Skip to main content
Top
Published in: Respiratory Research 1/2013

Open Access 01-12-2013 | Research

Generation of a human airway epithelium derived basal cell line with multipotent differentiation capacity

Authors: Matthew S Walters, Kazunori Gomi, Beth Ashbridge, Malcolm A S Moore, Vanessa Arbelaez, Jonna Heldrich, Bi-Sen Ding, Shahin Rafii, Michelle R Staudt, Ronald G Crystal

Published in: Respiratory Research | Issue 1/2013

Login to get access

Abstract

Background

As the multipotent progenitor population of the airway epithelium, human airway basal cells (BC) replenish the specialized differentiated cell populations of the mucociliated airway epithelium during physiological turnover and repair. Cultured primary BC divide a limited number of times before entering a state of replicative senescence, preventing the establishment of long-term replicating cultures of airway BC that maintain their original phenotype.

Methods

To generate an immortalized human airway BC cell line, primary human airway BC obtained by brushing the airway epithelium of healthy nonsmokers were infected with a retrovirus expressing human telomerase (hTERT). The resulting immortalized cell line was then characterized under non-differentiating and differentiating air-liquid interface (ALI) culture conditions using ELISA, TaqMan quantitative PCR, Western analysis, and immunofluorescent and immunohistochemical staining analysis for cell type specific markers. In addition, the ability of the cell line to respond to environmental stimuli under differentiating ALI culture was assessed.

Results

We successfully generated an immortalized human airway BC cell line termed BCi-NS1 via expression of hTERT. A single cell derived clone from the parental BCi-NS1 cells, BCi-NS1.1, retains characteristics of the original primary cells for over 40 passages and demonstrates a multipotent differentiation capacity into secretory (MUC5AC, MUC5B), goblet (TFF3), Clara (CC10) and ciliated (DNAI1, FOXJ1) cells on ALI culture. The cells can respond to external stimuli such as IL-13, resulting in alteration of the normal differentiation process.

Conclusion

Development of immortalized human airway BC that retain multipotent differentiation capacity over long-term culture should be useful in understanding the biology of BC, the response of BC to environmental stress, and as a target for assessment of pharmacologic agents.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tam A, Wadsworth S, Dorscheid D, Man SF, Sin DD: The airway epithelium: more than just a structural barrier. Ther Adv Respir Dis. 2011, 5: 255-273. 10.1177/1753465810396539.PubMedCrossRef Tam A, Wadsworth S, Dorscheid D, Man SF, Sin DD: The airway epithelium: more than just a structural barrier. Ther Adv Respir Dis. 2011, 5: 255-273. 10.1177/1753465810396539.PubMedCrossRef
2.
go back to reference Crystal RG, Randell SH, Engelhardt JF, Voynow J, Sunday ME: Airway epithelial cells: current concepts and challenges. Proc Am Thorac Soc. 2008, 5: 772-777. 10.1513/pats.200805-041HR.PubMedCrossRef Crystal RG, Randell SH, Engelhardt JF, Voynow J, Sunday ME: Airway epithelial cells: current concepts and challenges. Proc Am Thorac Soc. 2008, 5: 772-777. 10.1513/pats.200805-041HR.PubMedCrossRef
3.
go back to reference Knight DA, Holgate ST: The airway epithelium: structural and functional properties in health and disease. Respirology. 2003, 8: 432-446. 10.1046/j.1440-1843.2003.00493.x.PubMedCrossRef Knight DA, Holgate ST: The airway epithelium: structural and functional properties in health and disease. Respirology. 2003, 8: 432-446. 10.1046/j.1440-1843.2003.00493.x.PubMedCrossRef
5.
go back to reference Hajj R, Baranek T, Le NR, Lesimple P, Puchelle E, Coraux C: Basal cells of the human adult airway surface epithelium retain transit-amplifying cell properties. Stem Cells. 2007, 25: 139-148. 10.1634/stemcells.2006-0288.PubMedCrossRef Hajj R, Baranek T, Le NR, Lesimple P, Puchelle E, Coraux C: Basal cells of the human adult airway surface epithelium retain transit-amplifying cell properties. Stem Cells. 2007, 25: 139-148. 10.1634/stemcells.2006-0288.PubMedCrossRef
6.
go back to reference Hackett TL, et al: Characterization of side population cells from human airway epithelium. Stem Cells. 2008, 26: 2576-2585. 10.1634/stemcells.2008-0171.PubMedPubMedCentralCrossRef Hackett TL, et al: Characterization of side population cells from human airway epithelium. Stem Cells. 2008, 26: 2576-2585. 10.1634/stemcells.2008-0171.PubMedPubMedCentralCrossRef
7.
go back to reference Rock JR, et al: Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A. 2009, 106: 12771-12775. 10.1073/pnas.0906850106.PubMedPubMedCentralCrossRef Rock JR, et al: Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A. 2009, 106: 12771-12775. 10.1073/pnas.0906850106.PubMedPubMedCentralCrossRef
8.
go back to reference Rock JR, Randell SH, Hogan BL: Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech. 2010, 3: 545-556. 10.1242/dmm.006031.PubMedPubMedCentralCrossRef Rock JR, Randell SH, Hogan BL: Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech. 2010, 3: 545-556. 10.1242/dmm.006031.PubMedPubMedCentralCrossRef
10.
go back to reference Rock J, Konigshoff M: Endogenous lung regeneration: potential and limitations. Am J Respir Crit Care Med. 2012, 186: 1213-1219. 10.1164/rccm.201207-1151PP.PubMedCrossRef Rock J, Konigshoff M: Endogenous lung regeneration: potential and limitations. Am J Respir Crit Care Med. 2012, 186: 1213-1219. 10.1164/rccm.201207-1151PP.PubMedCrossRef
11.
go back to reference Kumar PA, et al: Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell. 2011, 147: 525-538. 10.1016/j.cell.2011.10.001.PubMedPubMedCentralCrossRef Kumar PA, et al: Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection. Cell. 2011, 147: 525-538. 10.1016/j.cell.2011.10.001.PubMedPubMedCentralCrossRef
13.
go back to reference Borthwick DW, Shahbazian M, Krantz QT, Dorin JR, Randell SH: Evidence for stem-cell niches in the tracheal epithelium. Am J Respir Cell Mol Biol. 2001, 24: 662-670. 10.1165/ajrcmb.24.6.4217.PubMedCrossRef Borthwick DW, Shahbazian M, Krantz QT, Dorin JR, Randell SH: Evidence for stem-cell niches in the tracheal epithelium. Am J Respir Cell Mol Biol. 2001, 24: 662-670. 10.1165/ajrcmb.24.6.4217.PubMedCrossRef
14.
go back to reference Cole BB, Smith RW, Jenkins KM, Graham BB, Reynolds PR, Reynolds SD: Tracheal basal cells: a facultative progenitor cell pool. Am J Pathol. 2010, 177: 362-376. 10.2353/ajpath.2010.090870.PubMedPubMedCentralCrossRef Cole BB, Smith RW, Jenkins KM, Graham BB, Reynolds PR, Reynolds SD: Tracheal basal cells: a facultative progenitor cell pool. Am J Pathol. 2010, 177: 362-376. 10.2353/ajpath.2010.090870.PubMedPubMedCentralCrossRef
15.
go back to reference Ghosh M, et al: Context-dependent differentiation of multipotential keratin 14-expressing tracheal basal cells. Am J Respir Cell Mol Biol. 2011, 45: 403-410. 10.1165/rcmb.2010-0283OC.PubMedPubMedCentralCrossRef Ghosh M, et al: Context-dependent differentiation of multipotential keratin 14-expressing tracheal basal cells. Am J Respir Cell Mol Biol. 2011, 45: 403-410. 10.1165/rcmb.2010-0283OC.PubMedPubMedCentralCrossRef
16.
go back to reference Schoch KG, Lori A, Burns KA, Eldred T, Olsen JC, Randell SH: A subset of mouse tracheal epithelial basal cells generates large colonies in vitro. Am J Physiol Lung Cell Mol Physiol. 2004, 286: L631-L642.PubMedCrossRef Schoch KG, Lori A, Burns KA, Eldred T, Olsen JC, Randell SH: A subset of mouse tracheal epithelial basal cells generates large colonies in vitro. Am J Physiol Lung Cell Mol Physiol. 2004, 286: L631-L642.PubMedCrossRef
17.
go back to reference Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR: In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. Am J Physiol Lung Cell Mol Physiol. 2004, 286: L643-L649.PubMedCrossRef Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR: In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. Am J Physiol Lung Cell Mol Physiol. 2004, 286: L643-L649.PubMedCrossRef
18.
go back to reference Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR: Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am J Pathol. 2004, 164: 577-588. 10.1016/S0002-9440(10)63147-1.PubMedPubMedCentralCrossRef Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR: Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am J Pathol. 2004, 164: 577-588. 10.1016/S0002-9440(10)63147-1.PubMedPubMedCentralCrossRef
19.
go back to reference Auerbach O, et al: Changes in the bronchial epithelium in relation to smoking and cancer of the lung; a report of progress. N Engl J Med. 1957, 256: 97-104. 10.1056/NEJM195701172560301.PubMedCrossRef Auerbach O, et al: Changes in the bronchial epithelium in relation to smoking and cancer of the lung; a report of progress. N Engl J Med. 1957, 256: 97-104. 10.1056/NEJM195701172560301.PubMedCrossRef
20.
go back to reference Beasley MB: Smoking-related small airway disease–a review and update. Adv Anat Pathol. 2010, 17: 270-276. 10.1097/PAP.0b013e3181e3bf97.PubMedCrossRef Beasley MB: Smoking-related small airway disease–a review and update. Adv Anat Pathol. 2010, 17: 270-276. 10.1097/PAP.0b013e3181e3bf97.PubMedCrossRef
21.
go back to reference Hackett NR, et al: RNA-Seq quantification of the human small airway epithelium transcriptome. BMC Genomics. 2012, 13-82. Hackett NR, et al: RNA-Seq quantification of the human small airway epithelium transcriptome. BMC Genomics. 2012, 13-82.
22.
go back to reference Kim V, et al: Small airway mucous metaplasia and inflammation in chronic obstructive pulmonary disease. COPD. 2008, 5: 329-338. 10.1080/15412550802522445.PubMedCrossRef Kim V, et al: Small airway mucous metaplasia and inflammation in chronic obstructive pulmonary disease. COPD. 2008, 5: 329-338. 10.1080/15412550802522445.PubMedCrossRef
23.
go back to reference Leopold PL, O'Mahony MJ, Lian XJ, Tilley AE, Harvey BG, Crystal RG: Smoking is associated with shortened airway cilia. PLoS One. 2009, 4: e8157-10.1371/journal.pone.0008157.PubMedPubMedCentralCrossRef Leopold PL, O'Mahony MJ, Lian XJ, Tilley AE, Harvey BG, Crystal RG: Smoking is associated with shortened airway cilia. PLoS One. 2009, 4: e8157-10.1371/journal.pone.0008157.PubMedPubMedCentralCrossRef
24.
go back to reference Shaykhiev R, et al: Cigarette smoking reprograms apical junctional complex molecular architecture in the human airway epithelium in vivo. Cell Mol Life Sci. 2011, 68: 877-892. 10.1007/s00018-010-0500-x.PubMedCrossRef Shaykhiev R, et al: Cigarette smoking reprograms apical junctional complex molecular architecture in the human airway epithelium in vivo. Cell Mol Life Sci. 2011, 68: 877-892. 10.1007/s00018-010-0500-x.PubMedCrossRef
25.
go back to reference Wistuba II, Mao L, Gazdar AF: Smoking molecular damage in bronchial epithelium. Oncogene. 2002, 21: 7298-7306. 10.1038/sj.onc.1205806.PubMedCrossRef Wistuba II, Mao L, Gazdar AF: Smoking molecular damage in bronchial epithelium. Oncogene. 2002, 21: 7298-7306. 10.1038/sj.onc.1205806.PubMedCrossRef
26.
go back to reference Hogg JC, Timens W: The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol. 2009, 4: 435-459. 10.1146/annurev.pathol.4.110807.092145.PubMedCrossRef Hogg JC, Timens W: The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol. 2009, 4: 435-459. 10.1146/annurev.pathol.4.110807.092145.PubMedCrossRef
27.
go back to reference Wistuba II, Gazdar AF: Lung cancer preneoplasia. Annu Rev Pathol. 2006, 1: 331-348. 10.1146/annurev.pathol.1.110304.100103.PubMedCrossRef Wistuba II, Gazdar AF: Lung cancer preneoplasia. Annu Rev Pathol. 2006, 1: 331-348. 10.1146/annurev.pathol.1.110304.100103.PubMedCrossRef
28.
go back to reference Tam A, Sin DD: Pathobiologic mechanisms of chronic obstructive pulmonary disease. Med Clin North Am. 2012, 96: 681-698. 10.1016/j.mcna.2012.04.012.PubMedCrossRef Tam A, Sin DD: Pathobiologic mechanisms of chronic obstructive pulmonary disease. Med Clin North Am. 2012, 96: 681-698. 10.1016/j.mcna.2012.04.012.PubMedCrossRef
29.
go back to reference Lambrecht BN, Hammad H: The airway epithelium in asthma. Nat Med. 2012, 18: 684-692. 10.1038/nm.2737.PubMedCrossRef Lambrecht BN, Hammad H: The airway epithelium in asthma. Nat Med. 2012, 18: 684-692. 10.1038/nm.2737.PubMedCrossRef
30.
go back to reference Adcock IM, Caramori G, Barnes PJ: Chronic obstructive pulmonary disease and lung cancer: new molecular insights. Respiration. 2011, 81: 265-284. 10.1159/000324601.PubMedCrossRef Adcock IM, Caramori G, Barnes PJ: Chronic obstructive pulmonary disease and lung cancer: new molecular insights. Respiration. 2011, 81: 265-284. 10.1159/000324601.PubMedCrossRef
31.
go back to reference Gray TE, Guzman K, Davis CW, Abdullah LH, Nettesheim P: Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol. 1996, 14: 104-112. 10.1165/ajrcmb.14.1.8534481.PubMedCrossRef Gray TE, Guzman K, Davis CW, Abdullah LH, Nettesheim P: Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol. 1996, 14: 104-112. 10.1165/ajrcmb.14.1.8534481.PubMedCrossRef
32.
go back to reference Widdicombe JH, Sachs LA, Morrow JL, Finkbeiner WE: Expansion of cultures of human tracheal epithelium with maintenance of differentiated structure and function. Biotechniques. 2005, 39: 249-255. 10.2144/05392RR02.PubMedCrossRef Widdicombe JH, Sachs LA, Morrow JL, Finkbeiner WE: Expansion of cultures of human tracheal epithelium with maintenance of differentiated structure and function. Biotechniques. 2005, 39: 249-255. 10.2144/05392RR02.PubMedCrossRef
33.
go back to reference Liu X, et al: ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am J Pathol. 2012, 180: 599-607. 10.1016/j.ajpath.2011.10.036.PubMedPubMedCentralCrossRef Liu X, et al: ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am J Pathol. 2012, 180: 599-607. 10.1016/j.ajpath.2011.10.036.PubMedPubMedCentralCrossRef
34.
go back to reference Suprynowicz FA, et al: Conditionally reprogrammed cells represent a stem-like state of adult epithelial cells. Proc Natl Acad Sci USA. 2012, 109: 20035-20040. 10.1073/pnas.1213241109.PubMedPubMedCentralCrossRef Suprynowicz FA, et al: Conditionally reprogrammed cells represent a stem-like state of adult epithelial cells. Proc Natl Acad Sci USA. 2012, 109: 20035-20040. 10.1073/pnas.1213241109.PubMedPubMedCentralCrossRef
35.
go back to reference Reddel RR, et al: Transformation of human bronchial epithelial cells by infection with SV40 or adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing SV40 early region genes. Cancer Res. 1988, 48: 1904-1909.PubMed Reddel RR, et al: Transformation of human bronchial epithelial cells by infection with SV40 or adenovirus-12 SV40 hybrid virus, or transfection via strontium phosphate coprecipitation with a plasmid containing SV40 early region genes. Cancer Res. 1988, 48: 1904-1909.PubMed
36.
go back to reference Yankaskas JR, et al: Papilloma virus immortalized tracheal epithelial cells retain a well-differentiated phenotype. Am J Physiol. 1993, 264: C1219-C1230.PubMed Yankaskas JR, et al: Papilloma virus immortalized tracheal epithelial cells retain a well-differentiated phenotype. Am J Physiol. 1993, 264: C1219-C1230.PubMed
37.
go back to reference Cozens AL, et al: CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol. 1994, 10: 38-47. 10.1165/ajrcmb.10.1.7507342.PubMedCrossRef Cozens AL, et al: CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol. 1994, 10: 38-47. 10.1165/ajrcmb.10.1.7507342.PubMedCrossRef
38.
go back to reference Lundberg AS, et al: Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene. 2002, 21: 4577-4586. 10.1038/sj.onc.1205550.PubMedCrossRef Lundberg AS, et al: Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene. 2002, 21: 4577-4586. 10.1038/sj.onc.1205550.PubMedCrossRef
39.
go back to reference Zabner J, et al: Development of cystic fibrosis and noncystic fibrosis airway cell lines. Am J Physiol Lung Cell Mol Physiol. 2003, 284: L844-L854.PubMedCrossRef Zabner J, et al: Development of cystic fibrosis and noncystic fibrosis airway cell lines. Am J Physiol Lung Cell Mol Physiol. 2003, 284: L844-L854.PubMedCrossRef
40.
go back to reference Halldorsson S, et al: Differentiation potential of a basal epithelial cell line established from human bronchial explant. In Vitro Cell Dev Biol Anim. 2007, 43: 283-289. 10.1007/s11626-007-9050-4.PubMedCrossRef Halldorsson S, et al: Differentiation potential of a basal epithelial cell line established from human bronchial explant. In Vitro Cell Dev Biol Anim. 2007, 43: 283-289. 10.1007/s11626-007-9050-4.PubMedCrossRef
41.
go back to reference Gruenert DC, Basbaum CB, Welsh MJ, Li M, Finkbeiner WE, Nadel JA: Characterization of human tracheal epithelial cells transformed by an origin-defective simian virus 40. Proc Natl Acad Sci U S A. 1988, 85: 5951-5955. 10.1073/pnas.85.16.5951.PubMedPubMedCentralCrossRef Gruenert DC, Basbaum CB, Welsh MJ, Li M, Finkbeiner WE, Nadel JA: Characterization of human tracheal epithelial cells transformed by an origin-defective simian virus 40. Proc Natl Acad Sci U S A. 1988, 85: 5951-5955. 10.1073/pnas.85.16.5951.PubMedPubMedCentralCrossRef
42.
go back to reference Ramirez RD, et al: Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins. Cancer Res. 2004, 64: 9027-9034. 10.1158/0008-5472.CAN-04-3703.PubMedCrossRef Ramirez RD, et al: Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins. Cancer Res. 2004, 64: 9027-9034. 10.1158/0008-5472.CAN-04-3703.PubMedCrossRef
43.
go back to reference Piao CQ, Liu L, Zhao YL, Balajee AS, Suzuki M, Hei TK: Immortalization of human small airway epithelial cells by ectopic expression of telomerase. Carcinogenesis. 2005, 26: 725-731. 10.1093/carcin/bgi016.PubMedCrossRef Piao CQ, Liu L, Zhao YL, Balajee AS, Suzuki M, Hei TK: Immortalization of human small airway epithelial cells by ectopic expression of telomerase. Carcinogenesis. 2005, 26: 725-731. 10.1093/carcin/bgi016.PubMedCrossRef
44.
go back to reference Yeager TR, Reddel RR: Constructing immortalized human cell lines. Curr Opin Biotechnol. 1999, 10: 465-469. 10.1016/S0958-1669(99)00011-7.PubMedCrossRef Yeager TR, Reddel RR: Constructing immortalized human cell lines. Curr Opin Biotechnol. 1999, 10: 465-469. 10.1016/S0958-1669(99)00011-7.PubMedCrossRef
45.
go back to reference Lee KM, Choi KH, Ouellette MM: Use of exogenous hTERT to immortalize primary human cells. Cytotechnology. 2004, 45: 33-38. 10.1007/10.1007/s10616-004-5123-3.PubMedPubMedCentralCrossRef Lee KM, Choi KH, Ouellette MM: Use of exogenous hTERT to immortalize primary human cells. Cytotechnology. 2004, 45: 33-38. 10.1007/10.1007/s10616-004-5123-3.PubMedPubMedCentralCrossRef
46.
47.
go back to reference Harvey BG, Heguy A, Leopold PL, Carolan BJ, Ferris B, Crystal RG: Modification of gene expression of the small airway epithelium in response to cigarette smoking. J Mol. Med (Berl). 2007, 85: 39-53.CrossRef Harvey BG, Heguy A, Leopold PL, Carolan BJ, Ferris B, Crystal RG: Modification of gene expression of the small airway epithelium in response to cigarette smoking. J Mol. Med (Berl). 2007, 85: 39-53.CrossRef
48.
go back to reference Hackett NR, et al: Variability of antioxidant-related gene expression in the airway epithelium of cigarette smokers. Am J Respir Cell Mol Biol. 2003, 29: 331-343. 10.1165/rcmb.2002-0321OC.PubMedCrossRef Hackett NR, et al: Variability of antioxidant-related gene expression in the airway epithelium of cigarette smokers. Am J Respir Cell Mol Biol. 2003, 29: 331-343. 10.1165/rcmb.2002-0321OC.PubMedCrossRef
49.
go back to reference Heguy A, Harvey BG, Leopold PL, Dolgalev I, Raman T, Crystal RG: Responses of the human airway epithelium transcriptome to in vivo injury. Physiol Genomics. 2007, 29: 139-148.PubMedCrossRef Heguy A, Harvey BG, Leopold PL, Dolgalev I, Raman T, Crystal RG: Responses of the human airway epithelium transcriptome to in vivo injury. Physiol Genomics. 2007, 29: 139-148.PubMedCrossRef
50.
go back to reference Curradi G, Walters MS, Ding BS, Rafii S, Hackett NR, Crystal RG: Airway basal cell vascular endothelial growth factor-mediated cross-talk regulates endothelial cell-dependent growth support of human airway basal cells. Cell Mol Life Sci. 2012, 69: 2217-2231. 10.1007/s00018-012-0922-8.PubMedPubMedCentralCrossRef Curradi G, Walters MS, Ding BS, Rafii S, Hackett NR, Crystal RG: Airway basal cell vascular endothelial growth factor-mediated cross-talk regulates endothelial cell-dependent growth support of human airway basal cells. Cell Mol Life Sci. 2012, 69: 2217-2231. 10.1007/s00018-012-0922-8.PubMedPubMedCentralCrossRef
51.
go back to reference Morgenstern JP, Land H: Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 1990, 18: 3587-3596. 10.1093/nar/18.12.3587.PubMedPubMedCentralCrossRef Morgenstern JP, Land H: Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 1990, 18: 3587-3596. 10.1093/nar/18.12.3587.PubMedPubMedCentralCrossRef
52.
go back to reference Tabach Y, et al: Amplification of the 20q chromosomal arm occurs early in tumorigenic transformation and may initiate cancer. PLoS One. 2011, 6: e14632-10.1371/journal.pone.0014632.PubMedPubMedCentralCrossRef Tabach Y, et al: Amplification of the 20q chromosomal arm occurs early in tumorigenic transformation and may initiate cancer. PLoS One. 2011, 6: e14632-10.1371/journal.pone.0014632.PubMedPubMedCentralCrossRef
53.
go back to reference Atherton HC, Jones G, Danahay H: IL-13-induced changes in the goblet cell density of human bronchial epithelial cell cultures: MAP kinase and phosphatidylinositol 3-kinase regulation. Am J Physiol Lung Cell Mol Physiol. 2003, 285: L730-L739.PubMedCrossRef Atherton HC, Jones G, Danahay H: IL-13-induced changes in the goblet cell density of human bronchial epithelial cell cultures: MAP kinase and phosphatidylinositol 3-kinase regulation. Am J Physiol Lung Cell Mol Physiol. 2003, 285: L730-L739.PubMedCrossRef
54.
go back to reference Prytherch Z, Job C, Marshall H, Oreffo V, Foster M, BeruBe K: Tissue-specific stem cell differentiation in an in vitro airway model. Macromol Biosci. 2011, 11: 1467-1477.PubMed Prytherch Z, Job C, Marshall H, Oreffo V, Foster M, BeruBe K: Tissue-specific stem cell differentiation in an in vitro airway model. Macromol Biosci. 2011, 11: 1467-1477.PubMed
55.
go back to reference Zhen G, et al: IL-13 and epidermal growth factor receptor have critical but distinct roles in epithelial cell mucin production. Am J Respir Cell Mol Biol. 2007, 36: 244-253. 10.1165/rcmb.2006-0180OC.PubMedPubMedCentralCrossRef Zhen G, et al: IL-13 and epidermal growth factor receptor have critical but distinct roles in epithelial cell mucin production. Am J Respir Cell Mol Biol. 2007, 36: 244-253. 10.1165/rcmb.2006-0180OC.PubMedPubMedCentralCrossRef
56.
go back to reference Gomperts BN, Kim LJ, Flaherty SA, Hackett BP: IL-13 regulates cilia loss and foxj1 expression in human airway epithelium. Am J Respir Cell Mol Biol. 2007, 37: 339-346. 10.1165/rcmb.2006-0400OC.PubMedPubMedCentralCrossRef Gomperts BN, Kim LJ, Flaherty SA, Hackett BP: IL-13 regulates cilia loss and foxj1 expression in human airway epithelium. Am J Respir Cell Mol Biol. 2007, 37: 339-346. 10.1165/rcmb.2006-0400OC.PubMedPubMedCentralCrossRef
57.
go back to reference Stewart CE, Torr EE, Mohd Jamili NH, Bosquillon C, Sayers I: Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. J Allergy (Cairo. ). 2012, 943982- Stewart CE, Torr EE, Mohd Jamili NH, Bosquillon C, Sayers I: Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. J Allergy (Cairo. ). 2012, 943982-
58.
go back to reference Benediktsdottir BE, Arason AJ, Halldorsson S, Gudjonsson T, Masson M, Baldursson O: Drug delivery characteristics of the progenitor bronchial epithelial cell line VA10. Pharm Res. 2013, 30: 781-791. 10.1007/s11095-012-0919-x.PubMedCrossRef Benediktsdottir BE, Arason AJ, Halldorsson S, Gudjonsson T, Masson M, Baldursson O: Drug delivery characteristics of the progenitor bronchial epithelial cell line VA10. Pharm Res. 2013, 30: 781-791. 10.1007/s11095-012-0919-x.PubMedCrossRef
59.
go back to reference Sato M, et al: Multiple oncogenic changes (K-RAS(V12), p53 knockdown, mutant EGFRs, p16 bypass, telomerase) are not sufficient to confer a full malignant phenotype on human bronchial epithelial cells. Cancer Res. 2006, 66: 2116-2128. 10.1158/0008-5472.CAN-05-2521.PubMedCrossRef Sato M, et al: Multiple oncogenic changes (K-RAS(V12), p53 knockdown, mutant EGFRs, p16 bypass, telomerase) are not sufficient to confer a full malignant phenotype on human bronchial epithelial cells. Cancer Res. 2006, 66: 2116-2128. 10.1158/0008-5472.CAN-05-2521.PubMedCrossRef
60.
go back to reference Vaughan MB, Ramirez RD, Wright WE, Minna JD, Shay JW: A three-dimensional model of differentiation of immortalized human bronchial epithelial cells. Differentiation. 2006, 74: 141-148. 10.1111/j.1432-0436.2006.00069.x.PubMedCrossRef Vaughan MB, Ramirez RD, Wright WE, Minna JD, Shay JW: A three-dimensional model of differentiation of immortalized human bronchial epithelial cells. Differentiation. 2006, 74: 141-148. 10.1111/j.1432-0436.2006.00069.x.PubMedCrossRef
61.
Metadata
Title
Generation of a human airway epithelium derived basal cell line with multipotent differentiation capacity
Authors
Matthew S Walters
Kazunori Gomi
Beth Ashbridge
Malcolm A S Moore
Vanessa Arbelaez
Jonna Heldrich
Bi-Sen Ding
Shahin Rafii
Michelle R Staudt
Ronald G Crystal
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2013
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-14-135

Other articles of this Issue 1/2013

Respiratory Research 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.