Skip to main content
Top
Published in: Malaria Journal 1/2013

Open Access 01-12-2013 | Research

A dynamic model of some malaria-transmitting anopheline mosquitoes of the Afrotropical region. II. Validation of species distribution and seasonal variations

Authors: Torleif M Lunde, Meshesha Balkew, Diriba Korecha, Teshome Gebre-Michael, Fekadu Massebo, Asgeir Sorteberg, Bernt Lindtjørn

Published in: Malaria Journal | Issue 1/2013

Login to get access

Abstract

Background

The first part of this study aimed to develop a model for Anopheles gambiae s.l. with separate parametrization schemes for Anopheles gambiae s.s. and Anopheles arabiensis. The characterizations were constructed based on literature from the past decades. This part of the study is focusing on the model’s ability to separate the mean state of the two species of the An. gambiae complex in Africa. The model is also evaluated with respect to capturing the temporal variability of An. arabiensis in Ethiopia. Before conclusions and guidance based on models can be made, models need to be validated.

Methods

The model used in this paper is described in part one (Malaria Journal 2013, 12:28). For the validation of the model, a data base of 5,935 points on the presence of An. gambiae s.s. and An. arabiensis was constructed. An additional 992 points were collected on the presence An. gambiae s.l.. These data were used to assess if the model could recreate the spatial distribution of the two species. The dataset is made available in the public domain. This is followed by a case study from Madagascar where the model’s ability to recreate the relative fraction of each species is investigated. In the last section the model’s ability to reproduce the temporal variability of An. arabiensis in Ethiopia is tested. The model was compared with data from four papers, and one field survey covering two years.

Results

Overall, the model has a realistic representation of seasonal and year to year variability in mosquito densities in Ethiopia. The model is also able to describe the distribution of An. gambiae s.s. and An. arabiensis in sub-Saharan Africa. This implies this model can be used for seasonal and long term predictions of changes in the burden of malaria. Before models can be used to improving human health, or guide which interventions are to be applied where, there is a need to understand the system of interest. Validation is an important part of this process. It is also found that one of the main mechanisms separating An. gambiae s.s. and An. arabiensis is the availability of hosts; humans and cattle. Climate play a secondary, but still important, role.
Appendix
Available only for authorised users
Literature
3.
go back to reference Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Okara RM, Van Boeckel T, Godfray HCJ, Harbach RE, Hay SI: The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic precis. Parasit Vectors. 2010, 3: 117. 10.1186/1756-3305-3-117. [http://www.ncbi.nlm.nih.gov/pubmed/21129198]PubMedCentralCrossRefPubMed Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Okara RM, Van Boeckel T, Godfray HCJ, Harbach RE, Hay SI: The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic precis. Parasit Vectors. 2010, 3: 117. 10.1186/1756-3305-3-117. [http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​21129198]PubMedCentralCrossRefPubMed
6.
go back to reference MacDonald G: The Epidemiology and Control of Malaria. 1957, London: Oxford University Press MacDonald G: The Epidemiology and Control of Malaria. 1957, London: Oxford University Press
9.
go back to reference Coluzzi M, Petrarca V, Dideco M: Chromosomal inversion intergradation and incipient speciation in Anopheles gambiae. B Zool. 1985, 52: 45-63. 10.1080/11250008509440343.CrossRef Coluzzi M, Petrarca V, Dideco M: Chromosomal inversion intergradation and incipient speciation in Anopheles gambiae. B Zool. 1985, 52: 45-63. 10.1080/11250008509440343.CrossRef
19.
go back to reference Coetzee M, Craig M, le Sueur D: Mapping the distribution of members of the Anopheles gambiae complex in Africa and adjacent islands. Parasitol Today. 2000, 16: 74-77. 10.1016/S0169-4758(99)01563-X.CrossRefPubMed Coetzee M, Craig M, le Sueur D: Mapping the distribution of members of the Anopheles gambiae complex in Africa and adjacent islands. Parasitol Today. 2000, 16: 74-77. 10.1016/S0169-4758(99)01563-X.CrossRefPubMed
25.
go back to reference Chauvet G: Répartition et écologie du complex Anopheles gambiae à Madagascar. Cah ORSTOM sér Ent Méd. 1969, VII: 235-278. Chauvet G: Répartition et écologie du complex Anopheles gambiae à Madagascar. Cah ORSTOM sér Ent Méd. 1969, VII: 235-278.
26.
29.
go back to reference Balkew M: Studies on the anopheline mosquitoes of Metehara and surrounding areas in relation to malaria transmission. Master’s thesis: Department of Biology, Addis Ababa University; 2001. Balkew M: Studies on the anopheline mosquitoes of Metehara and surrounding areas in relation to malaria transmission. Master’s thesis: Department of Biology, Addis Ababa University; 2001.
31.
go back to reference Massebo F, Balkew M, Gebre-Michael T, Lindtjørn B: Blood meal origins and insecticide susceptibility of Anopheles arabiensis from Chano in South-West Ethiopia. Parasit Vectors. 2013, 6: 44. 10.1186/1756-3305-6-44.PubMedCentralCrossRefPubMed Massebo F, Balkew M, Gebre-Michael T, Lindtjørn B: Blood meal origins and insecticide susceptibility of Anopheles arabiensis from Chano in South-West Ethiopia. Parasit Vectors. 2013, 6: 44. 10.1186/1756-3305-6-44.PubMedCentralCrossRefPubMed
32.
go back to reference Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG: A description of the advanced research WRF version 2. 2005, Tech. rep., The National Center for Atmospheric Research Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG: A description of the advanced research WRF version 2. 2005, Tech. rep., The National Center for Atmospheric Research
33.
go back to reference Kain J, Fritsch J: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. Representation Cumulus Convection Numerical Models Metor Monogr, Am Meteor Soc. 1993, 24: 165-170. Kain J, Fritsch J: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. Representation Cumulus Convection Numerical Models Metor Monogr, Am Meteor Soc. 1993, 24: 165-170.
34.
go back to reference Kain J: The Kain–Fritsch convective parameterization: An update. J Appl Meteorology. 2004, 43: 170-181. 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.CrossRef Kain J: The Kain–Fritsch convective parameterization: An update. J Appl Meteorology. 2004, 43: 170-181. 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.CrossRef
35.
go back to reference Zhang C, Wang Y, Hamilton K: Improved Representation of Boundary Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke Cumulus Parameterization Scheme. Monthly Weather Rev. 2011, 139: 3489-3513. 10.1175/MWR-D-10-05091.1.CrossRef Zhang C, Wang Y, Hamilton K: Improved Representation of Boundary Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke Cumulus Parameterization Scheme. Monthly Weather Rev. 2011, 139: 3489-3513. 10.1175/MWR-D-10-05091.1.CrossRef
36.
go back to reference Tiedtke M: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Monthly Weather Rev. 1989, 117: 1779-1800. 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.CrossRef Tiedtke M: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Monthly Weather Rev. 1989, 117: 1779-1800. 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.CrossRef
38.
go back to reference Brink C: Malaria control in the Northern Transvaal. S Afr Med J. 1958, 32: 800-809.PubMed Brink C: Malaria control in the Northern Transvaal. S Afr Med J. 1958, 32: 800-809.PubMed
39.
40.
go back to reference Service MW: Contribution to the knowledge of the mosquitoes (Diptera, Culicdae) of Gabon. Cah ORSTOM sér Ent Méd. 1976, 3: 259-263. Service MW: Contribution to the knowledge of the mosquitoes (Diptera, Culicdae) of Gabon. Cah ORSTOM sér Ent Méd. 1976, 3: 259-263.
42.
go back to reference Mouchet J: Survey of Potential Yellow Fever Vectors in Gabon and Chad. World Health Organ. 1970, VBC71.279: 1-10. Mouchet J: Survey of Potential Yellow Fever Vectors in Gabon and Chad. World Health Organ. 1970, VBC71.279: 1-10.
Metadata
Title
A dynamic model of some malaria-transmitting anopheline mosquitoes of the Afrotropical region. II. Validation of species distribution and seasonal variations
Authors
Torleif M Lunde
Meshesha Balkew
Diriba Korecha
Teshome Gebre-Michael
Fekadu Massebo
Asgeir Sorteberg
Bernt Lindtjørn
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2013
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-12-78

Other articles of this Issue 1/2013

Malaria Journal 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.