Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2013

Open Access 01-12-2013 | Original investigation

Discriminant ratio and biometrical equivalence of measured vs. calculated apolipoprotein B100 in patients with T2DM

Authors: Michel P Hermans, Sylvie A Ahn, Michel F Rousseau

Published in: Cardiovascular Diabetology | Issue 1/2013

Login to get access

Abstract

Background

Apolipoprotein B100 (ApoB100) determination is superior to low-density lipoprotein cholesterol (LDL-C) to establish cardiovascular (CV) risk, and does not require prior fasting. ApoB100 is rarely measured alongside standard lipids, which precludes comprehensive assessment of dyslipidemia.

Objectives

To evaluate two simple algorithms for apoB100 as regards their performance, equivalence and discrimination with reference apoB100 laboratory measurement.

Methods

Two apoB100-predicting equations were compared in 87 type 2 diabetes mellitus (T2DM) patients using the Discriminant ratio (DR). Equation 1: apoB100 = 0.65*non-high-density lipoprotein cholesterol + 6.3; and Equation 2: apoB100 = −33.12 + 0.675*LDL-C + 11.95*ln[triglycerides]. The underlying between-subject standard deviation (SDU) was defined as SDU = √ (SD2B - SD2W/2); the within-subject variance (Vw) was calculated for m (2) repeat tests as (Vw) = Σ(xj -xi)2/(m-1)), the within-subject SD (SDw) being its square root; the DR being the ratio SDU/SDW.

Results

All SDu, SDw and DR’s values were nearly similar, and the observed differences in discriminatory power between all three determinations, i.e. measured and calculated apoB100 levels, did not reach statistical significance. Measured Pearson’s product-moment correlation coefficients between all apoB100 determinations were very high, respectively at 0.94 (measured vs. equation 1); 0.92 (measured vs. equation 2); and 0.97 (equation 1 vs. equation 2), each measurement reaching unity after adjustment for attenuation.

Conclusion

Both apoB100 algorithms showed biometrical equivalence, and were as effective in estimating apoB100 from routine lipids. Their use should contribute to better characterize residual cardiometabolic risk linked to the number of atherogenic particles, when direct apoB100 determination is not available.
Appendix
Available only for authorised users
Literature
1.
go back to reference Friedewald WT, Levy RI, Fredrickson DS: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972, 18: 499-502.PubMed Friedewald WT, Levy RI, Fredrickson DS: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972, 18: 499-502.PubMed
2.
go back to reference Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Circulation. 2002, 106: 3143-3221. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Circulation. 2002, 106: 3143-3221.
3.
go back to reference Sniderman AD: Non-HDL cholesterol versus apolipoprotein B in diabetic dyslipoproteinemia. Alternatives and surrogates versus the real thing. Diabetes Care. 2003, 26: 2207-2208. 10.2337/diacare.26.7.2207.CrossRefPubMed Sniderman AD: Non-HDL cholesterol versus apolipoprotein B in diabetic dyslipoproteinemia. Alternatives and surrogates versus the real thing. Diabetes Care. 2003, 26: 2207-2208. 10.2337/diacare.26.7.2207.CrossRefPubMed
4.
go back to reference Denke MA: Weighing in before the fight. Low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol versus Apolipoprotein B as the best predictor for coronary heart disease and the best measure of therapy. Circulation. 2005, 112: 3368-3370. 10.1161/CIRCULATIONAHA.105.588178.CrossRefPubMed Denke MA: Weighing in before the fight. Low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol versus Apolipoprotein B as the best predictor for coronary heart disease and the best measure of therapy. Circulation. 2005, 112: 3368-3370. 10.1161/CIRCULATIONAHA.105.588178.CrossRefPubMed
5.
go back to reference Sniderman AD: Apolipoprotein B versus non-high-density lipoprotein cholesterol. And the winner is…. Circulation. 2005, 112: 3366-3367. 10.1161/CIRCULATIONAHA.105.583336.CrossRefPubMed Sniderman AD: Apolipoprotein B versus non-high-density lipoprotein cholesterol. And the winner is…. Circulation. 2005, 112: 3366-3367. 10.1161/CIRCULATIONAHA.105.583336.CrossRefPubMed
6.
go back to reference Brunzell JD, Davidson M, Furberg CD, Goldberg RB, Howard BV, Stein JH, Witztum JL: American Diabetes Association; American College of Cardiology Foundation. Lipoprotein management in patients with cardiometabolic risk. Consensus statement from the American Diabetes Association and the American College of Cardiology Foundation. Diabetes Care. 2008, 31: 811-822. 10.2337/dc08-9018.CrossRefPubMed Brunzell JD, Davidson M, Furberg CD, Goldberg RB, Howard BV, Stein JH, Witztum JL: American Diabetes Association; American College of Cardiology Foundation. Lipoprotein management in patients with cardiometabolic risk. Consensus statement from the American Diabetes Association and the American College of Cardiology Foundation. Diabetes Care. 2008, 31: 811-822. 10.2337/dc08-9018.CrossRefPubMed
7.
go back to reference Hermans MP, Sacks FM, Ahn SA, Rousseau MF: Non-HDL-cholesterol as valid surrogate to apolipoprotein B100 measurement in diabetes: Discriminant Ratio and unbiased equivalence. Cardiovasc Diabetol. 2011, 10: 20-10.1186/1475-2840-10-20.PubMedCentralCrossRefPubMed Hermans MP, Sacks FM, Ahn SA, Rousseau MF: Non-HDL-cholesterol as valid surrogate to apolipoprotein B100 measurement in diabetes: Discriminant Ratio and unbiased equivalence. Cardiovasc Diabetol. 2011, 10: 20-10.1186/1475-2840-10-20.PubMedCentralCrossRefPubMed
8.
go back to reference Cho DS, Woo S, Kim S, Byrne CD, Sung KC, Kong JH: Estimation of plasma apolipoprotein B concentration using routinely measured lipid biochemical tests in apparently healthy Asian adults. Cardiovasc Diabetol. 2012, 18: 55.CrossRef Cho DS, Woo S, Kim S, Byrne CD, Sung KC, Kong JH: Estimation of plasma apolipoprotein B concentration using routinely measured lipid biochemical tests in apparently healthy Asian adults. Cardiovasc Diabetol. 2012, 18: 55.CrossRef
9.
go back to reference Genest J, McPherson R, Frohlich J, Anderson T, Campbell N, Carpentier A, Couture P, Dufour R, Fodor G, Francis GA, Grover S, Gupta M, Hegele RA, Lau DC, Leiter L, Lewis GF, Lonn E, Mancini GB, Ng D, Pearson GJ, Sniderman A, Stone JA, Ur E: Canadian Cardiovascular Society/Canadian guidelines for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease in the adult – 2009 recommendations. Can J Cardiol. 2009, 25: 567-579. 10.1016/S0828-282X(09)70715-9.PubMedCentralCrossRefPubMed Genest J, McPherson R, Frohlich J, Anderson T, Campbell N, Carpentier A, Couture P, Dufour R, Fodor G, Francis GA, Grover S, Gupta M, Hegele RA, Lau DC, Leiter L, Lewis GF, Lonn E, Mancini GB, Ng D, Pearson GJ, Sniderman A, Stone JA, Ur E: Canadian Cardiovascular Society/Canadian guidelines for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease in the adult – 2009 recommendations. Can J Cardiol. 2009, 25: 567-579. 10.1016/S0828-282X(09)70715-9.PubMedCentralCrossRefPubMed
10.
go back to reference Querton L, Buysschaert M, Hermans MP: Hypertriglyceridemia and residual dyslipidemia in statin-treated, patients with diabetes at the highest risk for cardiovascular disease and achieving very-low low-density lipoprotein-cholesterol levels. J Clin Lipidol. 2012, published online 16 April 2012 Querton L, Buysschaert M, Hermans MP: Hypertriglyceridemia and residual dyslipidemia in statin-treated, patients with diabetes at the highest risk for cardiovascular disease and achieving very-low low-density lipoprotein-cholesterol levels. J Clin Lipidol. 2012, published online 16 April 2012
11.
go back to reference Hermans MP, Levy JC, Morris RJ, Turner RC: Comparison of tests of beta-cell function across a range of glucose tolerance from normal to diabetes. Diabetes. 1999, 48: 1779-86. 10.2337/diabetes.48.9.1779.CrossRefPubMed Hermans MP, Levy JC, Morris RJ, Turner RC: Comparison of tests of beta-cell function across a range of glucose tolerance from normal to diabetes. Diabetes. 1999, 48: 1779-86. 10.2337/diabetes.48.9.1779.CrossRefPubMed
12.
go back to reference Hermans MP, Levy JC, Morris RJ, Turner RC: Comparison of insulin sensitivity tests across a range of glucose tolerance form normal to diabetes. Diabetologia. 1999, 42: 678-87. 10.1007/s001250051215.CrossRefPubMed Hermans MP, Levy JC, Morris RJ, Turner RC: Comparison of insulin sensitivity tests across a range of glucose tolerance form normal to diabetes. Diabetologia. 1999, 42: 678-87. 10.1007/s001250051215.CrossRefPubMed
13.
go back to reference Levy JC, Morris RJ, Hammersley M, Turner RC: Discrimination, adjusted correlation, and equivalence of imprecise tests: application to glucose tolerance. Am J Physiol. 1999, 276: E365-75.PubMed Levy JC, Morris RJ, Hammersley M, Turner RC: Discrimination, adjusted correlation, and equivalence of imprecise tests: application to glucose tolerance. Am J Physiol. 1999, 276: E365-75.PubMed
14.
go back to reference Hermans MP, Ahn SA, Rousseau MF: The non-HDL-C/HDL-C ratio provides cardiovascular risk stratification similar to the ApoB/ApoA1 ratio in diabetics: Comparison with reference lipid markers. Diabetes Metab Syndr. 2007, 1: 23-28. 10.1016/j.dsx.2006.11.003.CrossRef Hermans MP, Ahn SA, Rousseau MF: The non-HDL-C/HDL-C ratio provides cardiovascular risk stratification similar to the ApoB/ApoA1 ratio in diabetics: Comparison with reference lipid markers. Diabetes Metab Syndr. 2007, 1: 23-28. 10.1016/j.dsx.2006.11.003.CrossRef
15.
go back to reference Hermans MP, Ahn SA, Rousseau MF: Log(TG)/HDL-C is related to both residual cardiometabolic risk and β-cell function loss in type 2 diabetes males. Cardiovasc Diabetol. 2010, 9: 88-10.1186/1475-2840-9-88.PubMedCentralCrossRefPubMed Hermans MP, Ahn SA, Rousseau MF: Log(TG)/HDL-C is related to both residual cardiometabolic risk and β-cell function loss in type 2 diabetes males. Cardiovasc Diabetol. 2010, 9: 88-10.1186/1475-2840-9-88.PubMedCentralCrossRefPubMed
16.
go back to reference Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D: A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999, 130: 461-70.CrossRefPubMed Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D: A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999, 130: 461-70.CrossRefPubMed
17.
go back to reference Hermans MP, Fruchart JC: Reducing residual vascular risk in patients with atherogenic dyslipidaemia: where do we go from here?. Clin Lipidol. 2010, 5: 811-26. 10.2217/clp.10.65.CrossRef Hermans MP, Fruchart JC: Reducing residual vascular risk in patients with atherogenic dyslipidaemia: where do we go from here?. Clin Lipidol. 2010, 5: 811-26. 10.2217/clp.10.65.CrossRef
18.
go back to reference Hermans MP, Ahn SA, Rousseau MF: Residual vascular risk in T2DM: the next frontier. Recent Advances in the Pathogenesis, Prevention and Management of Type 2 Diabetes and its Complications. Edited by: Mark B. 2011, Croatia: Zimering, Intech, Rijeka, 45-66. Hermans MP, Ahn SA, Rousseau MF: Residual vascular risk in T2DM: the next frontier. Recent Advances in the Pathogenesis, Prevention and Management of Type 2 Diabetes and its Complications. Edited by: Mark B. 2011, Croatia: Zimering, Intech, Rijeka, 45-66.
19.
go back to reference Hermans MP, Fruchart JC: Reducing vascular events risk in patients with dyslipidaemia: an update for clinicians. Ther Adv Chronic Dis. 2011, 2: 307-323. 10.1177/2040622311413952.PubMedCentralCrossRefPubMed Hermans MP, Fruchart JC: Reducing vascular events risk in patients with dyslipidaemia: an update for clinicians. Ther Adv Chronic Dis. 2011, 2: 307-323. 10.1177/2040622311413952.PubMedCentralCrossRefPubMed
20.
go back to reference Wägner AM, Pérez A, Zapico E, Ordóñez-Llanos J: Non-HDL cholesterol and apolipoprotein B in the dyslipidemic classification of type 2 diabetic patients. Diabetes Care. 2003, 26: 2048-51. 10.2337/diacare.26.7.2048.CrossRefPubMed Wägner AM, Pérez A, Zapico E, Ordóñez-Llanos J: Non-HDL cholesterol and apolipoprotein B in the dyslipidemic classification of type 2 diabetic patients. Diabetes Care. 2003, 26: 2048-51. 10.2337/diacare.26.7.2048.CrossRefPubMed
21.
go back to reference Jacobson TA: Opening a new lipid “apo-thecary”: incorporating apolipoproteins as potential risk factors and treatment targets to reduce cardiovascular risk. Mayo Clin Proc. 2011, 86: 762-80. 10.4065/mcp.2011.0128.PubMedCentralCrossRefPubMed Jacobson TA: Opening a new lipid “apo-thecary”: incorporating apolipoproteins as potential risk factors and treatment targets to reduce cardiovascular risk. Mayo Clin Proc. 2011, 86: 762-80. 10.4065/mcp.2011.0128.PubMedCentralCrossRefPubMed
Metadata
Title
Discriminant ratio and biometrical equivalence of measured vs. calculated apolipoprotein B100 in patients with T2DM
Authors
Michel P Hermans
Sylvie A Ahn
Michel F Rousseau
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2013
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/1475-2840-12-39

Other articles of this Issue 1/2013

Cardiovascular Diabetology 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.