Skip to main content
Top
Published in: Respiratory Research 1/2012

Open Access 01-12-2012 | Research

Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis

Authors: Lonneke Smeding, Frans B Plötz, Regis R Lamberts, Willem J van der Laarse, Martin CJ Kneyber, AB Johan Groeneveld

Published in: Respiratory Research | Issue 1/2012

Login to get access

Abstract

Background

Injurious mechanical ventilation (MV) may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investigated the effects of MV with injuriously high tidal volumes on the myocardium in an animal model of sepsis.

Methods

Normal rats and intraperitoneal (i.p.) lipopolysaccharide (LPS)-treated rats were ventilated with low (6 ml/kg) and high (19 ml/kg) tidal volumes (Vt) under general anesthesia. Non-ventilated animals served as controls. Mean arterial pressure (MAP), central venous pressure (CVP), cardiac output (CO) and pulmonary plateau pressure (Pplat) were measured. Ex vivo myocardial function was measured in isolated Langendorff-perfused hearts. Cardiac expression of endothelial vascular cell adhesion molecule (VCAM)-1 and edema were measured to evaluate endothelial inflammation and leakage.

Results

MAP decreased after LPS-treatment and Vt-dependently, both independent of each other and with interaction. MV Vt-dependently increased CVP and Pplat and decreased CO. LPS-induced peritonitis decreased myocardial function ex vivo but MV attenuated systolic dysfunction Vt-dependently. Cardiac endothelial VCAM-1 expression was increased by LPS treatment independent of MV. Cardiac edema was lowered Vt-dependently by MV, particularly after LPS, and correlated inversely with systolic myocardial function parameters ex vivo.

Conclusion

MV attenuated LPS-induced systolic myocardial dysfunction in a Vt-dependent manner. This was associated with a reduction in cardiac edema following a lower transmural coronary venous outflow pressure during LPS-induced coronary inflammation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Groeneveld AB, Bronsveld W, Thijs LG: Hemodynamic determinants of mortality in human septic shock. Surgery. 1986, 99: 140-153.PubMed Groeneveld AB, Bronsveld W, Thijs LG: Hemodynamic determinants of mortality in human septic shock. Surgery. 1986, 99: 140-153.PubMed
2.
go back to reference Rudiger A, Singer M: Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med. 2007, 35: 1599-1608. 10.1097/01.CCM.0000266683.64081.02.PubMedCrossRef Rudiger A, Singer M: Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med. 2007, 35: 1599-1608. 10.1097/01.CCM.0000266683.64081.02.PubMedCrossRef
3.
go back to reference Aird WC: The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood. 2003, 101: 3765-3777. 10.1182/blood-2002-06-1887.PubMedCrossRef Aird WC: The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood. 2003, 101: 3765-3777. 10.1182/blood-2002-06-1887.PubMedCrossRef
4.
go back to reference Henninger DD, Panes J, Eppihimer M, Russell J, Gerritsen M, Anderson DC, Granger DN, et al: Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. J Immunol. 1997, 158: 1825-32.PubMed Henninger DD, Panes J, Eppihimer M, Russell J, Gerritsen M, Anderson DC, Granger DN, et al: Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. J Immunol. 1997, 158: 1825-32.PubMed
5.
go back to reference Marcus BC, Wyble CW, Hynes KL, Gewertz BL: Cytokine-induced increases in endothelial permeability occur after adhesion molecule expression. Surgery. 1996, 120: 411-416. 10.1016/S0039-6060(96)80317-5.PubMedCrossRef Marcus BC, Wyble CW, Hynes KL, Gewertz BL: Cytokine-induced increases in endothelial permeability occur after adhesion molecule expression. Surgery. 1996, 120: 411-416. 10.1016/S0039-6060(96)80317-5.PubMedCrossRef
6.
go back to reference Xu H, Ye X, Steinberg H, Liu SF: Selective blockade of endothelial NF-kappaB pathway differentially affects systemic inflammation and multiple organ dysfunction and injury in septic mice. J Pathol. 2010, 220: 490-498.PubMed Xu H, Ye X, Steinberg H, Liu SF: Selective blockade of endothelial NF-kappaB pathway differentially affects systemic inflammation and multiple organ dysfunction and injury in septic mice. J Pathol. 2010, 220: 490-498.PubMed
7.
go back to reference Goddard CM, Allard MF, Hogg JC, Walley KR: Myocardial morphometric changes related to decreased contractility after endotoxin. Am J Physiol. 1996, 270: H1446-H1452.PubMed Goddard CM, Allard MF, Hogg JC, Walley KR: Myocardial morphometric changes related to decreased contractility after endotoxin. Am J Physiol. 1996, 270: H1446-H1452.PubMed
8.
go back to reference Laine GA: Change in (dP/dt)max as an index of myocardial microvascular permeability. Circ Res. 1987, 61: 203-208.PubMedCrossRef Laine GA: Change in (dP/dt)max as an index of myocardial microvascular permeability. Circ Res. 1987, 61: 203-208.PubMedCrossRef
9.
go back to reference Smeding L, Lust E, Plotz FB, Groeneveld AB: Clinical implications of heart-lung interactions. Neth J Med. 2010, 68: 56-61.PubMed Smeding L, Lust E, Plotz FB, Groeneveld AB: Clinical implications of heart-lung interactions. Neth J Med. 2010, 68: 56-61.PubMed
10.
go back to reference Utsunomiya T, Krausz MM, Dunham B, Shepro D, Hechtman HB: Depression of myocardial ATPase activity by plasma obtained during positive end-expiratory pressure. Surgery. 1982, 91: 322-328.PubMed Utsunomiya T, Krausz MM, Dunham B, Shepro D, Hechtman HB: Depression of myocardial ATPase activity by plasma obtained during positive end-expiratory pressure. Surgery. 1982, 91: 322-328.PubMed
11.
go back to reference Villar J, Blanco J, Zhang H, Slutsky AS: Ventilator-induced lung injury and sepsis: two sides of the same coin?. Minerva Anestesiol. 2011, 77: 647-653.PubMed Villar J, Blanco J, Zhang H, Slutsky AS: Ventilator-induced lung injury and sepsis: two sides of the same coin?. Minerva Anestesiol. 2011, 77: 647-653.PubMed
12.
go back to reference Ranieri VM, Giunta F, Suter PM, Slutsky AS: Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA. 2000, 284: 43-44. 10.1001/jama.284.1.43.PubMedCrossRef Ranieri VM, Giunta F, Suter PM, Slutsky AS: Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA. 2000, 284: 43-44. 10.1001/jama.284.1.43.PubMedCrossRef
13.
go back to reference Choi WI, Quinn DA, Park KM, Moufarrej RK, Jafari B, Syrkina O, Bonventre JV, Hales CA: Systemic microvascular leak in an in vivo rat model of ventilator-induced lung injury. Am J RespirCrit Care Med. 2003, 167: 1627-32. 10.1164/rccm.200210-1216OC.CrossRef Choi WI, Quinn DA, Park KM, Moufarrej RK, Jafari B, Syrkina O, Bonventre JV, Hales CA: Systemic microvascular leak in an in vivo rat model of ventilator-induced lung injury. Am J RespirCrit Care Med. 2003, 167: 1627-32. 10.1164/rccm.200210-1216OC.CrossRef
14.
go back to reference Kuiper JW, Groeneveld AB, Slutsky AS, Plotz FB: Mechanical ventilation and acute renal failure. Crit Care Med. 2005, 33: 1408-1415. 10.1097/01.CCM.0000165808.30416.EF.PubMedCrossRef Kuiper JW, Groeneveld AB, Slutsky AS, Plotz FB: Mechanical ventilation and acute renal failure. Crit Care Med. 2005, 33: 1408-1415. 10.1097/01.CCM.0000165808.30416.EF.PubMedCrossRef
15.
go back to reference Jaecklin T, Engelberts D, Otulakowski G, O'Brodovich H, Post M, Kavanagh BP: Lung-derived soluble mediators are pathogenic in ventilator-induced lung injury. Am J Physiol Lung Cell MolPhysiol. 2011, 300: L648-L658. 10.1152/ajplung.00305.2010.CrossRef Jaecklin T, Engelberts D, Otulakowski G, O'Brodovich H, Post M, Kavanagh BP: Lung-derived soluble mediators are pathogenic in ventilator-induced lung injury. Am J Physiol Lung Cell MolPhysiol. 2011, 300: L648-L658. 10.1152/ajplung.00305.2010.CrossRef
16.
go back to reference Markovic N, McCaig LA, Stephen J, Mizuguchi S, Veldhuizen RA, Lewis JF, Cepinskas G: Mediators released from LPS-challenged lungs induce inflammatory responses in liver vascular endothelial cells and neutrophilic leukocytes. Am J PhysiolGastrointest Liver Physiol. 2009, 297: G1066-G1076. 10.1152/ajpgi.00278.2009.CrossRef Markovic N, McCaig LA, Stephen J, Mizuguchi S, Veldhuizen RA, Lewis JF, Cepinskas G: Mediators released from LPS-challenged lungs induce inflammatory responses in liver vascular endothelial cells and neutrophilic leukocytes. Am J PhysiolGastrointest Liver Physiol. 2009, 297: G1066-G1076. 10.1152/ajpgi.00278.2009.CrossRef
17.
go back to reference Nijveldt RJ, Prins HA, van Kemenade FJ, Teerlink T, van Lambalgen AA, Boelens PG, Rauwerda JA, van Leeuwen PA: Low arginine plasma levels do not aggravate renal blood flow after experimental renal ischaemia/reperfusion. Eur J VascEndovascSurg. 2001, 22: 232-239. Nijveldt RJ, Prins HA, van Kemenade FJ, Teerlink T, van Lambalgen AA, Boelens PG, Rauwerda JA, van Leeuwen PA: Low arginine plasma levels do not aggravate renal blood flow after experimental renal ischaemia/reperfusion. Eur J VascEndovascSurg. 2001, 22: 232-239.
18.
go back to reference Lamberts RR, Vaessen RJ, Westerhof N, Stienen GJ: Right ventricular hypertrophy causes impairment of left ventricular diastolic function in the rat. Basic Res Cardiol. 2007, 102: 19-27. 10.1007/s00395-006-0620-5.PubMedCrossRef Lamberts RR, Vaessen RJ, Westerhof N, Stienen GJ: Right ventricular hypertrophy causes impairment of left ventricular diastolic function in the rat. Basic Res Cardiol. 2007, 102: 19-27. 10.1007/s00395-006-0620-5.PubMedCrossRef
19.
go back to reference Grandel U, Bennemann U, Buerke M, Hattar K, Seeger W, Grimminger F, Sibelius U: Staphylococcus aureus alpha-toxin and Escherichia coli hemolysin impair cardiac regional perfusion and contractile function by activating myocardial eicosanoid metabolism in isolated rat hearts. Crit Care Med. 2009, 37: 2025-2032. 10.1097/CCM.0b013e31819fff00.PubMedCrossRef Grandel U, Bennemann U, Buerke M, Hattar K, Seeger W, Grimminger F, Sibelius U: Staphylococcus aureus alpha-toxin and Escherichia coli hemolysin impair cardiac regional perfusion and contractile function by activating myocardial eicosanoid metabolism in isolated rat hearts. Crit Care Med. 2009, 37: 2025-2032. 10.1097/CCM.0b013e31819fff00.PubMedCrossRef
20.
go back to reference Leemreis JR, Versteilen AM, Sipkema P, Groeneveld AB, Musters RJ: Digital image analysis of cytoskeletal F-actin disintegration in renal microvascular endothelium following ischemia/reperfusion. Cytometry A. 2006, 69: 973-978.PubMedCrossRef Leemreis JR, Versteilen AM, Sipkema P, Groeneveld AB, Musters RJ: Digital image analysis of cytoskeletal F-actin disintegration in renal microvascular endothelium following ischemia/reperfusion. Cytometry A. 2006, 69: 973-978.PubMedCrossRef
21.
go back to reference Dyson A, Singer M: Animal models of sepsis: why does preclinical efficacy fail to translate to the clinical setting?. Crit Care Med. 2009, 37: S30-S37. 10.1097/CCM.0b013e3181922bd3.PubMedCrossRef Dyson A, Singer M: Animal models of sepsis: why does preclinical efficacy fail to translate to the clinical setting?. Crit Care Med. 2009, 37: S30-S37. 10.1097/CCM.0b013e3181922bd3.PubMedCrossRef
22.
go back to reference Villar J, Cabrera NE, Casula M, Valladares F, Flores C, Lopez-Aguilar J, Blanch L, Zhang H, Kacmarek RM, Slutsky AS: WNT/beta-catenin signaling is modulated by mechanical ventilation in an experimental model of acute lung injury. Intensive Care Med. 2011, 37: 1201-1209. 10.1007/s00134-011-2234-0.PubMedCrossRef Villar J, Cabrera NE, Casula M, Valladares F, Flores C, Lopez-Aguilar J, Blanch L, Zhang H, Kacmarek RM, Slutsky AS: WNT/beta-catenin signaling is modulated by mechanical ventilation in an experimental model of acute lung injury. Intensive Care Med. 2011, 37: 1201-1209. 10.1007/s00134-011-2234-0.PubMedCrossRef
23.
go back to reference Herrera MT, Toledo C, Valladares F, Muros M, Diaz-Flores L, Flores C, Villar J: Positive end-expiratory pressure modulates local and systemic inflammatory responses in a sepsis-induced lung injury model. Intensive Care Med. 2003, 29: 1345-1353. 10.1007/s00134-003-1756-5.PubMedCrossRef Herrera MT, Toledo C, Valladares F, Muros M, Diaz-Flores L, Flores C, Villar J: Positive end-expiratory pressure modulates local and systemic inflammatory responses in a sepsis-induced lung injury model. Intensive Care Med. 2003, 29: 1345-1353. 10.1007/s00134-003-1756-5.PubMedCrossRef
24.
go back to reference Raeburn CD, Calkins CM, Zimmerman MA, Song Y, Ao L, Banerjee A, Harken AH, Meng X: ICAM-1 and VCAM-1 mediate endotoxemic myocardial dysfunction independent of neutrophil accumulation. Am J PhysiolRegulIntegr Comp Physiol. 2002, 283: R477-R486.CrossRef Raeburn CD, Calkins CM, Zimmerman MA, Song Y, Ao L, Banerjee A, Harken AH, Meng X: ICAM-1 and VCAM-1 mediate endotoxemic myocardial dysfunction independent of neutrophil accumulation. Am J PhysiolRegulIntegr Comp Physiol. 2002, 283: R477-R486.CrossRef
25.
go back to reference Chapin JC, Downs JB, Douglas ME, Murphy EJ, Ruiz BC: Lung expansion, airway pressure transmission, and positive end-expiratory pressure. Arch Surg. 1979, 114: 1193-1197. 10.1001/archsurg.1979.01370340099017.PubMedCrossRef Chapin JC, Downs JB, Douglas ME, Murphy EJ, Ruiz BC: Lung expansion, airway pressure transmission, and positive end-expiratory pressure. Arch Surg. 1979, 114: 1193-1197. 10.1001/archsurg.1979.01370340099017.PubMedCrossRef
26.
go back to reference Rubboli A, Sobotka PA, Euler DE: Effect of acute edema on left ventricular function and coronary vascular resistance in the isolated rat heart. Am J Physiol. 1994, 267: H1054-H1061.PubMed Rubboli A, Sobotka PA, Euler DE: Effect of acute edema on left ventricular function and coronary vascular resistance in the isolated rat heart. Am J Physiol. 1994, 267: H1054-H1061.PubMed
27.
go back to reference Fischer UM, Cox CS, Stewart RH, Laine GA, Allen SJ: Impact of acute myocardial edema on left ventricular function. J Invest Surg. 2006, 19: 31-8. 10.1080/08941930500444438.PubMedCrossRef Fischer UM, Cox CS, Stewart RH, Laine GA, Allen SJ: Impact of acute myocardial edema on left ventricular function. J Invest Surg. 2006, 19: 31-8. 10.1080/08941930500444438.PubMedCrossRef
28.
go back to reference Gurkan OU, O'Donnell C, Brower R, Ruckdeschel E, Becker PM: Differential effects of mechanical ventilatory strategy on lung injury and systemic organ inflammation in mice. Am J Physiol Lung Cell MolPhysiol. 2003, 285: L710-L718.CrossRef Gurkan OU, O'Donnell C, Brower R, Ruckdeschel E, Becker PM: Differential effects of mechanical ventilatory strategy on lung injury and systemic organ inflammation in mice. Am J Physiol Lung Cell MolPhysiol. 2003, 285: L710-L718.CrossRef
29.
go back to reference Bell RM, Mocanu MM, Yellon DM: Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol. 2011, 50: 940-950. 10.1016/j.yjmcc.2011.02.018.PubMedCrossRef Bell RM, Mocanu MM, Yellon DM: Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol. 2011, 50: 940-950. 10.1016/j.yjmcc.2011.02.018.PubMedCrossRef
Metadata
Title
Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis
Authors
Lonneke Smeding
Frans B Plötz
Regis R Lamberts
Willem J van der Laarse
Martin CJ Kneyber
AB Johan Groeneveld
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2012
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-13-23

Other articles of this Issue 1/2012

Respiratory Research 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.