Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2013

Open Access 01-12-2013 | Original investigation

Angiotensin type 1a receptor-deficient mice develop diabetes-induced cardiac dysfunction, which is prevented by renin-angiotensin system inhibitors

Authors: Qian Chen Yong, Candice M Thomas, Rachid Seqqat, Niketa Chandel, Kenneth M Baker, Rajesh Kumar

Published in: Cardiovascular Diabetology | Issue 1/2013

Login to get access

Abstract

Background

Diabetes-induced organ damage is significantly associated with the activation of the renin-angiotensin system (RAS). Recently, several studies have demonstrated a change in the RAS from an extracellular to an intracellular system, in several cell types, in response to high ambient glucose levels. In cardiac myocytes, intracellular angiotensin (ANG) II synthesis and actions are ACE and AT1 independent, respectively. However, a role of this system in diabetes-induced organ damage is not clear.

Methods

To determine a role of the intracellular ANG II in diabetic cardiomyopathy, we induced diabetes using streptozotocin in AT1a receptor deficient (AT1a-KO) mice to exclude any effects of extracellular ANG II. Further, diabetic animals were treated with a renin inhibitor aliskiren, an ACE inhibitor benazeprilat, and an AT1 receptor blocker valsartan.

Results

AT1a-KO mice developed significant diastolic and systolic dysfunction following 10 wks of diabetes, as determined by echocardiography. All three drugs prevented the development of cardiac dysfunction in these animals, without affecting blood pressure or glucose levels. A significant down regulation of components of the kallikrein-kinin system (KKS) was observed in diabetic animals, which was largely prevented by benazeprilat and valsartan, while aliskiren normalized kininogen expression.

Conclusions

These data indicated that the AT1a receptor, thus extracellular ANG II, are not required for the development of diabetic cardiomyopathy. The KKS might contribute to the beneficial effects of benazeprilat and valsartan in diabetic cardiomyopathy. A role of intracellular ANG II is suggested by the inhibitory effects of aliskiren, which needs confirmation in future studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference From AM, Scott CG, Chen HH: The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol. 2010, 55 (4): 300-305. 10.1016/j.jacc.2009.12.003.CrossRefPubMed From AM, Scott CG, Chen HH: The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol. 2010, 55 (4): 300-305. 10.1016/j.jacc.2009.12.003.CrossRefPubMed
2.
go back to reference Carnethon MR, De Chavez PJ, Biggs ML, Lewis CE, Pankow JS, Bertoni AG, Golden SH, Liu K, Mukamal KJ, Campbell-Jenkins B, et al: Association of weight status with mortality in adults with incident diabetes. JAMA. 2012, 308 (6): 581-590. 10.1001/jama.2012.9282.PubMedCentralCrossRefPubMed Carnethon MR, De Chavez PJ, Biggs ML, Lewis CE, Pankow JS, Bertoni AG, Golden SH, Liu K, Mukamal KJ, Campbell-Jenkins B, et al: Association of weight status with mortality in adults with incident diabetes. JAMA. 2012, 308 (6): 581-590. 10.1001/jama.2012.9282.PubMedCentralCrossRefPubMed
3.
go back to reference Boudina S, Abel ED: Diabetic cardiomyopathy revisited. Circulation. 2007, 115 (25): 3213-3223. 10.1161/CIRCULATIONAHA.106.679597.CrossRefPubMed Boudina S, Abel ED: Diabetic cardiomyopathy revisited. Circulation. 2007, 115 (25): 3213-3223. 10.1161/CIRCULATIONAHA.106.679597.CrossRefPubMed
4.
go back to reference Lim HS, MacFadyen RJ, Lip GY: Diabetes mellitus, the renin-angiotensin-aldosterone system, and the heart. Arch Intern Med. 2004, 164 (16): 1737-1748. 10.1001/archinte.164.16.1737.CrossRefPubMed Lim HS, MacFadyen RJ, Lip GY: Diabetes mellitus, the renin-angiotensin-aldosterone system, and the heart. Arch Intern Med. 2004, 164 (16): 1737-1748. 10.1001/archinte.164.16.1737.CrossRefPubMed
5.
go back to reference Azizi M, Menard J: Renin inhibitors and cardiovascular and renal protection: an endless quest?. Cardiovasc Drugs Ther. 2013, 27 (2): 145-153. 10.1007/s10557-012-6380-6.CrossRefPubMed Azizi M, Menard J: Renin inhibitors and cardiovascular and renal protection: an endless quest?. Cardiovasc Drugs Ther. 2013, 27 (2): 145-153. 10.1007/s10557-012-6380-6.CrossRefPubMed
7.
go back to reference Kumar R, Yong QC, Thomas CM, Baker KM: Review: Intracardiac intracellular angiotensin system in diabetes. Am J Physiol Regul Integr Comp Physiol. 2012, 302: R510-R517. 10.1152/ajpregu.00512.2011.PubMedCentralCrossRefPubMed Kumar R, Yong QC, Thomas CM, Baker KM: Review: Intracardiac intracellular angiotensin system in diabetes. Am J Physiol Regul Integr Comp Physiol. 2012, 302: R510-R517. 10.1152/ajpregu.00512.2011.PubMedCentralCrossRefPubMed
8.
go back to reference Singh VP, Le B, Khode R, Baker KM, Kumar R: Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes. 2008, 57 (12): 3297-3306. 10.2337/db08-0805.PubMedCentralCrossRefPubMed Singh VP, Le B, Khode R, Baker KM, Kumar R: Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes. 2008, 57 (12): 3297-3306. 10.2337/db08-0805.PubMedCentralCrossRefPubMed
9.
go back to reference Singh VP, Le B, Bhat VB, Baker KM, Kumar R: High glucose induced regulation of intracellular angiotensin II synthesis and nuclear redistribution in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2007, 293: H939-H948. 10.1152/ajpheart.00391.2007.CrossRefPubMed Singh VP, Le B, Bhat VB, Baker KM, Kumar R: High glucose induced regulation of intracellular angiotensin II synthesis and nuclear redistribution in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2007, 293: H939-H948. 10.1152/ajpheart.00391.2007.CrossRefPubMed
10.
go back to reference Gwathmey TM, Alzayadneh EM, Pendergrass KD, Chappell MC: Review: Novel roles of nuclear angiotensin receptors and signaling mechanisms. Am J Physiol Regul Integr Comp Physiol. 2012, 302: R518-R530. 10.1152/ajpregu.00525.2011.PubMedCentralCrossRefPubMed Gwathmey TM, Alzayadneh EM, Pendergrass KD, Chappell MC: Review: Novel roles of nuclear angiotensin receptors and signaling mechanisms. Am J Physiol Regul Integr Comp Physiol. 2012, 302: R518-R530. 10.1152/ajpregu.00525.2011.PubMedCentralCrossRefPubMed
11.
go back to reference Cook JL, Re RN: Review: Lessons from in vitro studies and a related intracellular angiotensin II transgenic mouse model. Am J Physiol Regul Integr Comp Physiol. 2012, 302: R482-R493. 10.1152/ajpregu.00493.2011.PubMedCentralCrossRefPubMed Cook JL, Re RN: Review: Lessons from in vitro studies and a related intracellular angiotensin II transgenic mouse model. Am J Physiol Regul Integr Comp Physiol. 2012, 302: R482-R493. 10.1152/ajpregu.00493.2011.PubMedCentralCrossRefPubMed
12.
go back to reference Thomas CM, Yong QC, Seqqat R, Chandel N, Feldman DL, Baker KM, Kumar R: Direct renin inhibition prevents cardiac dysfunction in a diabetic mouse model: comparison with an angiotensin receptor antagonist and angiotensin-converting enzyme inhibitor. Clin Sci (Lond). 2013, 124 (8): 529-541. 10.1042/CS20120448.CrossRef Thomas CM, Yong QC, Seqqat R, Chandel N, Feldman DL, Baker KM, Kumar R: Direct renin inhibition prevents cardiac dysfunction in a diabetic mouse model: comparison with an angiotensin receptor antagonist and angiotensin-converting enzyme inhibitor. Clin Sci (Lond). 2013, 124 (8): 529-541. 10.1042/CS20120448.CrossRef
13.
go back to reference Tada Y, Kanematsu Y, Kanematsu M, Nuki Y, Liang EI, Wada K, Makino H, Hashimoto T: A mouse model of intracranial aneurysm: technical considerations. Acta Neurochir Suppl. 2011, 111: 31-35. 10.1007/978-3-7091-0693-8_6.PubMedCentralCrossRefPubMed Tada Y, Kanematsu Y, Kanematsu M, Nuki Y, Liang EI, Wada K, Makino H, Hashimoto T: A mouse model of intracranial aneurysm: technical considerations. Acta Neurochir Suppl. 2011, 111: 31-35. 10.1007/978-3-7091-0693-8_6.PubMedCentralCrossRefPubMed
14.
go back to reference O’Connell TD, Rodrigo MC, Simpson PC: Isolation and culture of adult mouse cardiac myocytes. Methods Mol Biol. 2007, 357: 271-296.PubMed O’Connell TD, Rodrigo MC, Simpson PC: Isolation and culture of adult mouse cardiac myocytes. Methods Mol Biol. 2007, 357: 271-296.PubMed
15.
go back to reference Baker KM, Chernin MI, Schreiber T, Sanghi S, Haiderzaidi S, Booz GW, Dostal DE, Kumar R: Evidence of a novel intracrine mechanism in angiotensin II-induced cardiac hypertrophy. Regul Pept. 2004, 120 (1–3): 5-13.CrossRefPubMed Baker KM, Chernin MI, Schreiber T, Sanghi S, Haiderzaidi S, Booz GW, Dostal DE, Kumar R: Evidence of a novel intracrine mechanism in angiotensin II-induced cardiac hypertrophy. Regul Pept. 2004, 120 (1–3): 5-13.CrossRefPubMed
16.
go back to reference Gurley SB, Clare SE, Snow KP, Hu A, Meyer TW, Coffman TM: Impact of genetic background on nephropathy in diabetic mice. Am J Physiol Renal Physiol. 2006, 290 (1): F214-F222.CrossRefPubMed Gurley SB, Clare SE, Snow KP, Hu A, Meyer TW, Coffman TM: Impact of genetic background on nephropathy in diabetic mice. Am J Physiol Renal Physiol. 2006, 290 (1): F214-F222.CrossRefPubMed
17.
go back to reference Ye Y, Qian J, Castillo AC, Perez-Polo JR, Birnbaum Y: Aliskiren and Valsartan reduce myocardial AT1 receptor expression and limit myocardial infarct size in diabetic mice. Cardiovasc Drugs Ther. 2011, 25 (6): 505-515. 10.1007/s10557-011-6339-z.CrossRefPubMed Ye Y, Qian J, Castillo AC, Perez-Polo JR, Birnbaum Y: Aliskiren and Valsartan reduce myocardial AT1 receptor expression and limit myocardial infarct size in diabetic mice. Cardiovasc Drugs Ther. 2011, 25 (6): 505-515. 10.1007/s10557-011-6339-z.CrossRefPubMed
18.
go back to reference Wang J, Ho L, Chen L, Zhao Z, Zhao W, Qian X, Humala N, Seror I, Bartholomew S, Rosendorff C, et al: Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J Clin Invest. 2007, 117 (11): 3393-3402. 10.1172/JCI31547.PubMedCentralCrossRefPubMed Wang J, Ho L, Chen L, Zhao Z, Zhao W, Qian X, Humala N, Seror I, Bartholomew S, Rosendorff C, et al: Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J Clin Invest. 2007, 117 (11): 3393-3402. 10.1172/JCI31547.PubMedCentralCrossRefPubMed
19.
go back to reference Sealey JE, Laragh JH: Aliskiren, the first renin inhibitor for treating hypertension: reactive renin secretion may limit its effectiveness. Am J Hypertens. 2007, 20 (5): 587-597. 10.1016/j.amjhyper.2007.04.001.CrossRefPubMed Sealey JE, Laragh JH: Aliskiren, the first renin inhibitor for treating hypertension: reactive renin secretion may limit its effectiveness. Am J Hypertens. 2007, 20 (5): 587-597. 10.1016/j.amjhyper.2007.04.001.CrossRefPubMed
20.
go back to reference Ichihara A, Suzuki F, Nakagawa T, Kaneshiro Y, Takemitsu T, Sakoda M, Nabi AH, Nishiyama A, Sugaya T, Hayashi M, et al: Prorenin receptor blockade inhibits development of glomerulosclerosis in diabetic angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol. 2006, 17 (7): 1950-1961. 10.1681/ASN.2006010029.CrossRefPubMed Ichihara A, Suzuki F, Nakagawa T, Kaneshiro Y, Takemitsu T, Sakoda M, Nabi AH, Nishiyama A, Sugaya T, Hayashi M, et al: Prorenin receptor blockade inhibits development of glomerulosclerosis in diabetic angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol. 2006, 17 (7): 1950-1961. 10.1681/ASN.2006010029.CrossRefPubMed
21.
go back to reference Huang J, Matavelli LC, Siragy HM: Renal (pro)renin receptor contributes to development of diabetic kidney disease through transforming growth factor-beta1-connective tissue growth factor signalling cascade. Clin Exp Pharmacol Physiol. 2011, 38 (4): 215-221. 10.1111/j.1440-1681.2011.05486.x.PubMedCentralCrossRefPubMed Huang J, Matavelli LC, Siragy HM: Renal (pro)renin receptor contributes to development of diabetic kidney disease through transforming growth factor-beta1-connective tissue growth factor signalling cascade. Clin Exp Pharmacol Physiol. 2011, 38 (4): 215-221. 10.1111/j.1440-1681.2011.05486.x.PubMedCentralCrossRefPubMed
22.
go back to reference Koch M, Wendorf M, Dendorfer A, Wolfrum S, Schulze K, Spillmann F, Schultheiss HP, Tschope C: Cardiac kinin level in experimental diabetes mellitus: role of kininases. Am J Physiol Heart Circ Physiol. 2003, 285 (1): H418-H423.CrossRefPubMed Koch M, Wendorf M, Dendorfer A, Wolfrum S, Schulze K, Spillmann F, Schultheiss HP, Tschope C: Cardiac kinin level in experimental diabetes mellitus: role of kininases. Am J Physiol Heart Circ Physiol. 2003, 285 (1): H418-H423.CrossRefPubMed
23.
go back to reference Westermann D, Walther T, Savvatis K, Escher F, Sobirey M, Riad A, Bader M, Schultheiss HP, Tschope C: Gene deletion of the kinin receptor B1 attenuates cardiac inflammation and fibrosis during the development of experimental diabetic cardiomyopathy. Diabetes. 2009, 58 (6): 1373-1381. 10.2337/db08-0329.PubMedCentralCrossRefPubMed Westermann D, Walther T, Savvatis K, Escher F, Sobirey M, Riad A, Bader M, Schultheiss HP, Tschope C: Gene deletion of the kinin receptor B1 attenuates cardiac inflammation and fibrosis during the development of experimental diabetic cardiomyopathy. Diabetes. 2009, 58 (6): 1373-1381. 10.2337/db08-0329.PubMedCentralCrossRefPubMed
24.
go back to reference Liu YH, Yang XP, Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA: Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors. J Clin Invest. 1997, 99 (8): 1926-1935. 10.1172/JCI119360.PubMedCentralCrossRefPubMed Liu YH, Yang XP, Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA: Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors. J Clin Invest. 1997, 99 (8): 1926-1935. 10.1172/JCI119360.PubMedCentralCrossRefPubMed
25.
go back to reference Della Bruna R, Ries S, Himmelstoss C, Kurtz A: Expression of cardiac angiotensin II AT1 receptor genes in rat hearts is regulated by steroids but not by angiotensin II. J Hypertens. 1995, 13 (7): 763-769.PubMed Della Bruna R, Ries S, Himmelstoss C, Kurtz A: Expression of cardiac angiotensin II AT1 receptor genes in rat hearts is regulated by steroids but not by angiotensin II. J Hypertens. 1995, 13 (7): 763-769.PubMed
26.
go back to reference Gasc JM, Shanmugam S, Sibony M, Corvol P: Tissue-specific expression of type 1 angiotensin II receptor subtypes. An in situ hybridization study. Hypertension. 1994, 24 (5): 531-537. 10.1161/01.HYP.24.5.531.CrossRefPubMed Gasc JM, Shanmugam S, Sibony M, Corvol P: Tissue-specific expression of type 1 angiotensin II receptor subtypes. An in situ hybridization study. Hypertension. 1994, 24 (5): 531-537. 10.1161/01.HYP.24.5.531.CrossRefPubMed
27.
go back to reference Burson JM, Aguilera G, Gross KW, Sigmund CD: Differential expression of angiotensin receptor 1A and 1B in mouse. Am J Physiol. 1994, 267 (2 Pt 1): E260-E267.PubMed Burson JM, Aguilera G, Gross KW, Sigmund CD: Differential expression of angiotensin receptor 1A and 1B in mouse. Am J Physiol. 1994, 267 (2 Pt 1): E260-E267.PubMed
28.
go back to reference Chen X, Li W, Yoshida H, Tsuchida S, Nishimura H, Takemoto F, Okubo S, Fogo A, Matsusaka T, Ichikawa I: Targeting deletion of angiotensin type 1B receptor gene in the mouse. Am J Physiol. 1997, 272 (3 Pt 2): F299-F304.PubMed Chen X, Li W, Yoshida H, Tsuchida S, Nishimura H, Takemoto F, Okubo S, Fogo A, Matsusaka T, Ichikawa I: Targeting deletion of angiotensin type 1B receptor gene in the mouse. Am J Physiol. 1997, 272 (3 Pt 2): F299-F304.PubMed
29.
go back to reference van Esch JH, Gembardt F, Sterner-Kock A, Heringer-Walther S, Le TH, Lassner D, Stijnen T, Coffman TM, Schultheiss HP, Danser AH, et al: Cardiac phenotype and angiotensin II levels in AT1a, AT1b, and AT2 receptor single, double, and triple knockouts. Cardiovasc Res. 2010, 86 (3): 401-409. 10.1093/cvr/cvq004.PubMedCentralCrossRefPubMed van Esch JH, Gembardt F, Sterner-Kock A, Heringer-Walther S, Le TH, Lassner D, Stijnen T, Coffman TM, Schultheiss HP, Danser AH, et al: Cardiac phenotype and angiotensin II levels in AT1a, AT1b, and AT2 receptor single, double, and triple knockouts. Cardiovasc Res. 2010, 86 (3): 401-409. 10.1093/cvr/cvq004.PubMedCentralCrossRefPubMed
30.
go back to reference Harada K, Komuro I, Shiojima I, Hayashi D, Kudoh S, Mizuno T, Kijima K, Matsubara H, Sugaya T, Murakami K, et al: Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice. Circulation. 1998, 97 (19): 1952-1959. 10.1161/01.CIR.97.19.1952.CrossRefPubMed Harada K, Komuro I, Shiojima I, Hayashi D, Kudoh S, Mizuno T, Kijima K, Matsubara H, Sugaya T, Murakami K, et al: Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice. Circulation. 1998, 97 (19): 1952-1959. 10.1161/01.CIR.97.19.1952.CrossRefPubMed
31.
go back to reference Tadevosyan A, Maguy A, Villeneuve LR, Babin J, Bonnefoy A, Allen BG, Nattel S: Nuclear-delimited angiotensin receptor-mediated signaling regulates cardiomyocyte gene expression. J Biol Chem. 2010, 285 (29): 22338-22349. 10.1074/jbc.M110.121749.PubMedCentralCrossRefPubMed Tadevosyan A, Maguy A, Villeneuve LR, Babin J, Bonnefoy A, Allen BG, Nattel S: Nuclear-delimited angiotensin receptor-mediated signaling regulates cardiomyocyte gene expression. J Biol Chem. 2010, 285 (29): 22338-22349. 10.1074/jbc.M110.121749.PubMedCentralCrossRefPubMed
32.
go back to reference Baker KM, Kumar R: Intracellular Angiotensin II Induces Cell Proliferation Independent of AT1 Receptor. Am J Physiol Cell Physiol. 2006, 291 (5): C995-C1001. 10.1152/ajpcell.00238.2006.CrossRefPubMed Baker KM, Kumar R: Intracellular Angiotensin II Induces Cell Proliferation Independent of AT1 Receptor. Am J Physiol Cell Physiol. 2006, 291 (5): C995-C1001. 10.1152/ajpcell.00238.2006.CrossRefPubMed
33.
go back to reference Singh VP, Baker KM, Kumar R: Activation of the Intracellular Renin-Angiotensin System in Cardiac Fibroblasts by High Glucose: Role in Extracellular Matrix Production. Am J Physiol Heart Circ Physiol. 2008, 294 (4): H1675-H1684. 10.1152/ajpheart.91493.2007.CrossRefPubMed Singh VP, Baker KM, Kumar R: Activation of the Intracellular Renin-Angiotensin System in Cardiac Fibroblasts by High Glucose: Role in Extracellular Matrix Production. Am J Physiol Heart Circ Physiol. 2008, 294 (4): H1675-H1684. 10.1152/ajpheart.91493.2007.CrossRefPubMed
34.
go back to reference Boschmann M, Nussberger J, Engeli S, Danser AH, Yeh CM, Prescott MF, Dahlke M, Jordan J: Aliskiren penetrates adipose and skeletal muscle tissue and reduces renin-angiotensin system activity in obese hypertensive patients. J Hypertens. 2012, 30 (3): 561-566. 10.1097/HJH.0b013e32834f6b43.CrossRefPubMed Boschmann M, Nussberger J, Engeli S, Danser AH, Yeh CM, Prescott MF, Dahlke M, Jordan J: Aliskiren penetrates adipose and skeletal muscle tissue and reduces renin-angiotensin system activity in obese hypertensive patients. J Hypertens. 2012, 30 (3): 561-566. 10.1097/HJH.0b013e32834f6b43.CrossRefPubMed
35.
go back to reference Feldman DL, Jin L, Xuan H, Contrepas A, Zhou Y, Webb RL, Mueller DN, Feldt S, Cumin F, Maniara W, et al: Effects of Aliskiren on Blood Pressure, Albuminuria, and (Pro)Renin Receptor Expression in Diabetic TG(mREN-2)27 Rats. Hypertension. 2008, 52 (1): 130-136. 10.1161/HYPERTENSIONAHA.107.108845.CrossRefPubMed Feldman DL, Jin L, Xuan H, Contrepas A, Zhou Y, Webb RL, Mueller DN, Feldt S, Cumin F, Maniara W, et al: Effects of Aliskiren on Blood Pressure, Albuminuria, and (Pro)Renin Receptor Expression in Diabetic TG(mREN-2)27 Rats. Hypertension. 2008, 52 (1): 130-136. 10.1161/HYPERTENSIONAHA.107.108845.CrossRefPubMed
36.
go back to reference Mimran A, Targhetta R, Laroche B: The antihypertensive effect of captopril. Evidence for an influence of kinins. Hypertension. 1980, 2 (6): 732-737. 10.1161/01.HYP.2.6.732.CrossRefPubMed Mimran A, Targhetta R, Laroche B: The antihypertensive effect of captopril. Evidence for an influence of kinins. Hypertension. 1980, 2 (6): 732-737. 10.1161/01.HYP.2.6.732.CrossRefPubMed
37.
go back to reference Erdos EG, Tan F, Skidgel RA: Angiotensin I-converting enzyme inhibitors are allosteric enhancers of kinin B1 and B2 receptor function. Hypertension. 2010, 55 (2): 214-220. 10.1161/HYPERTENSIONAHA.109.144600.PubMedCentralCrossRefPubMed Erdos EG, Tan F, Skidgel RA: Angiotensin I-converting enzyme inhibitors are allosteric enhancers of kinin B1 and B2 receptor function. Hypertension. 2010, 55 (2): 214-220. 10.1161/HYPERTENSIONAHA.109.144600.PubMedCentralCrossRefPubMed
38.
go back to reference Tschope C, Westermann D: Development of diabetic cardiomyopathy and the kallikrein-kinin system–new insights from B1 and B2 receptor signaling. Biol Chem. 2008, 389 (6): 707-711.CrossRefPubMed Tschope C, Westermann D: Development of diabetic cardiomyopathy and the kallikrein-kinin system–new insights from B1 and B2 receptor signaling. Biol Chem. 2008, 389 (6): 707-711.CrossRefPubMed
39.
go back to reference Tschope C, Walther T, Escher F, Spillmann F, Du J, Altmann C, Schimke I, Bader M, Sanchez-Ferrer CF, Schultheiss HP, et al: Transgenic activation of the kallikrein-kinin system inhibits intramyocardial inflammation, endothelial dysfunction and oxidative stress in experimental diabetic cardiomyopathy. FASEB J. 2005, 19 (14): 2057-2059.PubMed Tschope C, Walther T, Escher F, Spillmann F, Du J, Altmann C, Schimke I, Bader M, Sanchez-Ferrer CF, Schultheiss HP, et al: Transgenic activation of the kallikrein-kinin system inhibits intramyocardial inflammation, endothelial dysfunction and oxidative stress in experimental diabetic cardiomyopathy. FASEB J. 2005, 19 (14): 2057-2059.PubMed
40.
go back to reference Buleon M, Allard J, Jaafar A, Praddaude F, Dickson Z, Ranera MT, Pecher C, Girolami JP, Tack I: Pharmacological blockade of B2-kinin receptor reduces renal protective effect of angiotensin-converting enzyme inhibition in db/db mice model. Am J Physiol Renal Physiol. 2008, 294 (5): F1249-F1256. 10.1152/ajprenal.00501.2007.CrossRefPubMed Buleon M, Allard J, Jaafar A, Praddaude F, Dickson Z, Ranera MT, Pecher C, Girolami JP, Tack I: Pharmacological blockade of B2-kinin receptor reduces renal protective effect of angiotensin-converting enzyme inhibition in db/db mice model. Am J Physiol Renal Physiol. 2008, 294 (5): F1249-F1256. 10.1152/ajprenal.00501.2007.CrossRefPubMed
41.
go back to reference Iwashita M, Sakoda H, Kushiyama A, Fujishiro M, Ohno H, Nakatsu Y, Fukushima T, Kumamoto S, Tsuchiya Y, Kikuchi T, et al: Valsartan, independently of AT1 receptor or PPARgamma, suppresses LPS-induced macrophage activation and improves insulin resistance in cocultured adipocytes. Am J Physiol Endocrinol Metab. 2012, 302 (3): E286-E296. 10.1152/ajpendo.00324.2011.CrossRefPubMed Iwashita M, Sakoda H, Kushiyama A, Fujishiro M, Ohno H, Nakatsu Y, Fukushima T, Kumamoto S, Tsuchiya Y, Kikuchi T, et al: Valsartan, independently of AT1 receptor or PPARgamma, suppresses LPS-induced macrophage activation and improves insulin resistance in cocultured adipocytes. Am J Physiol Endocrinol Metab. 2012, 302 (3): E286-E296. 10.1152/ajpendo.00324.2011.CrossRefPubMed
42.
go back to reference Messadi-Laribi E, Griol-Charhbili V, Pizard A, Vincent MP, Heudes D, Meneton P, Alhenc-Gelas F, Richer C: Tissue Kallikrein Is Involved in the Cardioprotective Effect of AT1-Receptor Blockade in Acute Myocardial Ischemia. J Pharmacol Exp Ther. 2007, 323 (1): 210-216. 10.1124/jpet.107.124859.CrossRefPubMed Messadi-Laribi E, Griol-Charhbili V, Pizard A, Vincent MP, Heudes D, Meneton P, Alhenc-Gelas F, Richer C: Tissue Kallikrein Is Involved in the Cardioprotective Effect of AT1-Receptor Blockade in Acute Myocardial Ischemia. J Pharmacol Exp Ther. 2007, 323 (1): 210-216. 10.1124/jpet.107.124859.CrossRefPubMed
43.
go back to reference Biggi A, Musiari L, Iori M, De Iaco G, Magnani G, Pelloni I, Pinelli S, Pela GM, Novarini A, Cabassi A, et al: Contribution of bradykinin B2 receptors to the inhibition by valsartan of systemic and renal effects of exogenous angiotensin II in salt-repleted humans. J Pharmacol Exp Ther. 2010, 334 (3): 911-916. 10.1124/jpet.110.166942.CrossRefPubMed Biggi A, Musiari L, Iori M, De Iaco G, Magnani G, Pelloni I, Pinelli S, Pela GM, Novarini A, Cabassi A, et al: Contribution of bradykinin B2 receptors to the inhibition by valsartan of systemic and renal effects of exogenous angiotensin II in salt-repleted humans. J Pharmacol Exp Ther. 2010, 334 (3): 911-916. 10.1124/jpet.110.166942.CrossRefPubMed
44.
go back to reference Kurisu S, Ozono R, Oshima T, Kambe M, Ishida T, Sugino H, Matsuura H, Chayama K, Teranishi Y, Iba O, et al: Cardiac angiotensin II type 2 receptor activates the kinin/NO system and inhibits fibrosis. Hypertension. 2003, 41 (1): 99-107. 10.1161/01.HYP.0000050101.90932.14.CrossRefPubMed Kurisu S, Ozono R, Oshima T, Kambe M, Ishida T, Sugino H, Matsuura H, Chayama K, Teranishi Y, Iba O, et al: Cardiac angiotensin II type 2 receptor activates the kinin/NO system and inhibits fibrosis. Hypertension. 2003, 41 (1): 99-107. 10.1161/01.HYP.0000050101.90932.14.CrossRefPubMed
45.
go back to reference Campbell DJ, Zhang Y, Kelly DJ, Gilbert RE, McCarthy DJ, Shi W, Smyth GK: Aliskiren increases bradykinin and tissue kallikrein mRNA levels in the heart. Clin Exp Pharmacol Physiol. 2011, 38: 623-631. 10.1111/j.1440-1681.2011.05572.x.CrossRefPubMed Campbell DJ, Zhang Y, Kelly DJ, Gilbert RE, McCarthy DJ, Shi W, Smyth GK: Aliskiren increases bradykinin and tissue kallikrein mRNA levels in the heart. Clin Exp Pharmacol Physiol. 2011, 38: 623-631. 10.1111/j.1440-1681.2011.05572.x.CrossRefPubMed
Metadata
Title
Angiotensin type 1a receptor-deficient mice develop diabetes-induced cardiac dysfunction, which is prevented by renin-angiotensin system inhibitors
Authors
Qian Chen Yong
Candice M Thomas
Rachid Seqqat
Niketa Chandel
Kenneth M Baker
Rajesh Kumar
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2013
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/1475-2840-12-169

Other articles of this Issue 1/2013

Cardiovascular Diabetology 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.