Skip to main content
Top
Published in: Current Oral Health Reports 4/2018

01-12-2018 | Epidemiology (M Laine, Section Editor)

Age and Periodontal Health—Immunological View

Authors: Jeffrey L. Ebersole, D. A. Dawson III, P. Emecen Huja, S. Pandruvada, A. Basu, L. Nguyen, Y. Zhang, O. A. Gonzalez

Published in: Current Oral Health Reports | Issue 4/2018

Login to get access

Abstract

Purpose of the Review

Aging clearly impacts a wide array of systems, in particular the breadth of the immune system leading to immunosenescence, altered immunoactivation, and coincident inflammaging processes. The net result of these changes leads to increased susceptibility to infections, increased neoplastic occurrences, and elevated frequency of autoimmune diseases with aging. However, as the bacteria in the oral microbiome that contribute to the chronic infection of periodontitis is acquired earlier in life, the characteristics of the innate and adaptive immune systems to regulate these members of the autochthonous microbiota across the lifespan remains ill-defined.

Recent Findings

Clear data demonstrate that both cells and molecules of the innate and adaptive immune response are adversely impacted by aging, including in the oral cavity, yielding a reasonable tenet that the increased periodontitis noted in aging populations is reflective of the age-associated immune dysregulation. Additionally, this facet of host-microbe interactions and disease needs to accommodate the population variation in disease onset and progression, which may also reflect an accumulation of environmental stressors and/or decreased protective nutrients that could function at the gene level (i.e., epigenetic) or translational level for production and secretion of immune system molecules.

Summary

Finally, the majority of studies of aging and periodontitis have emphasized the increased prevalence/severity of disease with aging, all based upon chronological age. However, evolving areas of study focusing on “biological aging” to help account for population variation in disease expression may suggest that chronic periodontitis represents a co-morbidity that contributes to “gerovulnerability” within the population.
Appendix
Available only for authorised users
Literature
1.
go back to reference O’Connor JE, Herrera G, Martínez-Romero A, de Oyanguren FS, Díaz L, Gomes A, et al. Systems biology and immune aging. Immunol Lett. 2014;162(1 Pt B):334–45.PubMedCrossRef O’Connor JE, Herrera G, Martínez-Romero A, de Oyanguren FS, Díaz L, Gomes A, et al. Systems biology and immune aging. Immunol Lett. 2014;162(1 Pt B):334–45.PubMedCrossRef
2.
go back to reference Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S4–9.PubMedCrossRef Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S4–9.PubMedCrossRef
3.
go back to reference Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol. 2014;30(1):16–22.PubMedCrossRef Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol. 2014;30(1):16–22.PubMedCrossRef
4.
go back to reference Taverna G, et al. Senescent remodeling of the innate and adaptive immune system in the elderly men with prostate cancer. Curr Gerontol Geriatr Res. 2014;2014:478126.PubMedPubMedCentralCrossRef Taverna G, et al. Senescent remodeling of the innate and adaptive immune system in the elderly men with prostate cancer. Curr Gerontol Geriatr Res. 2014;2014:478126.PubMedPubMedCentralCrossRef
5.
go back to reference Mabbott NA, Kobayashi A, Sehgal A, Bradford BM, Pattison M, Donaldson DS. Aging and the mucosal immune system in the intestine. Biogerontology. 2015;16(2):133–45.PubMedCrossRef Mabbott NA, Kobayashi A, Sehgal A, Bradford BM, Pattison M, Donaldson DS. Aging and the mucosal immune system in the intestine. Biogerontology. 2015;16(2):133–45.PubMedCrossRef
6.
go back to reference Ebersole JL, Graves CL, Gonzalez OA, Dawson D III, Morford LA, Huja PE, et al. Aging, inflammation, immunity and periodontal disease. Periodontol. 2016;72(1):54–75.CrossRef Ebersole JL, Graves CL, Gonzalez OA, Dawson D III, Morford LA, Huja PE, et al. Aging, inflammation, immunity and periodontal disease. Periodontol. 2016;72(1):54–75.CrossRef
8.
go back to reference Eke PI, et al. Update on prevalence of periodontitis in adults in the United States: NHANES 2009-2012. J Periodontol. 2015:1–18. Eke PI, et al. Update on prevalence of periodontitis in adults in the United States: NHANES 2009-2012. J Periodontol. 2015:1–18.
9.
go back to reference Baelum V, Lopez R. Periodontal disease epidemiology—learned and unlearned? Periodontol. 2013;62(1):37–58.CrossRef Baelum V, Lopez R. Periodontal disease epidemiology—learned and unlearned? Periodontol. 2013;62(1):37–58.CrossRef
10.
go back to reference Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res. 2012;91(10):914–20.PubMedCrossRef Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res. 2012;91(10):914–20.PubMedCrossRef
11.
go back to reference Eke PI, Zhang X, Lu H, Wei L, Thornton-Evans G, Greenlund KJ, et al. Predicting periodontitis at state and local levels in the United States. J Dent Res. 2016;95(5):515–22.PubMedCrossRef Eke PI, Zhang X, Lu H, Wei L, Thornton-Evans G, Greenlund KJ, et al. Predicting periodontitis at state and local levels in the United States. J Dent Res. 2016;95(5):515–22.PubMedCrossRef
12.
go back to reference Saraiva L, Rebeis ES, Martins ES, Sekiguchi RT, Ando-Suguimoto ES, Mafra CES, et al. IgG sera levels against a subset of periodontopathogens and severity of disease in aggressive periodontitis patients: a cross-sectional study of selected pocket sites. J Clin Periodontol. 2014;41(10):943–51.PubMedCrossRef Saraiva L, Rebeis ES, Martins ES, Sekiguchi RT, Ando-Suguimoto ES, Mafra CES, et al. IgG sera levels against a subset of periodontopathogens and severity of disease in aggressive periodontitis patients: a cross-sectional study of selected pocket sites. J Clin Periodontol. 2014;41(10):943–51.PubMedCrossRef
13.
go back to reference Hwang AM, Stoupel J, Celenti R, Demmer RT, Papapanou PN. Serum antibody responses to periodontal microbiota in chronic and aggressive periodontitis: a postulate revisited. J Periodontol. 2014;85(4):592–600.PubMedCrossRef Hwang AM, Stoupel J, Celenti R, Demmer RT, Papapanou PN. Serum antibody responses to periodontal microbiota in chronic and aggressive periodontitis: a postulate revisited. J Periodontol. 2014;85(4):592–600.PubMedCrossRef
14.
go back to reference • Ebersole JL, Dawson DR III, Morford LA, Peyyala R, Miller CS, Gonzaléz OA. Periodontal disease immunology: ‘double indemnity’ in protecting the host. Periodontol 2000. 2013;62(1):163–202 This article provides an overview of the breadth of armamentarium of responses that are generated in the oral cavity that define the host-microbe interactions to maintain health or succumb to disease. PubMedPubMedCentralCrossRef • Ebersole JL, Dawson DR III, Morford LA, Peyyala R, Miller CS, Gonzaléz OA. Periodontal disease immunology: ‘double indemnity’ in protecting the host. Periodontol 2000. 2013;62(1):163–202 This article provides an overview of the breadth of armamentarium of responses that are generated in the oral cavity that define the host-microbe interactions to maintain health or succumb to disease. PubMedPubMedCentralCrossRef
16.
go back to reference Garlet GP, Cardoso CR, Mariano FS, Claudino M, de Assis GF, Campanelli AP, et al. Regulatory T cells attenuate experimental periodontitis progression in mice. J Clin Periodontol. 2010;37(7):591–600.PubMedCrossRef Garlet GP, Cardoso CR, Mariano FS, Claudino M, de Assis GF, Campanelli AP, et al. Regulatory T cells attenuate experimental periodontitis progression in mice. J Clin Periodontol. 2010;37(7):591–600.PubMedCrossRef
17.
go back to reference Garlet GP. Destructive and protective roles of cytokines in periodontitis: a re-appraisal from host defense and tissue destruction viewpoints. J Dent Res. 2010;89(12):1349–63.PubMedCrossRef Garlet GP. Destructive and protective roles of cytokines in periodontitis: a re-appraisal from host defense and tissue destruction viewpoints. J Dent Res. 2010;89(12):1349–63.PubMedCrossRef
18.
go back to reference Rams TE, Listgarten MA, Slots J. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis subgingival presence, species-specific serum immunoglobulin G antibody levels, and periodontitis disease recurrence. J Periodontal Res. 2006;41(3):228–34.PubMedCrossRef Rams TE, Listgarten MA, Slots J. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis subgingival presence, species-specific serum immunoglobulin G antibody levels, and periodontitis disease recurrence. J Periodontal Res. 2006;41(3):228–34.PubMedCrossRef
19.
go back to reference Pussinen PJ, Nyyssönen K, Alfthan G, Salonen R, Laukkanen JA, Salonen JT. Serum antibody levels to Actinobacillus actinomycetemcomitans predict the risk for coronary heart disease. Arterioscler Thromb Vasc Biol. 2005;25(4):833–8.PubMedCrossRef Pussinen PJ, Nyyssönen K, Alfthan G, Salonen R, Laukkanen JA, Salonen JT. Serum antibody levels to Actinobacillus actinomycetemcomitans predict the risk for coronary heart disease. Arterioscler Thromb Vasc Biol. 2005;25(4):833–8.PubMedCrossRef
20.
go back to reference Ebersole JL. Humoral immune responses in gingival crevice fluid: local and systemic implications. Periodontol. 2003;31:135–66.CrossRef Ebersole JL. Humoral immune responses in gingival crevice fluid: local and systemic implications. Periodontol. 2003;31:135–66.CrossRef
21.
go back to reference Salminen A, Gursoy UK, Paju S, Hyvärinen K, Mäntylä P, Buhlin K, et al. Salivary biomarkers of bacterial burden, inflammatory response, and tissue destruction in periodontitis. J Clin Periodontol. 2014;41(5):442–50.PubMedCrossRef Salminen A, Gursoy UK, Paju S, Hyvärinen K, Mäntylä P, Buhlin K, et al. Salivary biomarkers of bacterial burden, inflammatory response, and tissue destruction in periodontitis. J Clin Periodontol. 2014;41(5):442–50.PubMedCrossRef
22.
go back to reference Liang S, Hosur KB, Domon H, Hajishengallis G. Periodontal inflammation and bone loss in aged mice. J Periodontal Res. 2010;45(4):574–8.PubMedPubMedCentral Liang S, Hosur KB, Domon H, Hajishengallis G. Periodontal inflammation and bone loss in aged mice. J Periodontal Res. 2010;45(4):574–8.PubMedPubMedCentral
23.
go back to reference Bullon P, Battino M, Varela-Lopez A, Perez-Lopez P, Granados-Principal S, Ramirez-Tortosa MC, et al. Diets based on virgin olive oil or fish oil but not on sunflower oil prevent age-related alveolar bone resorption by mitochondrial-related mechanisms. PLoS One. 2013;8(9):e74234.PubMedPubMedCentralCrossRef Bullon P, Battino M, Varela-Lopez A, Perez-Lopez P, Granados-Principal S, Ramirez-Tortosa MC, et al. Diets based on virgin olive oil or fish oil but not on sunflower oil prevent age-related alveolar bone resorption by mitochondrial-related mechanisms. PLoS One. 2013;8(9):e74234.PubMedPubMedCentralCrossRef
24.
go back to reference Arai K, Tanaka S, Yamamoto-Sawamura T, Sone K, Miyaishi O, Sumi Y. Aging changes in the periodontal bone of F344/N rat. Arch Gerontol Geriatr. 2005;40(3):225–9.PubMedCrossRef Arai K, Tanaka S, Yamamoto-Sawamura T, Sone K, Miyaishi O, Sumi Y. Aging changes in the periodontal bone of F344/N rat. Arch Gerontol Geriatr. 2005;40(3):225–9.PubMedCrossRef
25.
go back to reference Lam RS, O’Brien-Simpson NM, Hamilton JA, Lenzo JC, Holden JA, Brammar GC, et al. GM-CSF and uPA are required for Porphyromonas gingivalis-induced alveolar bone loss in a mouse periodontitis model. Immunol Cell Biol. 2015;93(8):705–15.PubMedCrossRef Lam RS, O’Brien-Simpson NM, Hamilton JA, Lenzo JC, Holden JA, Brammar GC, et al. GM-CSF and uPA are required for Porphyromonas gingivalis-induced alveolar bone loss in a mouse periodontitis model. Immunol Cell Biol. 2015;93(8):705–15.PubMedCrossRef
26.
go back to reference Kim PD, Xia-Juan X, Crump KE, Abe T, Hajishengallis G, Sahingur SE. Toll-like receptor 9-mediated inflammation triggers alveolar bone loss in experimental murine periodontitis. Infect Immun. 2015;83(7):2992–3002.PubMedPubMedCentralCrossRef Kim PD, Xia-Juan X, Crump KE, Abe T, Hajishengallis G, Sahingur SE. Toll-like receptor 9-mediated inflammation triggers alveolar bone loss in experimental murine periodontitis. Infect Immun. 2015;83(7):2992–3002.PubMedPubMedCentralCrossRef
27.
go back to reference Araujo-Pires AC, Vieira AE, Francisconi CF, Biguetti CC, Glowacki A, Yoshizawa S, et al. IL-4/CCL22/CCR4 axis controls regulatory T-cell migration that suppresses inflammatory bone loss in murine experimental periodontitis. J Bone Miner Res. 2015;30(3):412–22.PubMedCrossRef Araujo-Pires AC, Vieira AE, Francisconi CF, Biguetti CC, Glowacki A, Yoshizawa S, et al. IL-4/CCL22/CCR4 axis controls regulatory T-cell migration that suppresses inflammatory bone loss in murine experimental periodontitis. J Bone Miner Res. 2015;30(3):412–22.PubMedCrossRef
28.
go back to reference Jiao Y, Darzi Y, Tawaratsumida K, Marchesan JT, Hasegawa M, Moon H, et al. Induction of bone loss by pathobiont-mediated Nod1 signaling in the oral cavity. Cell Host Microbe. 2013;13(5):595–601.PubMedPubMedCentralCrossRef Jiao Y, Darzi Y, Tawaratsumida K, Marchesan JT, Hasegawa M, Moon H, et al. Induction of bone loss by pathobiont-mediated Nod1 signaling in the oral cavity. Cell Host Microbe. 2013;13(5):595–601.PubMedPubMedCentralCrossRef
29.
go back to reference Graves DT, Kang J, Andriankaja O, Wada K, Rossa C Jr. Animal models to study host-bacteria interactions involved in periodontitis. Front Oral Biol. 2012;15:117–32.PubMedCrossRef Graves DT, Kang J, Andriankaja O, Wada K, Rossa C Jr. Animal models to study host-bacteria interactions involved in periodontitis. Front Oral Biol. 2012;15:117–32.PubMedCrossRef
30.
go back to reference • Franceschi C, Bonafè M, Valensin S, Olivieri F, de Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54 This overview provides a developing perspective of the relationship of chronic low level inflammation (inflammaging) and the observation of concomittant loss of immune response capabilities (immunoscenescence) with aging. PubMedCrossRef • Franceschi C, Bonafè M, Valensin S, Olivieri F, de Luca M, Ottaviani E, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54 This overview provides a developing perspective of the relationship of chronic low level inflammation (inflammaging) and the observation of concomittant loss of immune response capabilities (immunoscenescence) with aging. PubMedCrossRef
31.
go back to reference Baggio G, et al. Lipoprotein(a) and lipoprotein profile in healthy centenarians: a reappraisal of vascular risk factors. FASEB J. 1998;12(6):433–7.PubMedCrossRef Baggio G, et al. Lipoprotein(a) and lipoprotein profile in healthy centenarians: a reappraisal of vascular risk factors. FASEB J. 1998;12(6):433–7.PubMedCrossRef
32.
go back to reference Mari D, Mannucci PM, Coppola R, Bottasso B, Bauer KA, Rosenberg RD. Hypercoagulability in centenarians: the paradox of successful aging. Blood. 1995;85(11):3144–9.PubMedCrossRef Mari D, Mannucci PM, Coppola R, Bottasso B, Bauer KA, Rosenberg RD. Hypercoagulability in centenarians: the paradox of successful aging. Blood. 1995;85(11):3144–9.PubMedCrossRef
35.
go back to reference Huttner EA, Machado DC, de Oliveira RB, Antunes AGF, Hebling E. Effects of human aging on periodontal tissues. Spec Care Dentist. 2009;29(4):149–55.PubMedCrossRef Huttner EA, Machado DC, de Oliveira RB, Antunes AGF, Hebling E. Effects of human aging on periodontal tissues. Spec Care Dentist. 2009;29(4):149–55.PubMedCrossRef
36.
38.
go back to reference Kornman KS. Interleukin 1 genetics, inflammatory mechanisms, and nutrigenetic opportunities to modulate diseases of aging. Am J Clin Nutr. 2006;83(2):475S–83S.PubMedCrossRef Kornman KS. Interleukin 1 genetics, inflammatory mechanisms, and nutrigenetic opportunities to modulate diseases of aging. Am J Clin Nutr. 2006;83(2):475S–83S.PubMedCrossRef
39.
go back to reference Agrawal A, Agrawal S, Cao JN, Su H, Osann K, Gupta S. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J Immunol. 2007;178(11):6912–22.PubMedCrossRef Agrawal A, Agrawal S, Cao JN, Su H, Osann K, Gupta S. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J Immunol. 2007;178(11):6912–22.PubMedCrossRef
40.
go back to reference Wu Y, Dong G, Xiao W, Xiao E, Miao F, Syverson A, et al. Effect of aging on periodontal inflammation, microbial colonization, and disease susceptibility. J Dent Res. 2016;95(4):460–6.PubMedPubMedCentralCrossRef Wu Y, Dong G, Xiao W, Xiao E, Miao F, Syverson A, et al. Effect of aging on periodontal inflammation, microbial colonization, and disease susceptibility. J Dent Res. 2016;95(4):460–6.PubMedPubMedCentralCrossRef
41.
go back to reference Tortorella C, Simone O, Piazzolla G, Stella I, Cappiello V, Antonaci S. Role of phosphoinositide 3-kinase and extracellular signal-regulated kinase pathways in granulocyte macrophage-colony-stimulating factor failure to delay Fas-induced neutrophil apoptosis in elderly humans. J Gerontol A Biol Sci Med Sci. 2006;61(11):1111–8.PubMedCrossRef Tortorella C, Simone O, Piazzolla G, Stella I, Cappiello V, Antonaci S. Role of phosphoinositide 3-kinase and extracellular signal-regulated kinase pathways in granulocyte macrophage-colony-stimulating factor failure to delay Fas-induced neutrophil apoptosis in elderly humans. J Gerontol A Biol Sci Med Sci. 2006;61(11):1111–8.PubMedCrossRef
43.
go back to reference Ebersole JL, Cappelli D, Holt SC. Periodontal diseases: to protect or not to protect is the question? Acta Odontol Scand. 2001;59(3):161–6.PubMedCrossRef Ebersole JL, Cappelli D, Holt SC. Periodontal diseases: to protect or not to protect is the question? Acta Odontol Scand. 2001;59(3):161–6.PubMedCrossRef
44.
go back to reference Kinane DF, Mooney J, Ebersole JL. Humoral immune response to Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in periodontal disease. Periodontol. 1999;20:289–340.CrossRef Kinane DF, Mooney J, Ebersole JL. Humoral immune response to Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in periodontal disease. Periodontol. 1999;20:289–340.CrossRef
45.
go back to reference Kebschull M, Demmer RT, Grün B, Guarnieri P, Pavlidis P, Papapanou PN. Gingival tissue transcriptomes identify distinct periodontitis phenotypes. J Dent Res. 2014;93(5):459–68.PubMedPubMedCentralCrossRef Kebschull M, Demmer RT, Grün B, Guarnieri P, Pavlidis P, Papapanou PN. Gingival tissue transcriptomes identify distinct periodontitis phenotypes. J Dent Res. 2014;93(5):459–68.PubMedPubMedCentralCrossRef
46.
go back to reference Kebschull M, Guarnieri P, Demmer RT, Boulesteix AL, Pavlidis P, Papapanou PN. Molecular differences between chronic and aggressive periodontitis. J Dent Res. 2013;92(12):1081–8.PubMedPubMedCentralCrossRef Kebschull M, Guarnieri P, Demmer RT, Boulesteix AL, Pavlidis P, Papapanou PN. Molecular differences between chronic and aggressive periodontitis. J Dent Res. 2013;92(12):1081–8.PubMedPubMedCentralCrossRef
48.
go back to reference Kebschull M, Papapanou PN. The use of gene arrays in deciphering the pathobiology of periodontal diseases. Methods Mol Biol. 2010;666:385–93.PubMedCrossRef Kebschull M, Papapanou PN. The use of gene arrays in deciphering the pathobiology of periodontal diseases. Methods Mol Biol. 2010;666:385–93.PubMedCrossRef
49.
go back to reference Demmer RT, Behle JH, Wolf DL, Handfield M, Kebschull M, Celenti R, et al. Transcriptomes in healthy and diseased gingival tissues. J Periodontol. 2008;79(11):2112–24.PubMedPubMedCentralCrossRef Demmer RT, Behle JH, Wolf DL, Handfield M, Kebschull M, Celenti R, et al. Transcriptomes in healthy and diseased gingival tissues. J Periodontol. 2008;79(11):2112–24.PubMedPubMedCentralCrossRef
50.
go back to reference Ji S, Choi Y. Innate immune response to oral bacteria and the immune evasive characteristics of periodontal pathogens. J Periodontal Implant Sci. 2013;43(1):3–11.PubMedPubMedCentralCrossRef Ji S, Choi Y. Innate immune response to oral bacteria and the immune evasive characteristics of periodontal pathogens. J Periodontal Implant Sci. 2013;43(1):3–11.PubMedPubMedCentralCrossRef
51.
go back to reference Graves D. Cytokines that promote periodontal tissue destruction. J Periodontol. 2008;79(8 Suppl):1585–91.PubMedCrossRef Graves D. Cytokines that promote periodontal tissue destruction. J Periodontol. 2008;79(8 Suppl):1585–91.PubMedCrossRef
52.
go back to reference • Lamster IB, Asadourian L, del Carmen T, Friedman PK. The aging mouth: differentiating normal aging from disease. Periodontol 2000. 2016;72(1):96–107 This report emphasizes the array of physiologic changes that occur with aging, emphasizing the characteristics of a healthy versus unhealthy aging mouth. PubMedCrossRef • Lamster IB, Asadourian L, del Carmen T, Friedman PK. The aging mouth: differentiating normal aging from disease. Periodontol 2000. 2016;72(1):96–107 This report emphasizes the array of physiologic changes that occur with aging, emphasizing the characteristics of a healthy versus unhealthy aging mouth. PubMedCrossRef
53.
go back to reference Lamster IB. Geriatric periodontology: how the need to care for the aging population can influence the future of the dental profession. Periodontol. 2016;72(1):7–12.CrossRef Lamster IB. Geriatric periodontology: how the need to care for the aging population can influence the future of the dental profession. Periodontol. 2016;72(1):7–12.CrossRef
55.
go back to reference Wenisch C, Patruta S, Daxböck F, Krause R, Hörl W. Effect of age on human neutrophil function. J Leukoc Biol. 2000;67(1):40–5.PubMedCrossRef Wenisch C, Patruta S, Daxböck F, Krause R, Hörl W. Effect of age on human neutrophil function. J Leukoc Biol. 2000;67(1):40–5.PubMedCrossRef
56.
go back to reference Niwa Y, Kasama T, Miyachi Y, Kanoh T. Neutrophil chemotaxis, phagocytosis and parameters of reactive oxygen species in human aging: cross-sectional and longitudinal studies. Life Sci. 1989;44(22):1655–64.PubMedCrossRef Niwa Y, Kasama T, Miyachi Y, Kanoh T. Neutrophil chemotaxis, phagocytosis and parameters of reactive oxygen species in human aging: cross-sectional and longitudinal studies. Life Sci. 1989;44(22):1655–64.PubMedCrossRef
57.
go back to reference Eskan MA, Jotwani R, Abe T, Chmelar J, Lim JH, Liang S, et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol. 2012;13(5):465–73.PubMedPubMedCentralCrossRef Eskan MA, Jotwani R, Abe T, Chmelar J, Lim JH, Liang S, et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol. 2012;13(5):465–73.PubMedPubMedCentralCrossRef
58.
go back to reference Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV, Sapey E, et al. Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol. 2001;70(6):881–6.PubMed Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV, Sapey E, et al. Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol. 2001;70(6):881–6.PubMed
59.
go back to reference Fulop T, Larbi A, Douziech N, Fortin C, Guérard KP, Lesur O, et al. Signal transduction and functional changes in neutrophils with aging. Aging Cell. 2004;3(4):217–26.PubMedCrossRef Fulop T, Larbi A, Douziech N, Fortin C, Guérard KP, Lesur O, et al. Signal transduction and functional changes in neutrophils with aging. Aging Cell. 2004;3(4):217–26.PubMedCrossRef
60.
go back to reference Tseng CW, Kyme PA, Arruda A, Ramanujan VK, Tawackoli W, Liu GY. Innate immune dysfunctions in aged mice facilitate the systemic dissemination of methicillin-resistant S. aureus. PLoS One. 2012;7(7):e41454.PubMedPubMedCentralCrossRef Tseng CW, Kyme PA, Arruda A, Ramanujan VK, Tawackoli W, Liu GY. Innate immune dysfunctions in aged mice facilitate the systemic dissemination of methicillin-resistant S. aureus. PLoS One. 2012;7(7):e41454.PubMedPubMedCentralCrossRef
61.
go back to reference Tomay F, Wells K, Duong L, Tsu JW, Dye DE, Radley-Crabb HG, et al. Aged neutrophils accumulate in lymphoid tissues from healthy elderly mice and infiltrate T- and B-cell zones. Immunol Cell Biol. 2018;96:831–40.PubMedCrossRef Tomay F, Wells K, Duong L, Tsu JW, Dye DE, Radley-Crabb HG, et al. Aged neutrophils accumulate in lymphoid tissues from healthy elderly mice and infiltrate T- and B-cell zones. Immunol Cell Biol. 2018;96:831–40.PubMedCrossRef
62.
go back to reference Tseng CW, Liu GY. Expanding roles of neutrophils in aging hosts. Curr Opin Immunol. 2014;29:43–8.PubMedCrossRef Tseng CW, Liu GY. Expanding roles of neutrophils in aging hosts. Curr Opin Immunol. 2014;29:43–8.PubMedCrossRef
63.
go back to reference Borenstein A, Fine N, Hassanpour S, Sun C, Oveisi M, Tenenbaum HC, et al. Morphological characterization of para- and proinflammatory neutrophil phenotypes using transmission electron microscopy. J Periodontal Res. 2018. Borenstein A, Fine N, Hassanpour S, Sun C, Oveisi M, Tenenbaum HC, et al. Morphological characterization of para- and proinflammatory neutrophil phenotypes using transmission electron microscopy. J Periodontal Res. 2018.
64.
go back to reference Franceschi C. Cell proliferation, cell death and aging. Aging (Milano). 1989;1(1):3–15. Franceschi C. Cell proliferation, cell death and aging. Aging (Milano). 1989;1(1):3–15.
65.
go back to reference Zhao J, Zhao J, Legge K, Perlman S. Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Invest. 2011;121(12):4921–30.PubMedPubMedCentralCrossRef Zhao J, Zhao J, Legge K, Perlman S. Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Invest. 2011;121(12):4921–30.PubMedPubMedCentralCrossRef
66.
go back to reference Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11(5):867–75.PubMedCrossRef Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell. 2012;11(5):867–75.PubMedCrossRef
67.
go back to reference Aprahamian T, Takemura Y, Goukassian D, Walsh K. Ageing is associated with diminished apoptotic cell clearance in vivo. Clin Exp Immunol. 2008;152(3):448–55.PubMedPubMedCentralCrossRef Aprahamian T, Takemura Y, Goukassian D, Walsh K. Ageing is associated with diminished apoptotic cell clearance in vivo. Clin Exp Immunol. 2008;152(3):448–55.PubMedPubMedCentralCrossRef
68.
go back to reference Gardner JK, Cornwall SMJ, Musk AW, Alvarez J, Mamotte CDS, Jackaman C, et al. Elderly dendritic cells respond to LPS/IFN-gamma and CD40L stimulation despite incomplete maturation. PLoS One. 2018;13(4):e0195313.PubMedPubMedCentralCrossRef Gardner JK, Cornwall SMJ, Musk AW, Alvarez J, Mamotte CDS, Jackaman C, et al. Elderly dendritic cells respond to LPS/IFN-gamma and CD40L stimulation despite incomplete maturation. PLoS One. 2018;13(4):e0195313.PubMedPubMedCentralCrossRef
69.
go back to reference Gardner JK, Mamotte CDS, Jackaman C, Nelson DJ. Modulation of dendritic cell and T cell cross-talk during aging: the potential role of checkpoint inhibitory molecules. Ageing Res Rev. 2017;38:40–51.PubMedCrossRef Gardner JK, Mamotte CDS, Jackaman C, Nelson DJ. Modulation of dendritic cell and T cell cross-talk during aging: the potential role of checkpoint inhibitory molecules. Ageing Res Rev. 2017;38:40–51.PubMedCrossRef
71.
go back to reference Cuervo AM, Macian F. Autophagy and the immune function in aging. Curr Opin Immunol. 2014;29:97–104.PubMedCrossRef Cuervo AM, Macian F. Autophagy and the immune function in aging. Curr Opin Immunol. 2014;29:97–104.PubMedCrossRef
72.
go back to reference Jing Y, Shaheen E, Drake RR, Chen N, Gravenstein S, Deng Y. Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum Immunol. 2009;70(10):777–84.PubMedPubMedCentralCrossRef Jing Y, Shaheen E, Drake RR, Chen N, Gravenstein S, Deng Y. Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum Immunol. 2009;70(10):777–84.PubMedPubMedCentralCrossRef
73.
go back to reference Panda A, Qian F, Mohanty S, van Duin D, Newman FK, Zhang L, et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol. 2010;184(5):2518–27.PubMedCrossRef Panda A, Qian F, Mohanty S, van Duin D, Newman FK, Zhang L, et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol. 2010;184(5):2518–27.PubMedCrossRef
74.
go back to reference Sridharan A, Esposo M, Kaushal K, Tay J, Osann K, Agrawal S, et al. Age-associated impaired plasmacytoid dendritic cell functions lead to decreased CD4 and CD8 T cell immunity. Age (Dordr). 2011;33(3):363–76.CrossRef Sridharan A, Esposo M, Kaushal K, Tay J, Osann K, Agrawal S, et al. Age-associated impaired plasmacytoid dendritic cell functions lead to decreased CD4 and CD8 T cell immunity. Age (Dordr). 2011;33(3):363–76.CrossRef
75.
go back to reference Qian F, Wang X, Zhang L, Lin A, Zhao H, Fikrig E, et al. Impaired interferon signaling in dendritic cells from older donors infected in vitro with West Nile virus. J Infect Dis. 2011;203(10):1415–24.PubMedPubMedCentralCrossRef Qian F, Wang X, Zhang L, Lin A, Zhao H, Fikrig E, et al. Impaired interferon signaling in dendritic cells from older donors infected in vitro with West Nile virus. J Infect Dis. 2011;203(10):1415–24.PubMedPubMedCentralCrossRef
76.
go back to reference Hazeldine J, Hampson P, Lord JM. Reduced release and binding of perforin at the immunological synapse underlies the age-related decline in natural killer cell cytotoxicity. Aging Cell. 2012;11(5):751–9.PubMedCrossRef Hazeldine J, Hampson P, Lord JM. Reduced release and binding of perforin at the immunological synapse underlies the age-related decline in natural killer cell cytotoxicity. Aging Cell. 2012;11(5):751–9.PubMedCrossRef
77.
go back to reference Dunston CR, Griffiths HR. The effect of ageing on macrophage Toll-like receptor-mediated responses in the fight against pathogens. Clin Exp Immunol. 2010;161(3):407–16.PubMedPubMedCentralCrossRef Dunston CR, Griffiths HR. The effect of ageing on macrophage Toll-like receptor-mediated responses in the fight against pathogens. Clin Exp Immunol. 2010;161(3):407–16.PubMedPubMedCentralCrossRef
78.
go back to reference Stahl SS, Tonna EA, Weiss R. The effects of aging on the proliferative activity of rat periodontal structures. J Gerontol. 1969;24(4):447–50.PubMedCrossRef Stahl SS, Tonna EA, Weiss R. The effects of aging on the proliferative activity of rat periodontal structures. J Gerontol. 1969;24(4):447–50.PubMedCrossRef
79.
go back to reference Marwah AS, Meyer J, Weinmann JP. Mitotic rate of gingival epithelium in two age groups. J Investig Dermatol. 1956;27(4):237–47.PubMedCrossRef Marwah AS, Meyer J, Weinmann JP. Mitotic rate of gingival epithelium in two age groups. J Investig Dermatol. 1956;27(4):237–47.PubMedCrossRef
80.
go back to reference Ogura N, Matsuda U, Tanaka F, Shibata Y, Takiguchi H, Abiko Y. In vitro senescence enhances IL-6 production in human gingival fibroblasts induced by lipopolysaccharide from Campylobacter rectus. Mech Ageing Dev. 1996;87(1):47–59.PubMedCrossRef Ogura N, Matsuda U, Tanaka F, Shibata Y, Takiguchi H, Abiko Y. In vitro senescence enhances IL-6 production in human gingival fibroblasts induced by lipopolysaccharide from Campylobacter rectus. Mech Ageing Dev. 1996;87(1):47–59.PubMedCrossRef
81.
go back to reference Takiguchi H, Yamaguchi M, Okamura H, Abiko Y. Contribution of IL-1 beta to the enhancement of Campylobacter rectus lipopolysaccharide-stimulated PGE2 production in old gingival fibroblasts in vitro. Mech Ageing Dev. 1997;98(1):75–90.PubMedCrossRef Takiguchi H, Yamaguchi M, Okamura H, Abiko Y. Contribution of IL-1 beta to the enhancement of Campylobacter rectus lipopolysaccharide-stimulated PGE2 production in old gingival fibroblasts in vitro. Mech Ageing Dev. 1997;98(1):75–90.PubMedCrossRef
83.
go back to reference Holt SC, et al. Implantation of Bacteroides gingivalis in nonhuman primates initiates progression of periodontitis. Science. 1988;239(4835):55–7.PubMedCrossRef Holt SC, et al. Implantation of Bacteroides gingivalis in nonhuman primates initiates progression of periodontitis. Science. 1988;239(4835):55–7.PubMedCrossRef
84.
go back to reference Schou S, Holmstrup P, Kornman KS. Non-human primates used in studies of periodontal disease pathogenesis: a review of the literature. J Periodontol. 1993;64(6):497–508.PubMedCrossRef Schou S, Holmstrup P, Kornman KS. Non-human primates used in studies of periodontal disease pathogenesis: a review of the literature. J Periodontol. 1993;64(6):497–508.PubMedCrossRef
85.
go back to reference Roth GS, Mattison JA, Ottinger MA, Chachich ME, Lane MA, Ingram DK. Aging in rhesus monkeys: relevance to human health interventions. Science. 2004;305(5689):1423–6.PubMedCrossRef Roth GS, Mattison JA, Ottinger MA, Chachich ME, Lane MA, Ingram DK. Aging in rhesus monkeys: relevance to human health interventions. Science. 2004;305(5689):1423–6.PubMedCrossRef
86.
go back to reference Sato S, Kiyono H, Fujihashi K. Mucosal immunosenescence in the gastrointestinal tract: a mini-review. Gerontology. 2015;61(4):336–42.PubMedCrossRef Sato S, Kiyono H, Fujihashi K. Mucosal immunosenescence in the gastrointestinal tract: a mini-review. Gerontology. 2015;61(4):336–42.PubMedCrossRef
87.
go back to reference • Muller L, Pawelec G. As we age: does slippage of quality control in the immune system lead to collateral damage? Ageing Res Rev. 2015;23(Pt A):116–23 This article emphasizes progressive changes in immune response capabilities that contribute to variation in the level and quality of immune responses that occur with aging. PubMedCrossRef • Muller L, Pawelec G. As we age: does slippage of quality control in the immune system lead to collateral damage? Ageing Res Rev. 2015;23(Pt A):116–23 This article emphasizes progressive changes in immune response capabilities that contribute to variation in the level and quality of immune responses that occur with aging. PubMedCrossRef
88.
89.
go back to reference Boraschi D, Aguado MT, Dutel C, Goronzy J, Louis J, Grubeck-Loebenstein B, et al. The gracefully aging immune system. Sci Transl Med. 2013;5(185):185ps8.PubMedCrossRef Boraschi D, Aguado MT, Dutel C, Goronzy J, Louis J, Grubeck-Loebenstein B, et al. The gracefully aging immune system. Sci Transl Med. 2013;5(185):185ps8.PubMedCrossRef
90.
go back to reference Kirkwood TB, Franceschi C. Is aging as complex as it would appear? New perspectives in aging research. Ann N Y Acad Sci. 1992;663:412–7.PubMedCrossRef Kirkwood TB, Franceschi C. Is aging as complex as it would appear? New perspectives in aging research. Ann N Y Acad Sci. 1992;663:412–7.PubMedCrossRef
91.
go back to reference Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat Immunol. 2004;5(2):133–9.PubMedCrossRef Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat Immunol. 2004;5(2):133–9.PubMedCrossRef
92.
go back to reference Linehan E, Fitzgerald DC. Ageing and the immune system: focus on macrophages. Eur J Microbiol Immunol (Bp). 2015;5(1):14–24.CrossRef Linehan E, Fitzgerald DC. Ageing and the immune system: focus on macrophages. Eur J Microbiol Immunol (Bp). 2015;5(1):14–24.CrossRef
94.
96.
go back to reference Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB. Age effects on B cells and humoral immunity in humans. Ageing Res Rev. 2011;10(3):330–5.PubMedCrossRef Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB. Age effects on B cells and humoral immunity in humans. Ageing Res Rev. 2011;10(3):330–5.PubMedCrossRef
98.
go back to reference Frasca D, Blomberg BB. Aging impairs murine B cell differentiation and function in primary and secondary lymphoid tissues. Aging Dis. 2011;2(5):361–73.PubMedPubMedCentral Frasca D, Blomberg BB. Aging impairs murine B cell differentiation and function in primary and secondary lymphoid tissues. Aging Dis. 2011;2(5):361–73.PubMedPubMedCentral
99.
go back to reference Dunn-Walters DK, Ademokun AA. B cell repertoire and ageing. Curr Opin Immunol. 2010;22(4):514–20.PubMedCrossRef Dunn-Walters DK, Ademokun AA. B cell repertoire and ageing. Curr Opin Immunol. 2010;22(4):514–20.PubMedCrossRef
100.
go back to reference Allman D, Miller JP. B cell development and receptor diversity during aging. Curr Opin Immunol. 2005;17(5):463–7.PubMedCrossRef Allman D, Miller JP. B cell development and receptor diversity during aging. Curr Opin Immunol. 2005;17(5):463–7.PubMedCrossRef
101.
go back to reference Frasca D, Riley RL, Blomberg BB. Humoral immune response and B-cell functions including immunoglobulin class switch are downregulated in aged mice and humans. Semin Immunol. 2005;17(5):378–84.PubMedCrossRef Frasca D, Riley RL, Blomberg BB. Humoral immune response and B-cell functions including immunoglobulin class switch are downregulated in aged mice and humans. Semin Immunol. 2005;17(5):378–84.PubMedCrossRef
103.
go back to reference Geier JK, Schlissel MS. Pre-BCR signals and the control of Ig gene rearrangements. Semin Immunol. 2006;18(1):31–9.PubMedCrossRef Geier JK, Schlissel MS. Pre-BCR signals and the control of Ig gene rearrangements. Semin Immunol. 2006;18(1):31–9.PubMedCrossRef
104.
go back to reference Ebersole JL, Taubman MA. The protective nature of host responses in periodontal diseases. Periodontol. 1994;5:112–41.CrossRef Ebersole JL, Taubman MA. The protective nature of host responses in periodontal diseases. Periodontol. 1994;5:112–41.CrossRef
105.
go back to reference Reinhardt RA, McDonald TL, Bolton RW, DuBois LM, Kaldahl WB. IgG subclasses in gingival crevicular fluid from active versus stable periodontal sites. J Periodontol. 1989;60(1):44–50.PubMedCrossRef Reinhardt RA, McDonald TL, Bolton RW, DuBois LM, Kaldahl WB. IgG subclasses in gingival crevicular fluid from active versus stable periodontal sites. J Periodontol. 1989;60(1):44–50.PubMedCrossRef
106.
go back to reference Ebersole JL, al-Sabbagh M, Gonzalez OA, Dawson DR III. Aging effects on humoral immune responses in chronic periodontitis. J Clin Periodontol. 2018;45:680–92.PubMedCrossRefPubMedCentral Ebersole JL, al-Sabbagh M, Gonzalez OA, Dawson DR III. Aging effects on humoral immune responses in chronic periodontitis. J Clin Periodontol. 2018;45:680–92.PubMedCrossRefPubMedCentral
107.
go back to reference Johnson V, Johnson BD, Sims TJ, Whitney CW, Moncla BJ, Engel LD, et al. Effects of treatment on antibody titer to Porphyromonas gingivalis in gingival crevicular fluid of patients with rapidly progressive periodontitis. J Periodontol. 1993;64(6):559–65.PubMedCrossRef Johnson V, Johnson BD, Sims TJ, Whitney CW, Moncla BJ, Engel LD, et al. Effects of treatment on antibody titer to Porphyromonas gingivalis in gingival crevicular fluid of patients with rapidly progressive periodontitis. J Periodontol. 1993;64(6):559–65.PubMedCrossRef
108.
go back to reference Vink C, Rudenko G, Seifert HS. Microbial antigenic variation mediated by homologous DNA recombination. FEMS Microbiol Rev. 2012;36(5):917–48.PubMedCrossRef Vink C, Rudenko G, Seifert HS. Microbial antigenic variation mediated by homologous DNA recombination. FEMS Microbiol Rev. 2012;36(5):917–48.PubMedCrossRef
109.
go back to reference Vinogradov E, King JD, Pathak AK, Harvill ET, Preston A. Antigenic variation among Bordetella: Bordetella bronchiseptica strain MO149 expresses a novel o chain that is poorly immunogenic. J Biol Chem. 2010;285(35):26869–77.PubMedPubMedCentralCrossRef Vinogradov E, King JD, Pathak AK, Harvill ET, Preston A. Antigenic variation among Bordetella: Bordetella bronchiseptica strain MO149 expresses a novel o chain that is poorly immunogenic. J Biol Chem. 2010;285(35):26869–77.PubMedPubMedCentralCrossRef
110.
111.
go back to reference Grogono-Thomas R, Blaser MJ, Ahmadi M, Newell DG. Role of S-layer protein antigenic diversity in the immune responses of sheep experimentally challenged with Campylobacter fetus subsp. fetus. Infect Immun. 2003;71(1):147–54.PubMedPubMedCentralCrossRef Grogono-Thomas R, Blaser MJ, Ahmadi M, Newell DG. Role of S-layer protein antigenic diversity in the immune responses of sheep experimentally challenged with Campylobacter fetus subsp. fetus. Infect Immun. 2003;71(1):147–54.PubMedPubMedCentralCrossRef
112.
go back to reference Sims TJ, Ali RW, Brockman ES, Skaug N, Page RC. Antigenic variation in Porphyromonas gingivalis ribotypes recognized by serum immunoglobulin G of adult periodontitis patients. Oral Microbiol Immunol. 1999;14(2):73–85.PubMedCrossRef Sims TJ, Ali RW, Brockman ES, Skaug N, Page RC. Antigenic variation in Porphyromonas gingivalis ribotypes recognized by serum immunoglobulin G of adult periodontitis patients. Oral Microbiol Immunol. 1999;14(2):73–85.PubMedCrossRef
113.
go back to reference Koomey M. Bacterial pathogenesis: a variation on variation in Lyme disease. Curr Biol. 1997;7(9):R538–40.PubMedCrossRef Koomey M. Bacterial pathogenesis: a variation on variation in Lyme disease. Curr Biol. 1997;7(9):R538–40.PubMedCrossRef
114.
go back to reference Valvano MA. Pathogenicity and molecular genetics of O-specific side-chain lipopolysaccharides of Escherichia coli. Can J Microbiol. 1992;38(7):711–9.PubMedCrossRef Valvano MA. Pathogenicity and molecular genetics of O-specific side-chain lipopolysaccharides of Escherichia coli. Can J Microbiol. 1992;38(7):711–9.PubMedCrossRef
115.
go back to reference Roggen EL, de Breucker S, van Dyck E, Piot P. Antigenic diversity in Haemophilus ducreyi as shown by western blot (immunoblot) analysis. Infect Immun. 1992;60(2):590–5.PubMedPubMedCentralCrossRef Roggen EL, de Breucker S, van Dyck E, Piot P. Antigenic diversity in Haemophilus ducreyi as shown by western blot (immunoblot) analysis. Infect Immun. 1992;60(2):590–5.PubMedPubMedCentralCrossRef
116.
go back to reference DiRita VJ, Mekalanos JJ. Genetic regulation of bacterial virulence. Annu Rev Genet. 1989;23:455–82.PubMedCrossRef DiRita VJ, Mekalanos JJ. Genetic regulation of bacterial virulence. Annu Rev Genet. 1989;23:455–82.PubMedCrossRef
117.
go back to reference Riddle MS, Guerry P. Status of vaccine research and development for Campylobacter jejuni. Vaccine. 2016;34(26):2903–6.PubMedCrossRef Riddle MS, Guerry P. Status of vaccine research and development for Campylobacter jejuni. Vaccine. 2016;34(26):2903–6.PubMedCrossRef
118.
go back to reference Bai X, Borrow R. Genetic shifts of Neisseria meningitidis serogroup B antigens and the quest for a broadly cross-protective vaccine. Expert Rev Vaccines. 2010;9(10):1203–17.PubMedCrossRef Bai X, Borrow R. Genetic shifts of Neisseria meningitidis serogroup B antigens and the quest for a broadly cross-protective vaccine. Expert Rev Vaccines. 2010;9(10):1203–17.PubMedCrossRef
119.
go back to reference Ebersole JL, Hall EE, Steffen MJ. Antigenic diversity in the periodontopathogen, Actinobacillus actinomycetemcomitans. Immunol Investig. 1996;25(3):203–14.CrossRef Ebersole JL, Hall EE, Steffen MJ. Antigenic diversity in the periodontopathogen, Actinobacillus actinomycetemcomitans. Immunol Investig. 1996;25(3):203–14.CrossRef
122.
go back to reference Cugini C, Klepac-Ceraj V, Rackaityte E, Riggs JE, Davey ME. Porphyromonas gingivalis: keeping the pathos out of the biont. J Oral Microbiol. 2013;5.CrossRef Cugini C, Klepac-Ceraj V, Rackaityte E, Riggs JE, Davey ME. Porphyromonas gingivalis: keeping the pathos out of the biont. J Oral Microbiol. 2013;5.CrossRef
123.
go back to reference Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the “red complex”, a prototype polybacterial pathogenic consortium in periodontitis. Periodontol. 2005;38:72–122.CrossRef Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the “red complex”, a prototype polybacterial pathogenic consortium in periodontitis. Periodontol. 2005;38:72–122.CrossRef
124.
go back to reference Chen T, Siddiqui H, Olsen I. In silico comparison of 19 Porphyromonas gingivalis strains in genomics, phylogenetics, phylogenomics and functional genomics. Front Cell Infect Microbiol. 2017;7:28.PubMedPubMedCentral Chen T, Siddiqui H, Olsen I. In silico comparison of 19 Porphyromonas gingivalis strains in genomics, phylogenetics, phylogenomics and functional genomics. Front Cell Infect Microbiol. 2017;7:28.PubMedPubMedCentral
125.
go back to reference Demmer RT, Squillaro A, Papapanou PN, Rosenbaum M, Friedewald WT, Jacobs DR, et al. Periodontal infection, systemic inflammation, and insulin resistance: results from the continuous National Health and Nutrition Examination Survey (NHANES) 1999-2004. Diabetes Care. 2012;35(11):2235–42.PubMedPubMedCentralCrossRef Demmer RT, Squillaro A, Papapanou PN, Rosenbaum M, Friedewald WT, Jacobs DR, et al. Periodontal infection, systemic inflammation, and insulin resistance: results from the continuous National Health and Nutrition Examination Survey (NHANES) 1999-2004. Diabetes Care. 2012;35(11):2235–42.PubMedPubMedCentralCrossRef
126.
go back to reference Dye BA, Nowjack-Raymer R, Barker LK, Nunn JH, Steele JG, Tan S, et al. Overview and quality assurance for the oral health component of the National Health and Nutrition Examination Survey (NHANES), 2003-04. J Public Health Dent. 2008;68(4):218–26.PubMedCrossRef Dye BA, Nowjack-Raymer R, Barker LK, Nunn JH, Steele JG, Tan S, et al. Overview and quality assurance for the oral health component of the National Health and Nutrition Examination Survey (NHANES), 2003-04. J Public Health Dent. 2008;68(4):218–26.PubMedCrossRef
127.
go back to reference Dye BA, Barker LK, Selwitz RH, Lewis BG, Wu T, Fryar CD, et al. Overview and quality assurance for the National Health and Nutrition Examination Survey (NHANES) oral health component, 1999-2002. Community Dent Oral Epidemiol. 2007;35(2):140–51.PubMedCrossRef Dye BA, Barker LK, Selwitz RH, Lewis BG, Wu T, Fryar CD, et al. Overview and quality assurance for the National Health and Nutrition Examination Survey (NHANES) oral health component, 1999-2002. Community Dent Oral Epidemiol. 2007;35(2):140–51.PubMedCrossRef
128.
go back to reference Slots J. Periodontology: past, present, perspectives. Periodontol. 2013;62(1):7–19.CrossRef Slots J. Periodontology: past, present, perspectives. Periodontol. 2013;62(1):7–19.CrossRef
129.
go back to reference Slots J. Periodontitis: facts, fallacies and the future. Periodontol. 2017;75(1):7–23.CrossRef Slots J. Periodontitis: facts, fallacies and the future. Periodontol. 2017;75(1):7–23.CrossRef
131.
go back to reference Makala LH, et al. Immunology. Antigen-presenting cells in the gut. J Biomed Sci. 2004;11(2):130–41.PubMedCrossRef Makala LH, et al. Immunology. Antigen-presenting cells in the gut. J Biomed Sci. 2004;11(2):130–41.PubMedCrossRef
132.
go back to reference Cutler CW, Teng YT. Oral mucosal dendritic cells and periodontitis: many sides of the same coin with new twists. Periodontol. 2007;45:35–50.CrossRef Cutler CW, Teng YT. Oral mucosal dendritic cells and periodontitis: many sides of the same coin with new twists. Periodontol. 2007;45:35–50.CrossRef
133.
go back to reference Gonzalez OA, Novak MJ, Kirakodu S, Stromberg A, Nagarajan R, Huang CB, et al. Differential gene expression profiles reflecting macrophage polarization in aging and periodontitis gingival tissues. Immunol Investig. 2015;44(7):643–64.CrossRef Gonzalez OA, Novak MJ, Kirakodu S, Stromberg A, Nagarajan R, Huang CB, et al. Differential gene expression profiles reflecting macrophage polarization in aging and periodontitis gingival tissues. Immunol Investig. 2015;44(7):643–64.CrossRef
134.
go back to reference Ebersole JL, Kirakodu S, Novak MJ, Stromberg AJ, Shen S, Orraca L, et al. Cytokine gene expression profiles during initiation, progression and resolution of periodontitis. J Clin Periodontol. 2014;41:853–61.PubMedPubMedCentralCrossRef Ebersole JL, Kirakodu S, Novak MJ, Stromberg AJ, Shen S, Orraca L, et al. Cytokine gene expression profiles during initiation, progression and resolution of periodontitis. J Clin Periodontol. 2014;41:853–61.PubMedPubMedCentralCrossRef
135.
go back to reference Takayanagi H. Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol. 2009;5(12):667–76.PubMedCrossRef Takayanagi H. Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol. 2009;5(12):667–76.PubMedCrossRef
137.
go back to reference Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42.PubMedCrossRef Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42.PubMedCrossRef
138.
go back to reference Pandruvada SN, Gonzalez OA, Kirakodu S, Gudhimella S, Stromberg AJ, Ebersole JL, et al. Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates. J Clin Periodontol. 2016;43(5):408–17.PubMedPubMedCentralCrossRef Pandruvada SN, Gonzalez OA, Kirakodu S, Gudhimella S, Stromberg AJ, Ebersole JL, et al. Bone biology-related gingival transcriptome in ageing and periodontitis in non-human primates. J Clin Periodontol. 2016;43(5):408–17.PubMedPubMedCentralCrossRef
139.
go back to reference Pandruvada S, Ebersole JL, Huja SS. Inhibition of osteoclastogenesis by opsonized Porphyromonas gingivalis. FASEB BioAdvances. 2018. Pandruvada S, Ebersole JL, Huja SS. Inhibition of osteoclastogenesis by opsonized Porphyromonas gingivalis. FASEB BioAdvances. 2018.
141.
go back to reference Grossi SG, Zambon JJ, Ho AW, Koch G, Dunford RG, Machtei EE, et al. Assessment of risk for periodontal disease. I. Risk indicators for attachment loss. J Periodontol. 1994;65(3):260–7.PubMedCrossRef Grossi SG, Zambon JJ, Ho AW, Koch G, Dunford RG, Machtei EE, et al. Assessment of risk for periodontal disease. I. Risk indicators for attachment loss. J Periodontol. 1994;65(3):260–7.PubMedCrossRef
142.
go back to reference Roberts FA, Darveau RP. Microbial protection and virulence in periodontal tissue as a function of polymicrobial communities: symbiosis and dysbiosis. Periodontol. 2015;69(1):18–27.CrossRef Roberts FA, Darveau RP. Microbial protection and virulence in periodontal tissue as a function of polymicrobial communities: symbiosis and dysbiosis. Periodontol. 2015;69(1):18–27.CrossRef
143.
144.
go back to reference Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontol. 2015;69(1):7–17.CrossRef Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontol. 2015;69(1):7–17.CrossRef
145.
go back to reference Vaiserman A. Early-life exposure to endocrine disrupting chemicals and later-life health outcomes: an epigenetic bridge? Aging Dis. 2014;5(6):419–29.PubMedPubMedCentral Vaiserman A. Early-life exposure to endocrine disrupting chemicals and later-life health outcomes: an epigenetic bridge? Aging Dis. 2014;5(6):419–29.PubMedPubMedCentral
146.
go back to reference Saraiva MC, et al. Lead exposure and periodontitis in US adults. J Periodontal Res. 2007;42(1):45–52.PubMedCrossRef Saraiva MC, et al. Lead exposure and periodontitis in US adults. J Periodontal Res. 2007;42(1):45–52.PubMedCrossRef
147.
go back to reference Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 2014;35(1):3–11.PubMedCrossRef Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 2014;35(1):3–11.PubMedCrossRef
148.
go back to reference Larsson L, Thorbert-Mros S, Rymo L, Berglundh T. Influence of epigenetic modifications of the interleukin-10 promoter on IL10 gene expression. Eur J Oral Sci. 2012;120(1):14–20.PubMedCrossRef Larsson L, Thorbert-Mros S, Rymo L, Berglundh T. Influence of epigenetic modifications of the interleukin-10 promoter on IL10 gene expression. Eur J Oral Sci. 2012;120(1):14–20.PubMedCrossRef
149.
go back to reference Schulz S, Immel UD, Just L, Schaller HG, Gläser C, Reichert S. Epigenetic characteristics in inflammatory candidate genes in aggressive periodontitis. Hum Immunol. 2016;77(1):71–5.PubMedCrossRef Schulz S, Immel UD, Just L, Schaller HG, Gläser C, Reichert S. Epigenetic characteristics in inflammatory candidate genes in aggressive periodontitis. Hum Immunol. 2016;77(1):71–5.PubMedCrossRef
150.
go back to reference Abreu OJ, Tatakis DN, Elias-Boneta AR, López del Valle L, Hernandez R, Pousa MS, et al. Low vitamin D status strongly associated with periodontitis in Puerto Rican adults. BMC Oral Health. 2016;16(1):89.PubMedPubMedCentralCrossRef Abreu OJ, Tatakis DN, Elias-Boneta AR, López del Valle L, Hernandez R, Pousa MS, et al. Low vitamin D status strongly associated with periodontitis in Puerto Rican adults. BMC Oral Health. 2016;16(1):89.PubMedPubMedCentralCrossRef
151.
go back to reference Antonoglou GN, Knuuttila M, Niemelä O, Raunio T, Karttunen R, Vainio O, et al. Low serum level of 1,25(OH)2 D is associated with chronic periodontitis. J Periodontal Res. 2015;50(2):274–80.PubMedCrossRef Antonoglou GN, Knuuttila M, Niemelä O, Raunio T, Karttunen R, Vainio O, et al. Low serum level of 1,25(OH)2 D is associated with chronic periodontitis. J Periodontal Res. 2015;50(2):274–80.PubMedCrossRef
152.
go back to reference Jimenez M, Giovannucci E, Krall Kaye E, Joshipura KJ, Dietrich T. Predicted vitamin D status and incidence of tooth loss and periodontitis. Public Health Nutr. 2014;17(4):844–52.PubMedCrossRef Jimenez M, Giovannucci E, Krall Kaye E, Joshipura KJ, Dietrich T. Predicted vitamin D status and incidence of tooth loss and periodontitis. Public Health Nutr. 2014;17(4):844–52.PubMedCrossRef
153.
go back to reference Pattison DJ, Symmons DPM, Lunt M, Welch A, Bingham SA, Day NE, et al. Dietary beta-cryptoxanthin and inflammatory polyarthritis: results from a population-based prospective study. Am J Clin Nutr. 2005;82(2):451–5.PubMedCrossRef Pattison DJ, Symmons DPM, Lunt M, Welch A, Bingham SA, Day NE, et al. Dietary beta-cryptoxanthin and inflammatory polyarthritis: results from a population-based prospective study. Am J Clin Nutr. 2005;82(2):451–5.PubMedCrossRef
154.
go back to reference Gammone MA, Riccioni G, D’Orazio N. Carotenoids: potential allies of cardiovascular health? Food Nutr Res. 2015;59:26762.PubMedCrossRef Gammone MA, Riccioni G, D’Orazio N. Carotenoids: potential allies of cardiovascular health? Food Nutr Res. 2015;59:26762.PubMedCrossRef
155.
go back to reference Daraghmeh AH, Bertoia ML, al-Qadi MO, Abdulbaki AM, Roberts MB, Eaton CB. Evidence for the vitamin D hypothesis: the NHANES III extended mortality follow-up. Atherosclerosis. 2016;255:96–101.PubMedCrossRef Daraghmeh AH, Bertoia ML, al-Qadi MO, Abdulbaki AM, Roberts MB, Eaton CB. Evidence for the vitamin D hypothesis: the NHANES III extended mortality follow-up. Atherosclerosis. 2016;255:96–101.PubMedCrossRef
156.
go back to reference Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol. 2006;72:1439–52.PubMedCrossRef Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol. 2006;72:1439–52.PubMedCrossRef
157.
go back to reference Chapple IL. Potential mechanisms underpinning the nutritional modulation of periodontal inflammation. J Am Dent Assoc. 2009;140(2):178–84.PubMedCrossRef Chapple IL. Potential mechanisms underpinning the nutritional modulation of periodontal inflammation. J Am Dent Assoc. 2009;140(2):178–84.PubMedCrossRef
158.
go back to reference Najeeb S, Zafar M, Khurshid Z, Zohaib S, Almas K. The role of nutrition in periodontal health: an update. Nutrients. 2016;8(9).PubMedCentralCrossRef Najeeb S, Zafar M, Khurshid Z, Zohaib S, Almas K. The role of nutrition in periodontal health: an update. Nutrients. 2016;8(9).PubMedCentralCrossRef
159.
go back to reference Kondo K, Ishikado A, Morino K, Nishio Y, Ugi S, Kajiwara S, et al. A high-fiber, low-fat diet improves periodontal disease markers in high-risk subjects: a pilot study. Nutr Res. 2014;34(6):491–8.PubMedCrossRef Kondo K, Ishikado A, Morino K, Nishio Y, Ugi S, Kajiwara S, et al. A high-fiber, low-fat diet improves periodontal disease markers in high-risk subjects: a pilot study. Nutr Res. 2014;34(6):491–8.PubMedCrossRef
160.
go back to reference Linden GJ, McClean KM, Woodside JV, Patterson CC, Evans A, Young IS, et al. Antioxidants and periodontitis in 60-70-year-old men. J Clin Periodontol. 2009;36(10):843–9.PubMedCrossRef Linden GJ, McClean KM, Woodside JV, Patterson CC, Evans A, Young IS, et al. Antioxidants and periodontitis in 60-70-year-old men. J Clin Periodontol. 2009;36(10):843–9.PubMedCrossRef
161.
go back to reference Papapanou PN, Susin C. Periodontitis epidemiology: is periodontitis under-recognized, over-diagnosed, or both? Periodontol. 2017;75(1):45–51.CrossRef Papapanou PN, Susin C. Periodontitis epidemiology: is periodontitis under-recognized, over-diagnosed, or both? Periodontol. 2017;75(1):45–51.CrossRef
162.
163.
go back to reference Kim S, Jazwinski SM. Quantitative measures of healthy aging and biological age. Healthy Aging Res. 2015;4. Kim S, Jazwinski SM. Quantitative measures of healthy aging and biological age. Healthy Aging Res. 2015;4.
164.
go back to reference Belsky DW, Moffitt TE, Cohen AA, Corcoran DL, Levine ME, Prinz JA, et al. Eleven telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: do they measure the same thing? Am J Epidemiol. 2018;187(6):1220–30.PubMedCrossRef Belsky DW, Moffitt TE, Cohen AA, Corcoran DL, Levine ME, Prinz JA, et al. Eleven telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: do they measure the same thing? Am J Epidemiol. 2018;187(6):1220–30.PubMedCrossRef
165.
go back to reference Maffei VJ, Kim S, Blanchard E IV, Luo M, Jazwinski SM, Taylor CM, et al. Biological aging and the human gut microbiota. J Gerontol A Biol Sci Med Sci. 2017;72(11):1474–82.PubMedPubMedCentralCrossRef Maffei VJ, Kim S, Blanchard E IV, Luo M, Jazwinski SM, Taylor CM, et al. Biological aging and the human gut microbiota. J Gerontol A Biol Sci Med Sci. 2017;72(11):1474–82.PubMedPubMedCentralCrossRef
166.
go back to reference Hastings WJ, Shalev I, Belsky DW. Translating measures of biological aging to test effectiveness of geroprotective interventions: what can we learn from research on telomeres? Front Genet. 2017;8:164.PubMedPubMedCentralCrossRef Hastings WJ, Shalev I, Belsky DW. Translating measures of biological aging to test effectiveness of geroprotective interventions: what can we learn from research on telomeres? Front Genet. 2017;8:164.PubMedPubMedCentralCrossRef
167.
go back to reference Belsky DW, et al. Change in the rate of biological aging in response to caloric restriction: CALERIE biobank analysis. J Gerontol A Biol Sci Med Sci. 2017;73(1):4–10.PubMedCrossRefPubMedCentral Belsky DW, et al. Change in the rate of biological aging in response to caloric restriction: CALERIE biobank analysis. J Gerontol A Biol Sci Med Sci. 2017;73(1):4–10.PubMedCrossRefPubMedCentral
168.
go back to reference • Belsky DW, Caspi A, Houts R, Cohen HJ, Corcoran DL, Danese A, et al. Quantification of biological aging in young adults. Proc Natl Acad Sci U S A. 2015;112(30):E4104–10 This report summarizes findings from the population in the Dunedin Study birth cohort related to an array of measures that would better predict aging outcomes via modeling biological rather than chronological age. PubMedPubMedCentralCrossRef • Belsky DW, Caspi A, Houts R, Cohen HJ, Corcoran DL, Danese A, et al. Quantification of biological aging in young adults. Proc Natl Acad Sci U S A. 2015;112(30):E4104–10 This report summarizes findings from the population in the Dunedin Study birth cohort related to an array of measures that would better predict aging outcomes via modeling biological rather than chronological age. PubMedPubMedCentralCrossRef
169.
go back to reference Gurau F, et al. Anti-senescence compounds: a potential nutraceutical approach to healthy aging. Ageing Res Rev. 2018;46:14–31.PubMedCrossRef Gurau F, et al. Anti-senescence compounds: a potential nutraceutical approach to healthy aging. Ageing Res Rev. 2018;46:14–31.PubMedCrossRef
170.
171.
go back to reference Saraswat K, Rizvi SI. Novel strategies for anti-aging drug discovery. Expert Opin Drug Discov. 2017;12(9):955–66.PubMedCrossRef Saraswat K, Rizvi SI. Novel strategies for anti-aging drug discovery. Expert Opin Drug Discov. 2017;12(9):955–66.PubMedCrossRef
172.
174.
go back to reference Vaiserman AM. Epigenetic engineering and its possible role in anti-aging intervention. Rejuvenation Res. 2008;11(1):39–42.PubMedCrossRef Vaiserman AM. Epigenetic engineering and its possible role in anti-aging intervention. Rejuvenation Res. 2008;11(1):39–42.PubMedCrossRef
175.
go back to reference Linden GJ, Lyons A, Scannapieco FA. Periodontal systemic associations: review of the evidence. J Periodontol. 2013;84(4 Suppl):S8–S19.PubMed Linden GJ, Lyons A, Scannapieco FA. Periodontal systemic associations: review of the evidence. J Periodontol. 2013;84(4 Suppl):S8–S19.PubMed
176.
go back to reference Byerley LO, et al. Development of a serum profile for healthy aging. Age (Dordr). 2010;32(4):497–507.CrossRef Byerley LO, et al. Development of a serum profile for healthy aging. Age (Dordr). 2010;32(4):497–507.CrossRef
178.
go back to reference Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai PC, et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging (Albany NY). 2016;8(9):1844–65.CrossRef Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai PC, et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging (Albany NY). 2016;8(9):1844–65.CrossRef
179.
go back to reference Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–91.CrossRef Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–91.CrossRef
180.
go back to reference Levine ME, Crimmins EM. Is 60 the new 50? Examining changes in biological age over the past two decades. Demography. 2018;55(2):387–402.PubMedCrossRef Levine ME, Crimmins EM. Is 60 the new 50? Examining changes in biological age over the past two decades. Demography. 2018;55(2):387–402.PubMedCrossRef
181.
go back to reference Kim S, Bi X, Czarny-Ratajczak M, Dai J, Welsh DA, Myers L, et al. Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity. Biogerontology. 2012;13(2):119–31.PubMedCrossRef Kim S, Bi X, Czarny-Ratajczak M, Dai J, Welsh DA, Myers L, et al. Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity. Biogerontology. 2012;13(2):119–31.PubMedCrossRef
182.
go back to reference Kim S, Jazwinski SM. The gut microbiota and healthy aging: a mini-review. Gerontology. 2018:1–8. Kim S, Jazwinski SM. The gut microbiota and healthy aging: a mini-review. Gerontology. 2018:1–8.
183.
go back to reference Levine ME. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J Gerontol A Biol Sci Med Sci. 2013;68(6):667–74.PubMedCrossRef Levine ME. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J Gerontol A Biol Sci Med Sci. 2013;68(6):667–74.PubMedCrossRef
Metadata
Title
Age and Periodontal Health—Immunological View
Authors
Jeffrey L. Ebersole
D. A. Dawson III
P. Emecen Huja
S. Pandruvada
A. Basu
L. Nguyen
Y. Zhang
O. A. Gonzalez
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Current Oral Health Reports / Issue 4/2018
Electronic ISSN: 2196-3002
DOI
https://doi.org/10.1007/s40496-018-0202-2

Other articles of this Issue 4/2018

Current Oral Health Reports 4/2018 Go to the issue

Dental Restorative Materials (M Özcan, Section Editor)

Reparative Dentistry: Possibilities and Limitations

Dental Stem Cells in Tissue Regeneration (F Setzer, Section Editor)

Application of Stem Cells for Bone Regeneration in Critical-Sized Defects

Epidemiology (M Laine, Section Editor)

Saliva – A Promising Tool for Diagnosing Oral Diseases

Epidemiology (M Laine, Section Editor)

Herpesviral Infection in Periapical Periodontitis

Dental Stem Cells in Tissue Regeneration (F Setzer, Section Editor)

Tooth Repair and Regeneration

Dental Stem Cells in Tissue Regeneration (F Setzer, Section Editor)

Growth Factors and Cell Homing in Dental Tissue Regeneration