23, 185–194.PubMedCrossRef
45.
go back to reference Jian, H., Shen, X., Liu, I., Semenov, M., He, X., & Wang, X. F. (2006). Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes and Development, 20, 666–674.PubMedCrossRef Jian, H., Shen, X., Liu, I., Semenov, M., He, X., & Wang, X. F. (2006). Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes and Development, 20, 666–674.PubMedCrossRef
46.
go back to reference Maeda, S., Hayashi, M., Komiya, S., Imamura, T., & Miyazono, K. (2004). Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO Journal, 23, 552–563.PubMedCrossRef Maeda, S., Hayashi, M., Komiya, S., Imamura, T., & Miyazono, K. (2004). Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO Journal, 23, 552–563.PubMedCrossRef
47.
go back to reference Roelen, B. A., & Dijke, P. (2003). Controlling mesenchymal stem cell differentiation by TGFBeta family members. Journal of Orthopaedic Science, 8, 740–748.PubMedCrossRef Roelen, B. A., & Dijke, P. (2003). Controlling mesenchymal stem cell differentiation by TGFBeta family members. Journal of Orthopaedic Science, 8, 740–748.PubMedCrossRef
48.
go back to reference Gazit, D., Zilberman, Y., Turgeman, G., Zhou, S., & Kahn, A. (1999). Recombinant TGF-beta1 stimulates bone marrow osteoprogenitor cell activity and bone matrix synthesis in osteopenic, old male mice. Journal of Cellular Biochemistry, 73, 379–389.PubMedCrossRef Gazit, D., Zilberman, Y., Turgeman, G., Zhou, S., & Kahn, A. (1999). Recombinant TGF-beta1 stimulates bone marrow osteoprogenitor cell activity and bone matrix synthesis in osteopenic, old male mice. Journal of Cellular Biochemistry, 73, 379–389.PubMedCrossRef
49.
go back to reference Walsh, S., Jefferiss, C., Stewart, K., & Beresford, J. N. (2003). TGFbeta1 limits the expansion of the osteoprogenitor fraction in cultures of human bone marrow stromal cells. Cell and Tissue Research, 311, 187–198.PubMed Walsh, S., Jefferiss, C., Stewart, K., & Beresford, J. N. (2003). TGFbeta1 limits the expansion of the osteoprogenitor fraction in cultures of human bone marrow stromal cells. Cell and Tissue Research, 311, 187–198.PubMed
50.
go back to reference Ling, L., Nurcombe, V., & Cool, S. M. (2009). Wnt signaling controls the fate of mesenchymal stem cells. Gene, 433, 1–7.PubMedCrossRef Ling, L., Nurcombe, V., & Cool, S. M. (2009). Wnt signaling controls the fate of mesenchymal stem cells. Gene, 433, 1–7.PubMedCrossRef
51.
go back to reference Boland, G. M., Perkins, G., Hall, D. J., & Tuan, R. S. (2004). Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. Journal of Cellular Biochemistry, 93, 1210–1230.PubMedCrossRef Boland, G. M., Perkins, G., Hall, D. J., & Tuan, R. S. (2004). Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. Journal of Cellular Biochemistry, 93, 1210–1230.PubMedCrossRef
52.
go back to reference Baksh, D., Boland, G. M., & Tuan, R. S. (2007). Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. Journal of Cellular Biochemistry, 101, 1109–1124.PubMedCrossRef Baksh, D., Boland, G. M., & Tuan, R. S. (2007). Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. Journal of Cellular Biochemistry, 101, 1109–1124.PubMedCrossRef
53.
go back to reference De Boer, J., Wang, H. J., & Van Blitterswijk, C. (2004). Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Engineering, 10, 393–401.PubMedCrossRef De Boer, J., Wang, H. J., & Van Blitterswijk, C. (2004). Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Engineering, 10, 393–401.PubMedCrossRef
54.
go back to reference Eijken, M., Meijer, I. M., Westbroek, I., Koedam, M., Chiba, H., Uitterlinden, A. G., et al. (2008). Wnt signaling acts and is regulated in a human osteoblast differentiation dependent manner. Journal of Cellular Biochemistry, 104, 568–579.PubMedCrossRef Eijken, M., Meijer, I. M., Westbroek, I., Koedam, M., Chiba, H., Uitterlinden, A. G., et al. (2008). Wnt signaling acts and is regulated in a human osteoblast differentiation dependent manner. Journal of Cellular Biochemistry, 104, 568–579.PubMedCrossRef
55.
go back to reference Lee, H., Herrmann, A., Deng, J. H., Kujawski, M., Niu, G., Li, Z., et al. (2009). Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell, 15, 283–293.PubMedCrossRef Lee, H., Herrmann, A., Deng, J. H., Kujawski, M., Niu, G., Li, Z., et al. (2009). Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell, 15, 283–293.PubMedCrossRef
56.
go back to reference Hartmann, C., & Tabin, C. J. (2000). Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development, 127, 3141–3159.PubMed Hartmann, C., & Tabin, C. J. (2000). Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development, 127, 3141–3159.PubMed
57.
go back to reference Bergwitz, C., Wendlandt, T., Kispert, A., & Brabant, G. (2001). Wnts differentially regulate colony growth and differentiation of chondrogenic rat calvaria cells. Biochimica et Biophysica Acta, 1538, 129–140.PubMed Bergwitz, C., Wendlandt, T., Kispert, A., & Brabant, G. (2001). Wnts differentially regulate colony growth and differentiation of chondrogenic rat calvaria cells. Biochimica et Biophysica Acta, 1538, 129–140.PubMed
58.
go back to reference Tuli, R., Tuli, S., Nandi, S., Huang, X., Manner, P. A., Hozack, W. J., et al. (2003). Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. Journal of Biological Chemistry, 278, 41227–41236.PubMedCrossRef Tuli, R., Tuli, S., Nandi, S., Huang, X., Manner, P. A., Hozack, W. J., et al. (2003). Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. Journal of Biological Chemistry, 278, 41227–41236.PubMedCrossRef
59.
go back to reference Ridgeway, A. G., Petropoulos, H., Wilton, S., & Skerjanc, I. S. (2000). Wnt signaling regulates the function of MyoD and myogenin. Journal of Biological Chemistry, 275, 32398–32405.PubMedCrossRef Ridgeway, A. G., Petropoulos, H., Wilton, S., & Skerjanc, I. S. (2000). Wnt signaling regulates the function of MyoD and myogenin. Journal of Biological Chemistry, 275, 32398–32405.PubMedCrossRef
60.
go back to reference Suzawa, M., Takada, I., Yanagisawa, J., Ohtake, F., Ogawa, S., Yamauchi, T., et al. (2003). Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nature Cell Biology, 5, 224–230.PubMedCrossRef Suzawa, M., Takada, I., Yanagisawa, J., Ohtake, F., Ogawa, S., Yamauchi, T., et al. (2003). Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nature Cell Biology, 5, 224–230.PubMedCrossRef
61.
go back to reference Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells, 25, 2896–2902.PubMedCrossRef Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells, 25, 2896–2902.PubMedCrossRef
62.
go back to reference Reyes, M., Lund, T., Lenvik, T., Aguiar, D., Koodie, L., & Verfaillie, C. M. (2001). Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood, 98, 2615–2625.PubMedCrossRef Reyes, M., Lund, T., Lenvik, T., Aguiar, D., Koodie, L., & Verfaillie, C. M. (2001). Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood, 98, 2615–2625.PubMedCrossRef
63.
go back to reference Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41–49.PubMedCrossRef Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41–49.PubMedCrossRef
64.
go back to reference Shiota, M., Heike, T., Haruyama, M., Baba, S., Tsuchiya, A., Fujino, H., et al. (2007). Isolation and characterization of bone marrow-derived mesenchymal progenitor cells with myogenic and neuronal properties. Experimental Cell Research, 313, 1008–1023.PubMedCrossRef Shiota, M., Heike, T., Haruyama, M., Baba, S., Tsuchiya, A., Fujino, H., et al. (2007). Isolation and characterization of bone marrow-derived mesenchymal progenitor cells with myogenic and neuronal properties. Experimental Cell Research, 313, 1008–1023.PubMedCrossRef
65.
go back to reference Hall, B., Andreeff, M., & Marini, F. (2007). The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handbook of Experimental Pharmacology, 263-283. Hall, B., Andreeff, M., & Marini, F. (2007). The participation of mesenchymal stem cells in tumor stroma formation and their application as targeted-gene delivery vehicles. Handbook of Experimental Pharmacology, 263-283.
66.
go back to reference Wu, X., Hu, J., Zhou, L., Mao, Y., Yang, B., Gao, L., et al. (2008). In vivo tracking of superparamagnetic iron oxide nanoparticle-labeled mesenchymal stem cell tropism to malignant gliomas using magnetic resonance imaging. Laboratory investigation. Journal of Neurosurgery, 108, 320–329.PubMedCrossRef Wu, X., Hu, J., Zhou, L., Mao, Y., Yang, B., Gao, L., et al. (2008). In vivo tracking of superparamagnetic iron oxide nanoparticle-labeled mesenchymal stem cell tropism to malignant gliomas using magnetic resonance imaging. Laboratory investigation. Journal of Neurosurgery, 108, 320–329.PubMedCrossRef
67.
go back to reference Hung, S. C., Deng, W. P., Yang, W. K., Liu, R. S., Lee, C. C., Su, T. C., et al. (2005). Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clinical Cancer Research, 11, 7749–7756.PubMedCrossRef Hung, S. C., Deng, W. P., Yang, W. K., Liu, R. S., Lee, C. C., Su, T. C., et al. (2005). Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clinical Cancer Research, 11, 7749–7756.PubMedCrossRef
68.
go back to reference Kidd, S., Spaeth, E., Dembinski, J. L., Dietrich, M., Watson, K., Klopp, A., et al. (2009). Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells, 27, 2614–2623.PubMedCrossRef Kidd, S., Spaeth, E., Dembinski, J. L., Dietrich, M., Watson, K., Klopp, A., et al. (2009). Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells, 27, 2614–2623.PubMedCrossRef
69.
go back to reference Ishii, G., Sangai, T., Oda, T., Aoyagi, Y., Hasebe, T., Kanomata, N., et al. (2003). Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochemical and Biophysical Research Communications, 309, 232–240.PubMedCrossRef Ishii, G., Sangai, T., Oda, T., Aoyagi, Y., Hasebe, T., Kanomata, N., et al. (2003). Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochemical and Biophysical Research Communications, 309, 232–240.PubMedCrossRef
70.
go back to reference Direkze, N. C., Hodivala-Dilke, K., Jeffery, R., Hunt, T., Poulsom, R., Oukrif, D., et al. (2004). Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Research, 64, 8492–8495.PubMedCrossRef Direkze, N. C., Hodivala-Dilke, K., Jeffery, R., Hunt, T., Poulsom, R., Oukrif, D., et al. (2004). Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Research, 64, 8492–8495.PubMedCrossRef
71.
go back to reference Schichor, C., Birnbaum, T., Etminan, N., Schnell, O., Grau, S., Miebach, S., et al. (2006). Vascular endothelial growth factor a contributes to glioma-induced migration of human marrow stromal cells (hMSC). Experimental Neurology, 199, 301–310.PubMedCrossRef Schichor, C., Birnbaum, T., Etminan, N., Schnell, O., Grau, S., Miebach, S., et al. (2006). Vascular endothelial growth factor a contributes to glioma-induced migration of human marrow stromal cells (hMSC). Experimental Neurology, 199, 301–310.PubMedCrossRef
72.
go back to reference Birnbaum, T., Roider, J., Schankin, C. J., Padovan, C. S., Schichor, C., Goldbrunner, R., et al. (2007). Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. Journal of Neuro-Oncology, 83, 241–247.PubMedCrossRef Birnbaum, T., Roider, J., Schankin, C. J., Padovan, C. S., Schichor, C., Goldbrunner, R., et al. (2007). Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. Journal of Neuro-Oncology, 83, 241–247.PubMedCrossRef
73.
go back to reference Feng, B., & Chen, L. (2009). Review of mesenchymal stem cells and tumors: executioner or coconspirator? Cancer Biotherapy & Radiopharmaceuticals, 24, 717–721.CrossRef Feng, B., & Chen, L. (2009). Review of mesenchymal stem cells and tumors: executioner or coconspirator? Cancer Biotherapy & Radiopharmaceuticals, 24, 717–721.CrossRef
74.
go back to reference Spaeth, E., Klopp, A., Dembinski, J., Andreeff, M., & Marini, F. (2008). Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Therapy, 15, 730–738.PubMedCrossRef Spaeth, E., Klopp, A., Dembinski, J., Andreeff, M., & Marini, F. (2008). Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Therapy, 15, 730–738.PubMedCrossRef
75.
go back to reference Dwyer, R. M., Potter-Beirne, S. M., Harrington, K. A., Lowery, A. J., Hennessy, E., Murphy, J. M., et al. (2007). Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clinical Cancer Research, 13, 5020–5027.PubMedCrossRef Dwyer, R. M., Potter-Beirne, S. M., Harrington, K. A., Lowery, A. J., Hennessy, E., Murphy, J. M., et al. (2007). Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clinical Cancer Research, 13, 5020–5027.PubMedCrossRef
76.
go back to reference Xu, W. T., Bian, Z. Y., Fan, Q. M., Li, G., & Tang, T. T. (2009). Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. Cancer Letters, 281, 32–41.PubMedCrossRef Xu, W. T., Bian, Z. Y., Fan, Q. M., Li, G., & Tang, T. T. (2009). Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis. Cancer Letters, 281, 32–41.PubMedCrossRef
77.
go back to reference Hara, M., Murakami, T., & Kobayashi, E. (2008). In vivo bioimaging using photogenic rats: fate of injected bone marrow-derived mesenchymal stromal cells. Journal of Autoimmunity, 30, 163–171.PubMedCrossRef Hara, M., Murakami, T., & Kobayashi, E. (2008). In vivo bioimaging using photogenic rats: fate of injected bone marrow-derived mesenchymal stromal cells. Journal of Autoimmunity, 30, 163–171.PubMedCrossRef
78.
go back to reference Wynn, R. F., Hart, C. A., Corradi-Perini, C., O'Neill, L., Evans, C. A., Wraith, J. E., et al. (2004). A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 104, 2643–2645.PubMedCrossRef Wynn, R. F., Hart, C. A., Corradi-Perini, C., O'Neill, L., Evans, C. A., Wraith, J. E., et al. (2004). A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 104, 2643–2645.PubMedCrossRef
79.
go back to reference Gutova, M., Najbauer, J., Frank, R. T., Kendall, S. E., Gevorgyan, A., Metz, M. Z., et al. (2008). Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells, 26, 1406–1413.PubMedCrossRef Gutova, M., Najbauer, J., Frank, R. T., Kendall, S. E., Gevorgyan, A., Metz, M. Z., et al. (2008). Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells, 26, 1406–1413.PubMedCrossRef
80.
go back to reference Ho, I. A., Chan, K. Y., Ng, W. H., Guo, C. M., Hui, K. M., Cheang, P., et al. (2009). Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells, 27, 1366–1375.PubMedCrossRef Ho, I. A., Chan, K. Y., Ng, W. H., Guo, C. M., Hui, K. M., Cheang, P., et al. (2009). Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells, 27, 1366–1375.PubMedCrossRef
81.
go back to reference Dvorak, H. F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. New England Journal of Medicine, 315, 1650–1659.PubMed Dvorak, H. F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. New England Journal of Medicine, 315, 1650–1659.PubMed
82.
go back to reference Kidd, S., Spaeth, E., Klopp, A., Andreeff, M., Hall, B., & Marini, F. C. (2008). The (in) auspicious role of mesenchymal stromal cells in cancer: be it friend or foe. Cytotherapy, 10, 657–667.PubMedCrossRef Kidd, S., Spaeth, E., Klopp, A., Andreeff, M., Hall, B., & Marini, F. C. (2008). The (in) auspicious role of mesenchymal stromal cells in cancer: be it friend or foe. Cytotherapy, 10, 657–667.PubMedCrossRef
83.
go back to reference Spaeth, E. L., Dembinski, J. L., Sasser, A. K., Watson, K., Klopp, A., Hall, B., et al. (2009). Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE, 4, e4992.PubMedCrossRef Spaeth, E. L., Dembinski, J. L., Sasser, A. K., Watson, K., Klopp, A., Hall, B., et al. (2009). Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE, 4, e4992.PubMedCrossRef
84.
go back to reference Mishra, P. J., Mishra, P. J., Humeniuk, R., Medina, D. J., Alexe, G., Mesirov, J. P., et al. (2008). Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Research, 68, 4331–4339.PubMedCrossRef Mishra, P. J., Mishra, P. J., Humeniuk, R., Medina, D. J., Alexe, G., Mesirov, J. P., et al. (2008). Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Research, 68, 4331–4339.PubMedCrossRef
85.
go back to reference Coffelt, S. B., Marini, F. C., Watson, K., Zwezdaryk, K. J., Dembinski, J. L., LaMarca, H. L., et al. (2009). The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 3806–3811.PubMedCrossRef Coffelt, S. B., Marini, F. C., Watson, K., Zwezdaryk, K. J., Dembinski, J. L., LaMarca, H. L., et al. (2009). The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 3806–3811.PubMedCrossRef
86.
go back to reference Khakoo, A. Y., Pati, S., Anderson, S. A., Reid, W., Elshal, M. F., Rovira, I. I., et al. (2006). Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. Journal of Experimental Medicine, 203, 1235–1247.PubMedCrossRef Khakoo, A. Y., Pati, S., Anderson, S. A., Reid, W., Elshal, M. F., Rovira, I. I., et al. (2006). Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. Journal of Experimental Medicine, 203, 1235–1247.PubMedCrossRef
87.
go back to reference Soria, G., & Ben Baruch, A. (2008). The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Letters, 267, 271–285.PubMedCrossRef Soria, G., & Ben Baruch, A. (2008). The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Letters, 267, 271–285.PubMedCrossRef
88.
go back to reference Zhu, W., Xu, W., Jiang, R., Qian, H., Chen, M., Hu, J., et al. (2006). Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Experimental and Molecular Pathology, 80, 267–274.PubMedCrossRef Zhu, W., Xu, W., Jiang, R., Qian, H., Chen, M., Hu, J., et al. (2006). Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Experimental and Molecular Pathology, 80, 267–274.PubMedCrossRef
89.
go back to reference Wang, H., Cao, F., De, A., Cao, Y., Contag, C., Gambhir, S. S., et al. (2009). Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells, 27, 1548–1558.PubMedCrossRef Wang, H., Cao, F., De, A., Cao, Y., Contag, C., Gambhir, S. S., et al. (2009). Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells, 27, 1548–1558.PubMedCrossRef
90.
go back to reference Galie, M., Konstantinidou, G., Peroni, D., Scambi, I., Marchini, C., Lisi, V., et al. (2008). Mesenchymal stem cells share molecular signature with mesenchymal tumor cells and favor early tumor growth in syngeneic mice. Oncogene, 27, 2542–2551.PubMedCrossRef Galie, M., Konstantinidou, G., Peroni, D., Scambi, I., Marchini, C., Lisi, V., et al. (2008). Mesenchymal stem cells share molecular signature with mesenchymal tumor cells and favor early tumor growth in syngeneic mice. Oncogene, 27, 2542–2551.PubMedCrossRef
91.
go back to reference Tabe, Y., Konopleva, M., Munsell, M. F., Marini, F. C., Zompetta, C., McQueen, T., et al. (2004). PML-RARalpha is associated with leptin-receptor induction: the role of mesenchymal stem cell-derived adipocytes in APL cell survival. Blood, 103, 1815–1822.PubMedCrossRef Tabe, Y., Konopleva, M., Munsell, M. F., Marini, F. C., Zompetta, C., McQueen, T., et al. (2004). PML-RARalpha is associated with leptin-receptor induction: the role of mesenchymal stem cell-derived adipocytes in APL cell survival. Blood, 103, 1815–1822.PubMedCrossRef
92.
go back to reference Lanza, C., Morando, S., Voci, A., Canesi, L., Principato, M. C., Serpero, L. D., et al. (2009). Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. Journal of Neurochemistry, 110, 1674–1684.PubMedCrossRef Lanza, C., Morando, S., Voci, A., Canesi, L., Principato, M. C., Serpero, L. D., et al. (2009). Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. Journal of Neurochemistry, 110, 1674–1684.PubMedCrossRef
93.
go back to reference Sun, B., Roh, K. H., Park, J. R., Lee, S. R., Park, S. B., Jung, J. W., et al. (2009). Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy, 11(289–98), 1. Sun, B., Roh, K. H., Park, J. R., Lee, S. R., Park, S. B., Jung, J. W., et al. (2009). Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy, 11(289–98), 1.
94.
go back to reference Lu, Y. R., Yuan, Y., Wang, X. J., Wei, L. L., Chen, Y. N., Cong, C., et al. (2008). The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biology & Therapy, 7, 245–251. Lu, Y. R., Yuan, Y., Wang, X. J., Wei, L. L., Chen, Y. N., Cong, C., et al. (2008). The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biology & Therapy, 7, 245–251.
95.
go back to reference Wang, Y., Crisostomo, P. R., Wang, M., Markel, T. A., Novotny, N. M., & Meldrum, D. R. (2008). TGF-alpha increases human mesenchymal stem cell-secreted VEGF by MEK- and PI3-K- but not JNK- or ERK-dependent mechanisms. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 295, R1115–R1123.PubMed Wang, Y., Crisostomo, P. R., Wang, M., Markel, T. A., Novotny, N. M., & Meldrum, D. R. (2008). TGF-alpha increases human mesenchymal stem cell-secreted VEGF by MEK- and PI3-K- but not JNK- or ERK-dependent mechanisms. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 295, R1115–R1123.PubMed
96.
go back to reference Lee, D. C., Fenton, S. E., Berkowitz, E. A., & Hissong, M. A. (1995). Transforming growth factor alpha: expression, regulation, and biological activities. Pharmacological Reviews, 47, 51–85.PubMed Lee, D. C., Fenton, S. E., Berkowitz, E. A., & Hissong, M. A. (1995). Transforming growth factor alpha: expression, regulation, and biological activities. Pharmacological Reviews, 47, 51–85.PubMed
97.
go back to reference Beckermann, B. M., Kallifatidis, G., Groth, A., Frommhold, D., Apel, A., Mattern, J., et al. (2008). VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. British Journal of Cancer, 99, 622–631.PubMedCrossRef Beckermann, B. M., Kallifatidis, G., Groth, A., Frommhold, D., Apel, A., Mattern, J., et al. (2008). VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. British Journal of Cancer, 99, 622–631.PubMedCrossRef
98.
go back to reference Rajantie, I., Ilmonen, M., Alminaite, A., Ozerdem, U., Alitalo, K., & Salven, P. (2004). Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood, 104, 2084–2086.PubMedCrossRef Rajantie, I., Ilmonen, M., Alminaite, A., Ozerdem, U., Alitalo, K., & Salven, P. (2004). Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood, 104, 2084–2086.PubMedCrossRef
99.
go back to reference Al Khaldi, A., Eliopoulos, N., Martineau, D., Lejeune, L., Lachapelle, K., & Galipeau, J. (2003). Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Therapy, 10, 621–629.PubMedCrossRef Al Khaldi, A., Eliopoulos, N., Martineau, D., Lejeune, L., Lachapelle, K., & Galipeau, J. (2003). Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Therapy, 10, 621–629.PubMedCrossRef
100.
go back to reference Otsu, K., Das, S., Houser, S. D., Quadri, S. K., Bhattacharya, S., & Bhattacharya, J. (2009). Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood, 113, 4197–4205.PubMedCrossRef Otsu, K., Das, S., Houser, S. D., Quadri, S. K., Bhattacharya, S., & Bhattacharya, J. (2009). Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood, 113, 4197–4205.PubMedCrossRef
101.
go back to reference Sotiropoulou, P. A., & Papamichail, M. (2007). Immune properties of mesenchymal stem cells. Methods in Molecular Biology, 407, 225–243.PubMedCrossRef Sotiropoulou, P. A., & Papamichail, M. (2007). Immune properties of mesenchymal stem cells. Methods in Molecular Biology, 407, 225–243.PubMedCrossRef
102.
go back to reference Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.PubMedCrossRef Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.PubMedCrossRef
103.
go back to reference Plumas, J., Chaperot, L., Richard, M. J., Molens, J. P., Bensa, J. C., & Favrot, M. C. (2005). Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia, 19, 1597–1604.PubMedCrossRef Plumas, J., Chaperot, L., Richard, M. J., Molens, J. P., Bensa, J. C., & Favrot, M. C. (2005). Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia, 19, 1597–1604.PubMedCrossRef
104.
go back to reference Rutella, S., Danese, S., & Leone, G. (2006). Tolerogenic dendritic cells: cytokine modulation comes of age. Blood, 108, 1435–1440.PubMedCrossRef Rutella, S., Danese, S., & Leone, G. (2006). Tolerogenic dendritic cells: cytokine modulation comes of age. Blood, 108, 1435–1440.PubMedCrossRef
105.
go back to reference Corcione, A., Benvenuto, F., Ferretti, E., Giunti, D., Cappiello, V., Cazzanti, F., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107, 367–372.PubMedCrossRef Corcione, A., Benvenuto, F., Ferretti, E., Giunti, D., Cappiello, V., Cazzanti, F., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107, 367–372.PubMedCrossRef
106.
go back to reference Prevosto, C., Zancolli, M., Canevali, P., Zocchi, M. R., & Poggi, A. (2007). Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell–lymphocyte interaction. Haematologica, 92, 881–888.PubMedCrossRef Prevosto, C., Zancolli, M., Canevali, P., Zocchi, M. R., & Poggi, A. (2007). Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell–lymphocyte interaction. Haematologica, 92, 881–888.PubMedCrossRef
107.
go back to reference Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., et al. (2003). Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102, 3837–3844.PubMedCrossRef Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., et al. (2003). Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102, 3837–3844.PubMedCrossRef
108.
go back to reference Nauta, A. J., & Fibbe, W. E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110, 3499–3506.PubMedCrossRef Nauta, A. J., & Fibbe, W. E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110, 3499–3506.PubMedCrossRef
109.
go back to reference Koc, O. N., Gerson, S. L., Cooper, B. W., Dyhouse, S. M., Haynesworth, S. E., Caplan, A. I., et al. (2000). Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Journal of Clinical Oncology, 18, 307–316.PubMed Koc, O. N., Gerson, S. L., Cooper, B. W., Dyhouse, S. M., Haynesworth, S. E., Caplan, A. I., et al. (2000). Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Journal of Clinical Oncology, 18, 307–316.PubMed
110.
go back to reference Lazarus, H. M., Koc, O. N., Devine, S. M., Curtin, P., Maziarz, R. T., Holland, H. K., et al. (2005). Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of Blood and Marrow Transplantation, 11, 389–398.PubMedCrossRef Lazarus, H. M., Koc, O. N., Devine, S. M., Curtin, P., Maziarz, R. T., Holland, H. K., et al. (2005). Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of Blood and Marrow Transplantation, 11, 389–398.PubMedCrossRef
111.
go back to reference Ning, H., Yang, F., Jiang, M., Hu, L., Feng, K., Zhang, J., et al. (2008). The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia, 22, 593–599.PubMedCrossRef Ning, H., Yang, F., Jiang, M., Hu, L., Feng, K., Zhang, J., et al. (2008). The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia, 22, 593–599.PubMedCrossRef
112.
go back to reference Loebinger, M. R., Kyrtatos, P. G., Turmaine, M., Price, A. N., Pankhurst, Q., Lythgoe, M. F., et al. (2009). Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Research, 69, 8862–8867.PubMedCrossRef Loebinger, M. R., Kyrtatos, P. G., Turmaine, M., Price, A. N., Pankhurst, Q., Lythgoe, M. F., et al. (2009). Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Research, 69, 8862–8867.PubMedCrossRef
113.
go back to reference Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449, 557–563.PubMedCrossRef Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449, 557–563.PubMedCrossRef
114.
go back to reference Burger, J. A., & Kipps, T. J. (2002). Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells. Leukaemia & Lymphoma, 43, 461–466.CrossRef Burger, J. A., & Kipps, T. J. (2002). Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells. Leukaemia & Lymphoma, 43, 461–466.CrossRef
115.
go back to reference Molloy, A. P., Martin, F. T., Dwyer, R. M., Griffin, T. P., Murphy, M., Barry, F. P., et al. (2009). Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. International Journal of Cancer, 124, 326–332.CrossRef Molloy, A. P., Martin, F. T., Dwyer, R. M., Griffin, T. P., Murphy, M., Barry, F. P., et al. (2009). Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. International Journal of Cancer, 124, 326–332.CrossRef
116.
go back to reference Urashima, M., Chen, B. P., Chen, S., Pinkus, G. S., Bronson, R. T., Dedera, D. A., et al. (1997). The development of a model for the homing of multiple myeloma cells to human bone marrow. Blood, 90, 754–765.PubMed Urashima, M., Chen, B. P., Chen, S., Pinkus, G. S., Bronson, R. T., Dedera, D. A., et al. (1997). The development of a model for the homing of multiple myeloma cells to human bone marrow. Blood, 90, 754–765.PubMed
117.
go back to reference Cook, G., Dumbar, M., & Franklin, I. M. (1997). The role of adhesion molecules in multiple myeloma. Acta Haematologica, 97, 81–89.PubMedCrossRef Cook, G., Dumbar, M., & Franklin, I. M. (1997). The role of adhesion molecules in multiple myeloma. Acta Haematologica, 97, 81–89.PubMedCrossRef
118.
go back to reference Uchiyama, H., Barut, B. A., Chauhan, D., Cannistra, S. A., & Anderson, K. C. (1992). Characterization of adhesion molecules on human myeloma cell lines. Blood, 80, 2306–2314.PubMed Uchiyama, H., Barut, B. A., Chauhan, D., Cannistra, S. A., & Anderson, K. C. (1992). Characterization of adhesion molecules on human myeloma cell lines. Blood, 80, 2306–2314.PubMed
119.
go back to reference Faid, L., Van, R. I., De Waele, M., Facon, T., Schots, R., Lacor, P., et al. (1996). Adhesive interactions between tumour cells and bone marrow stromal elements in human multiple myeloma. European Journal of Haematology, 57, 349–358.PubMedCrossRef Faid, L., Van, R. I., De Waele, M., Facon, T., Schots, R., Lacor, P., et al. (1996). Adhesive interactions between tumour cells and bone marrow stromal elements in human multiple myeloma. European Journal of Haematology, 57, 349–358.PubMedCrossRef
120.
go back to reference Thomas, X., Anglaret, B., Magaud, J. P., Epstein, J., & Archimbaud, E. (1998). Interdependence between cytokines and cell adhesion molecules to induce interleukin-6 production by stromal cells in myeloma. Leukaemia & Lymphoma, 32, 107–119. Thomas, X., Anglaret, B., Magaud, J. P., Epstein, J., & Archimbaud, E. (1998). Interdependence between cytokines and cell adhesion molecules to induce interleukin-6 production by stromal cells in myeloma. Leukaemia & Lymphoma, 32, 107–119.
121.
go back to reference Michigami, T., Shimizu, N., Williams, P. J., Niewolna, M., Dallas, S. L., Mundy, G. R., et al. (2000). Cell–cell contact between marrow stromal cells and myeloma cells via VCAM-1 and alpha(4)beta(1)-integrin enhances production of osteoclast-stimulating activity. Blood, 96, 1953–1960.PubMed Michigami, T., Shimizu, N., Williams, P. J., Niewolna, M., Dallas, S. L., Mundy, G. R., et al. (2000). Cell–cell contact between marrow stromal cells and myeloma cells via VCAM-1 and alpha(4)beta(1)-integrin enhances production of osteoclast-stimulating activity. Blood, 96, 1953–1960.PubMed
122.
go back to reference Damiano, J. S., Cress, A. E., Hazlehurst, L. A., Shtil, A. A., & Dalton, W. S. (1999). Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood, 93, 1658–1667.PubMed Damiano, J. S., Cress, A. E., Hazlehurst, L. A., Shtil, A. A., & Dalton, W. S. (1999). Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood, 93, 1658–1667.PubMed
123.
go back to reference Shain, K. H., Yarde, D. N., Meads, M. B., Huang, M., Jove, R., Hazlehurst, L. A., et al. (2009). Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Research, 69, 1009–1015.PubMedCrossRef Shain, K. H., Yarde, D. N., Meads, M. B., Huang, M., Jove, R., Hazlehurst, L. A., et al. (2009). Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Research, 69, 1009–1015.PubMedCrossRef
124.
go back to reference Hoang, B., Zhu, L., Shi, Y., Frost, P., Yan, H., Sharma, S., et al. (2006). Oncogenic RAS mutations in myeloma cells selectively induce cox-2 expression, which participates in enhanced adhesion to fibronectin and chemoresistance. Blood, 107, 4484–4490.PubMedCrossRef Hoang, B., Zhu, L., Shi, Y., Frost, P., Yan, H., Sharma, S., et al. (2006). Oncogenic RAS mutations in myeloma cells selectively induce cox-2 expression, which participates in enhanced adhesion to fibronectin and chemoresistance. Blood, 107, 4484–4490.PubMedCrossRef
125.
go back to reference Maris, J. M., Hogarty, M. D., Bagatell, R., & Cohn, S. L. (2007). Neuroblastoma. Lancet, 369, 2106–2120.PubMedCrossRef Maris, J. M., Hogarty, M. D., Bagatell, R., & Cohn, S. L. (2007). Neuroblastoma. Lancet, 369, 2106–2120.PubMedCrossRef
126.
go back to reference Dubois, S. G., Kalika, Y., Lukens, J. N., Brodeur, G. M., Seeger, R. C., Atkinson, J. B., et al. (1999). Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. Journal of Pediatric Hematology/Oncology, 21, 181–189.PubMedCrossRef Dubois, S. G., Kalika, Y., Lukens, J. N., Brodeur, G. M., Seeger, R. C., Atkinson, J. B., et al. (1999). Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. Journal of Pediatric Hematology/Oncology, 21, 181–189.PubMedCrossRef
127.
go back to reference Sohara, Y., Shimada, H., Minkin, C., Erdreich-Epstein, A., Nolta, J. A., & DeClerck, Y. A. (2005). Bone marrow mesenchymal stem cells provide an alternate pathway of osteoclast activation and bone destruction by cancer cells. Cancer Research, 65, 1129–1135.PubMedCrossRef Sohara, Y., Shimada, H., Minkin, C., Erdreich-Epstein, A., Nolta, J. A., & DeClerck, Y. A. (2005). Bone marrow mesenchymal stem cells provide an alternate pathway of osteoclast activation and bone destruction by cancer cells. Cancer Research, 65, 1129–1135.PubMedCrossRef
128.
go back to reference Ara, T., Song, L., Shimada, H., Keshelava, N., Russell, H. V., Metelitsa, L. S., et al. (2009). Interleukin-6 in the bone marrow microenvironment promotes the growth and survival of neuroblastoma cells. Cancer Research, 69, 329–337.PubMedCrossRef Ara, T., Song, L., Shimada, H., Keshelava, N., Russell, H. V., Metelitsa, L. S., et al. (2009). Interleukin-6 in the bone marrow microenvironment promotes the growth and survival of neuroblastoma cells. Cancer Research, 69, 329–337.PubMedCrossRef
129.
go back to reference Fukaya, Y., Shimada, H., Wang, L. C., Zandi, E., & DeClerck, Y. A. (2008). Identification of Gal-3 binding protein as a factor secreted by tumor cells that stimulates interleukin-6 expression in the bone marrow stroma. Journal of Biological Chemistry, 283, 18573–18581.PubMedCrossRef Fukaya, Y., Shimada, H., Wang, L. C., Zandi, E., & DeClerck, Y. A. (2008). Identification of Gal-3 binding protein as a factor secreted by tumor cells that stimulates interleukin-6 expression in the bone marrow stroma. Journal of Biological Chemistry, 283, 18573–18581.PubMedCrossRef
130.
go back to reference Kakonen, S. M., Selander, K. S., Chirgwin, J. M., Yin, J. J., Burns, S., Rankin, W. A., et al. (2002). Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. Journal of Biological Chemistry, 277, 24571–24578.PubMedCrossRef Kakonen, S. M., Selander, K. S., Chirgwin, J. M., Yin, J. J., Burns, S., Rankin, W. A., et al. (2002). Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. Journal of Biological Chemistry, 277, 24571–24578.PubMedCrossRef
131.
132.
go back to reference Brocke-Heidrich, K., Kretzschmar, A. K., Pfeifer, G., Henze, C., Loffler, D., Koczan, D., et al. (2004). Interleukin-6-dependent gene expression profiles in multiple myeloma INA-6 cells reveal a Bcl-2 family-independent survival pathway closely associated with Stat3 activation. Blood, 103, 242–251.PubMedCrossRef Brocke-Heidrich, K., Kretzschmar, A. K., Pfeifer, G., Henze, C., Loffler, D., Koczan, D., et al. (2004). Interleukin-6-dependent gene expression profiles in multiple myeloma INA-6 cells reveal a Bcl-2 family-independent survival pathway closely associated with Stat3 activation. Blood, 103, 242–251.PubMedCrossRef
133.
go back to reference Aggarwal, B. B., Sethi, G., Ahn, K. S., Sandur, S. K., Pandey, M. K., Kunnumakkara, A. B., et al. (2006). Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Annals of the New York Academy of Sciences, 1091, 151–169.PubMedCrossRef Aggarwal, B. B., Sethi, G., Ahn, K. S., Sandur, S. K., Pandey, M. K., Kunnumakkara, A. B., et al. (2006). Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Annals of the New York Academy of Sciences, 1091, 151–169.PubMedCrossRef
134.
go back to reference Yamagiwa, Y., Marienfeld, C., Meng, F., Holcik, M., & Patel, T. (2004). Translational regulation of x-linked inhibitor of apoptosis protein by interleukin-6: a novel mechanism of tumor cell survival. Cancer Research, 64, 1293–1298.PubMedCrossRef Yamagiwa, Y., Marienfeld, C., Meng, F., Holcik, M., & Patel, T. (2004). Translational regulation of x-linked inhibitor of apoptosis protein by interleukin-6: a novel mechanism of tumor cell survival. Cancer Research, 64, 1293–1298.PubMedCrossRef
135.
go back to reference Lee, G., & Piquette-Miller, M. (2001). Influence of IL-6 on MDR and MRP-mediated multidrug resistance in human hepatoma cells. Canadian Journal of Physiology and Pharmacology, 79, 876–884.PubMedCrossRef Lee, G., & Piquette-Miller, M. (2001). Influence of IL-6 on MDR and MRP-mediated multidrug resistance in human hepatoma cells. Canadian Journal of Physiology and Pharmacology, 79, 876–884.PubMedCrossRef
136.
go back to reference Dreuw, A., Hermanns, H. M., Heise, R., Joussen, S., Rodriguez, F., Marquardt, Y., et al. (2005). Interleukin-6-type cytokines upregulate expression of multidrug resistance-associated proteins in NHEK and dermal fibroblasts. Journal of Investigative Dermatology, 124, 28–37.PubMedCrossRef Dreuw, A., Hermanns, H. M., Heise, R., Joussen, S., Rodriguez, F., Marquardt, Y., et al. (2005). Interleukin-6-type cytokines upregulate expression of multidrug resistance-associated proteins in NHEK and dermal fibroblasts. Journal of Investigative Dermatology, 124, 28–37.PubMedCrossRef
137.
go back to reference Efferth, T., Fabry, U., & Osieka, R. (2002). Interleukin-6 affects melphalan-induced DNA damage and repair in human multiple myeloma cells. Anticancer Research, 22, 231–234.PubMed Efferth, T., Fabry, U., & Osieka, R. (2002). Interleukin-6 affects melphalan-induced DNA damage and repair in human multiple myeloma cells. Anticancer Research, 22, 231–234.PubMed
138.
go back to reference Pu, Y. S., Hour, T. C., Chuang, S. E., Cheng, A. L., Lai, M. K., & Kuo, M. L. (2004). Interleukin-6 is responsible for drug resistance and anti-apoptotic effects in prostatic cancer cells. Prostate, 60, 120–129.PubMedCrossRef Pu, Y. S., Hour, T. C., Chuang, S. E., Cheng, A. L., Lai, M. K., & Kuo, M. L. (2004). Interleukin-6 is responsible for drug resistance and anti-apoptotic effects in prostatic cancer cells. Prostate, 60, 120–129.PubMedCrossRef
139.
go back to reference Ishikawa, F., Yoshida, S., Saito, Y., Hijikata, A., Kitamura, H., Tanaka, S., et al. (2007). Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nature Biotechnology, 25, 1315–1321.PubMedCrossRef Ishikawa, F., Yoshida, S., Saito, Y., Hijikata, A., Kitamura, H., Tanaka, S., et al. (2007). Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nature Biotechnology, 25, 1315–1321.PubMedCrossRef
140.
go back to reference De Toni, F., Racaud-Sultan, C., Chicanne, G., Mas, V. M., Cariven, C., Mesange, F., et al. (2006). A crosstalk between the Wnt and the adhesion-dependent signaling pathways governs the chemosensitivity of acute myeloid leukemia. Oncogene, 25, 3113–3122.PubMedCrossRef De Toni, F., Racaud-Sultan, C., Chicanne, G., Mas, V. M., Cariven, C., Mesange, F., et al. (2006). A crosstalk between the Wnt and the adhesion-dependent signaling pathways governs the chemosensitivity of acute myeloid leukemia. Oncogene, 25, 3113–3122.PubMedCrossRef
141.
go back to reference Arthur, A., Zannettino, A., & Gronthos, S. (2009). The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. Journal of Cellular Physiology, 218, 237–245.PubMedCrossRef Arthur, A., Zannettino, A., & Gronthos, S. (2009). The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. Journal of Cellular Physiology, 218, 237–245.PubMedCrossRef
142.
go back to reference Hare, J. M., & Chaparro, S. V. (2008). Cardiac regeneration and stem cell therapy. Current Opinion in Organ Transplantion, 13, 536–542.CrossRef Hare, J. M., & Chaparro, S. V. (2008). Cardiac regeneration and stem cell therapy. Current Opinion in Organ Transplantion, 13, 536–542.CrossRef
143.
go back to reference Fritz, V., & Jorgensen, C. (2008). Mesenchymal stem cells: an emerging tool for cancer targeting and therapy. Current Stem Cell Research & Therapy, 3, 32–42.CrossRef Fritz, V., & Jorgensen, C. (2008). Mesenchymal stem cells: an emerging tool for cancer targeting and therapy. Current Stem Cell Research & Therapy, 3, 32–42.CrossRef
144.
go back to reference Hall, B., Dembinski, J., Sasser, A. K., Studeny, M., Andreeff, M., & Marini, F. (2007). Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. International Journal of Hematology, 86, 8–16.PubMedCrossRef Hall, B., Dembinski, J., Sasser, A. K., Studeny, M., Andreeff, M., & Marini, F. (2007). Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. International Journal of Hematology, 86, 8–16.PubMedCrossRef
145.
go back to reference Sasportas, L. S., Kasmieh, R., Wakimoto, H., Hingtgen, S., van de Water, J. A., Mohapatra, G., et al. (2009). Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 106, 4822–4827.PubMedCrossRef Sasportas, L. S., Kasmieh, R., Wakimoto, H., Hingtgen, S., van de Water, J. A., Mohapatra, G., et al. (2009). Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 106, 4822–4827.PubMedCrossRef
146.
go back to reference Cavarretta, I. T., Altanerova, V., Matuskova, M., Kucerova, L., Culig, Z., & Altaner, C. (2010). Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Molecular Therapy, 18, 223–231.PubMedCrossRef Cavarretta, I. T., Altanerova, V., Matuskova, M., Kucerova, L., Culig, Z., & Altaner, C. (2010). Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Molecular Therapy, 18, 223–231.PubMedCrossRef
147.
go back to reference Nakamizo, A., Marini, F., Amano, T., Khan, A., Studeny, M., Gumin, J., et al. (2005). Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Research, 65, 3307–3318.PubMed Nakamizo, A., Marini, F., Amano, T., Khan, A., Studeny, M., Gumin, J., et al. (2005). Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Research, 65, 3307–3318.PubMed
148.
go back to reference Nishimoto, N., & Kishimoto, T. (2006). Interleukin 6: from bench to bedside. Nature Clinical Practice Rheumatology, 2, 619–626.PubMedCrossRef Nishimoto, N., & Kishimoto, T. (2006). Interleukin 6: from bench to bedside. Nature Clinical Practice Rheumatology, 2, 619–626.PubMedCrossRef
149.
go back to reference Fulciniti, M., Hideshima, T., Vermot-Desroches, C., Pozzi, S., Nanjappa, P., Shen, Z., et al. (2009). A high-affinity fully human anti-IL-6 mAb, 1339, for the treatment of multiple myeloma. Clinical Cancer Research, 15, 7144–7152.PubMedCrossRef Fulciniti, M., Hideshima, T., Vermot-Desroches, C., Pozzi, S., Nanjappa, P., Shen, Z., et al. (2009). A high-affinity fully human anti-IL-6 mAb, 1339, for the treatment of multiple myeloma. Clinical Cancer Research, 15, 7144–7152.PubMedCrossRef
Metadata
Title
Bone marrow-derived mesenchymal stem cells and the tumor microenvironment
Authors
Scott A. Bergfeld
Yves A. DeClerck
Publication date
01-06-2010
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2010
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9222-7

Other articles of this Issue 2/2010

Cancer and Metastasis Reviews 2/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine