Skip to main content
Top
Published in: Clinical Pharmacokinetics 11/2019

01-11-2019 | Pharmacokinetics | Original Research Article

Population Pharmacokinetics of Mycophenolic Acid Co-Administered with Tacrolimus in Corticosteroid-Free Adult Kidney Transplant Patients

Authors: Yan Rong, Patrick Mayo, Mary H. H. Ensom, Tony K. L. Kiang

Published in: Clinical Pharmacokinetics | Issue 11/2019

Login to get access

Abstract

Background and Objective

Mycophenolic acid is commonly prescribed to adult kidney transplant recipients. Mycophenolic acid is extensively metabolized to mycophenolic acid-glucuronide (major metabolite) and mycophenolic acid-acyl-glucuronide (minor metabolite). We hypothesized that (1) adult kidney transplant patients on corticosteroid-free regimens exhibit unique mycophenolic acid population pharmacokinetics compared with patients receiving corticosteroid-based therapy, and (2) mycophenolic acid clearance is directly dependent on glucuronide metabolite formation.

Methods

Non-linear mixed-effects modeling was conducted with MonolixSuite-2018R1 (n = 27). Optimal pharmacokinetic models were selected based on objective function values, standard errors, and biological plausibility.

Results

Clinical demographic data were sex (female, 16), age (47 ± 13 years, mean ± standard deviation), weight (70 ± 16 kg), height (165 ± 9 cm), albumin (43 ± 4 g/L), serum creatinine (102 ± 27 µmol/L), estimated glomerular filtration rate (61 ± 16 mL/min/1.73 m2), mycophenolic acid dosage (1.4 ± 0.5 g/day, as mycophenolate mofetil), and tacrolimus dosage (5 ± 3 mg/day, immediate release). The population pharmacokinetics of mycophenolic acid can be described by a two-compartment first-order absorption with lag time, and a linear elimination structural model. The apparent oral clearance estimate in the final model (population mean, relative standard error) was 2.87 L/h, 42.3%, which is lower than that reported for similar patients on corticosteroid-based regimens (11.9–26.3 L/h). Other pharmacokinetic parameters were comparable to historical data obtained in corticosteroid-based patients. Both mycophenolic acid-acyl-glucuronide trough concentration and the area under the concentration–time curve ratio were significant covariates that reduced mycophenolic acid apparent oral clearance from 16.5 (base model) to 2.87 L/h. The model was evaluated based on bootstrapping, visual predictive checks, and diagnostic plots.

Conclusions

Our novel findings suggest the potential need to reduce mycophenolic acid dosage in subjects on corticosteroid-free regimens. Corticosteroid-free subjects may also be more sensitive to drug/gene interactions.
Literature
1.
go back to reference Kiang TKL, Ensom MHH. Population pharmacokinetics of mycophenolic acid: an update. Clin Pharmacokinet. 2018;57(5):547–58.PubMed Kiang TKL, Ensom MHH. Population pharmacokinetics of mycophenolic acid: an update. Clin Pharmacokinet. 2018;57(5):547–58.PubMed
2.
go back to reference Kiang TKL, Ensom MHH. Anti-rejection drugs. In: Murphy J, editor. Clinical pharmacokinetics. Bethesda: American Society of Health-System Pharmacists; 2017. pp. 205–20. Kiang TKL, Ensom MHH. Anti-rejection drugs. In: Murphy J, editor. Clinical pharmacokinetics. Bethesda: American Society of Health-System Pharmacists; 2017. pp. 205–20.
3.
go back to reference Kiang TKL, Ensom MH. Immunosuppressants. In: Beringer P, editor. Basic clinical pharmacokinetics. Philadelphia: Wolters Kluwer; 2017. pp. 320–58. Kiang TKL, Ensom MH. Immunosuppressants. In: Beringer P, editor. Basic clinical pharmacokinetics. Philadelphia: Wolters Kluwer; 2017. pp. 320–58.
4.
go back to reference Kiang TKL, Ensom MHH. Therapeutic drug monitoring of mycophenolate in adult solid organ transplant patients: an update. Expert Opin Drug Metab Toxicol. 2016;12(5):545–53.PubMed Kiang TKL, Ensom MHH. Therapeutic drug monitoring of mycophenolate in adult solid organ transplant patients: an update. Expert Opin Drug Metab Toxicol. 2016;12(5):545–53.PubMed
5.
go back to reference Staatz CE, Tett SE. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol. 2014;88(7):1351–89.PubMed Staatz CE, Tett SE. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol. 2014;88(7):1351–89.PubMed
6.
go back to reference Kiang TKL, Partovi N, Shapiro RJ, Berman JM, Collier AC, Ensom MHH. Regression and genomic analyses on the association between mycophenolic acid exposure and absolute neutrophil count in steroid-free, de novo kidney transplant recipients. Clin Drug Investig. 2018;38(11):1011–22.PubMed Kiang TKL, Partovi N, Shapiro RJ, Berman JM, Collier AC, Ensom MHH. Regression and genomic analyses on the association between mycophenolic acid exposure and absolute neutrophil count in steroid-free, de novo kidney transplant recipients. Clin Drug Investig. 2018;38(11):1011–22.PubMed
7.
go back to reference Vincenti F, Schena FP, Paraskevas S, Hauser IA, Walker RG, Grinyo J, FREEDOM Study Group. A randomized, multicenter study of steroid avoidance, early steroid withdrawal or standard steroid therapy in kidney transplant recipients. Am J Transplant. 2008;8(2):307–16.PubMed Vincenti F, Schena FP, Paraskevas S, Hauser IA, Walker RG, Grinyo J, FREEDOM Study Group. A randomized, multicenter study of steroid avoidance, early steroid withdrawal or standard steroid therapy in kidney transplant recipients. Am J Transplant. 2008;8(2):307–16.PubMed
8.
go back to reference Lemieux I, Houde I, Pascot A, Lachance JG, Noel R, Radeau T, et al. Effects of prednisone withdrawal on the new metabolic triad in cyclosporine-treated kidney transplant patients. Kidney Int. 2002;62(5):1839–47.PubMed Lemieux I, Houde I, Pascot A, Lachance JG, Noel R, Radeau T, et al. Effects of prednisone withdrawal on the new metabolic triad in cyclosporine-treated kidney transplant patients. Kidney Int. 2002;62(5):1839–47.PubMed
9.
go back to reference Andrade-Sierra J, Rojas-Campos E, Cardona-Munoz E, Evangelista-Carrillo LA, Puentes-Camacho A, Lugo-Lopez O, et al. Early steroid withdrawal in a renal transplant cohort treated with tacrolimus, mycophenolate mofetil and basiliximab. Nefrologia. 2014;34(2):216–22.PubMed Andrade-Sierra J, Rojas-Campos E, Cardona-Munoz E, Evangelista-Carrillo LA, Puentes-Camacho A, Lugo-Lopez O, et al. Early steroid withdrawal in a renal transplant cohort treated with tacrolimus, mycophenolate mofetil and basiliximab. Nefrologia. 2014;34(2):216–22.PubMed
10.
go back to reference Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46(1):13–8.PubMed Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46(1):13–8.PubMed
11.
go back to reference Soars MG, Petullo DM, Eckstein JA, Kasper SC, Wrighton SA. An assessment of UDP-glucuronosyltransferase induction using primary human hepatocytes. Drug Metab Dispos. 2004;32(1):140–8.PubMed Soars MG, Petullo DM, Eckstein JA, Kasper SC, Wrighton SA. An assessment of UDP-glucuronosyltransferase induction using primary human hepatocytes. Drug Metab Dispos. 2004;32(1):140–8.PubMed
12.
go back to reference Qadri I, Hu LJ, Iwahashi M, Al-Zuabi S, Quattrochi LC, Simon FR. Interaction of hepatocyte nuclear factors in transcriptional regulation of tissue specific hormonal expression of human multidrug resistance-associated protein 2 (abcc2). Toxicol Appl Pharmacol. 2009;234(3):281–92.PubMed Qadri I, Hu LJ, Iwahashi M, Al-Zuabi S, Quattrochi LC, Simon FR. Interaction of hepatocyte nuclear factors in transcriptional regulation of tissue specific hormonal expression of human multidrug resistance-associated protein 2 (abcc2). Toxicol Appl Pharmacol. 2009;234(3):281–92.PubMed
13.
go back to reference Cattaneo D, Perico N, Gaspari F, Gotti E, Remuzzi G. Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney transplantation. Kidney Int. 2002;62(3):1060–7.PubMed Cattaneo D, Perico N, Gaspari F, Gotti E, Remuzzi G. Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney transplantation. Kidney Int. 2002;62(3):1060–7.PubMed
14.
go back to reference Greanya ED, Poulin E, Partovi N, Shapiro RJ, Al-Khatib M, Ensom MH. Pharmacokinetics of tacrolimus and mycophenolate mofetil in renal transplant recipients on a corticosteroid-free regimen. Am J Health Syst Pharm. 2012;69(2):134–42.PubMed Greanya ED, Poulin E, Partovi N, Shapiro RJ, Al-Khatib M, Ensom MH. Pharmacokinetics of tacrolimus and mycophenolate mofetil in renal transplant recipients on a corticosteroid-free regimen. Am J Health Syst Pharm. 2012;69(2):134–42.PubMed
15.
go back to reference Sherwin CM, Fukuda T, Brunner HI, Goebel J, Vinks AA. The evolution of population pharmacokinetic models to describe the enterohepatic recycling of mycophenolic acid in solid organ transplantation and autoimmune disease. Clin Pharmacokinet. 2011;50(1):1–24.PubMedPubMedCentral Sherwin CM, Fukuda T, Brunner HI, Goebel J, Vinks AA. The evolution of population pharmacokinetic models to describe the enterohepatic recycling of mycophenolic acid in solid organ transplantation and autoimmune disease. Clin Pharmacokinet. 2011;50(1):1–24.PubMedPubMedCentral
16.
go back to reference Staatz CE, Tett SE. Maximum a posteriori Bayesian estimation of mycophenolic acid area under the concentration-time curve: is this clinically useful for dosage prediction yet? Clin Pharmacokinet. 2011;50(12):759–72.PubMed Staatz CE, Tett SE. Maximum a posteriori Bayesian estimation of mycophenolic acid area under the concentration-time curve: is this clinically useful for dosage prediction yet? Clin Pharmacokinet. 2011;50(12):759–72.PubMed
17.
go back to reference Dong M, Fukuda T, Vinks AA. Optimization of mycophenolic acid therapy using clinical pharmacometrics. Drug Metab Pharmacokinet. 2014;29(1):4–11.PubMed Dong M, Fukuda T, Vinks AA. Optimization of mycophenolic acid therapy using clinical pharmacometrics. Drug Metab Pharmacokinet. 2014;29(1):4–11.PubMed
18.
go back to reference Yu ZC, Zhou PJ, Wang XH, Francoise B, Xu D, Zhang WX, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in Chinese adult renal transplant recipients. Acta Pharmacol Sin. 2017;38(11):1566–79.PubMedPubMedCentral Yu ZC, Zhou PJ, Wang XH, Francoise B, Xu D, Zhang WX, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in Chinese adult renal transplant recipients. Acta Pharmacol Sin. 2017;38(11):1566–79.PubMedPubMedCentral
19.
go back to reference Colom H, Andreu F, van Gelder T, Hesselink DA, de Winter BCM, Bestard O, et al. Prediction of free from total mycophenolic acid concentrations in stable renal transplant patients: a population-based approach. Clin Pharmacokinet. 2018;57(7):877–93.PubMed Colom H, Andreu F, van Gelder T, Hesselink DA, de Winter BCM, Bestard O, et al. Prediction of free from total mycophenolic acid concentrations in stable renal transplant patients: a population-based approach. Clin Pharmacokinet. 2018;57(7):877–93.PubMed
20.
go back to reference Chen B, Shao K, An HM, Shi HQ, Lu JQ, Zhai XH, et al. Population pharmacokinetics and bayesian estimation of mycophenolic acid exposure in Chinese renal allograft recipients after administration of EC-MPS. J Clin Pharmacol. 2019;59(4):578–89.PubMed Chen B, Shao K, An HM, Shi HQ, Lu JQ, Zhai XH, et al. Population pharmacokinetics and bayesian estimation of mycophenolic acid exposure in Chinese renal allograft recipients after administration of EC-MPS. J Clin Pharmacol. 2019;59(4):578–89.PubMed
21.
go back to reference Yau WP, Vathsala A, Lou HX, Zhou S, Chan E. Mechanism-based enterohepatic circulation model of mycophenolic acid and its glucuronide metabolite: assessment of impact of cyclosporine dose in Asian renal transplant patients. J Clin Pharmacol. 2009;49(6):684–99.PubMed Yau WP, Vathsala A, Lou HX, Zhou S, Chan E. Mechanism-based enterohepatic circulation model of mycophenolic acid and its glucuronide metabolite: assessment of impact of cyclosporine dose in Asian renal transplant patients. J Clin Pharmacol. 2009;49(6):684–99.PubMed
22.
go back to reference de Winter BC, van Gelder T, Sombogaard F, Shaw LM, van Hest RM, Mathot RA. Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite in renal transplant recipients. J Pharmacokinet Pharmacodyn. 2009;36(6):541–64.PubMedPubMedCentral de Winter BC, van Gelder T, Sombogaard F, Shaw LM, van Hest RM, Mathot RA. Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite in renal transplant recipients. J Pharmacokinet Pharmacodyn. 2009;36(6):541–64.PubMedPubMedCentral
23.
go back to reference Cremers S, Schoemaker R, Scholten E, den Hartigh J, Konig-Quartel J, van Kan E, et al. Characterizing the role of enterohepatic recycling in the interactions between mycophenolate mofetil and calcineurin inhibitors in renal transplant patients by pharmacokinetic modelling. Br J Clin Pharmacol. 2005;60(3):249–56.PubMedPubMedCentral Cremers S, Schoemaker R, Scholten E, den Hartigh J, Konig-Quartel J, van Kan E, et al. Characterizing the role of enterohepatic recycling in the interactions between mycophenolate mofetil and calcineurin inhibitors in renal transplant patients by pharmacokinetic modelling. Br J Clin Pharmacol. 2005;60(3):249–56.PubMedPubMedCentral
24.
go back to reference Musuamba FT, Rousseau A, Bosmans JL, Senessael JJ, Cumps J, Marquet P, et al. Limited sampling models and Bayesian estimation for mycophenolic acid area under the curve prediction in stable renal transplant patients co-medicated with ciclosporin or sirolimus. Clin Pharmacokinet. 2009;48(11):745–58.PubMed Musuamba FT, Rousseau A, Bosmans JL, Senessael JJ, Cumps J, Marquet P, et al. Limited sampling models and Bayesian estimation for mycophenolic acid area under the curve prediction in stable renal transplant patients co-medicated with ciclosporin or sirolimus. Clin Pharmacokinet. 2009;48(11):745–58.PubMed
25.
go back to reference Sam WJ, Akhlaghi F, Rosenbaum SE. Population pharmacokinetics of mycophenolic acid and its 2 glucuronidated metabolites in kidney transplant recipients. J Clin Pharmacol. 2009;49(2):185–95.PubMed Sam WJ, Akhlaghi F, Rosenbaum SE. Population pharmacokinetics of mycophenolic acid and its 2 glucuronidated metabolites in kidney transplant recipients. J Clin Pharmacol. 2009;49(2):185–95.PubMed
26.
go back to reference Colom H, Lloberas N, Andreu F, Caldes A, Torras J, Oppenheimer F, et al. Pharmacokinetic modeling of enterohepatic circulation of mycophenolic acid in renal transplant recipients. Kidney Int. 2014;85(6):1434–43.PubMed Colom H, Lloberas N, Andreu F, Caldes A, Torras J, Oppenheimer F, et al. Pharmacokinetic modeling of enterohepatic circulation of mycophenolic acid in renal transplant recipients. Kidney Int. 2014;85(6):1434–43.PubMed
27.
go back to reference de Winter BC, Mathot RA, Sombogaard F, Vulto AG, van Gelder T. Nonlinear relationship between mycophenolate mofetil dose and mycophenolic acid exposure: implications for therapeutic drug monitoring. Clin J Am Soc Nephrol. 2011;6(3):656–63.PubMedPubMedCentral de Winter BC, Mathot RA, Sombogaard F, Vulto AG, van Gelder T. Nonlinear relationship between mycophenolate mofetil dose and mycophenolic acid exposure: implications for therapeutic drug monitoring. Clin J Am Soc Nephrol. 2011;6(3):656–63.PubMedPubMedCentral
28.
go back to reference de Winter BC, Mathot RA, Sombogaard F, Neumann I, van Hest RM, Doorduijn JK, et al. Differences in clearance of mycophenolic acid among renal transplant recipients, hematopoietic stem cell transplant recipients, and patients with autoimmune disease. Ther Drug Monit. 2010;32(5):606–14.PubMed de Winter BC, Mathot RA, Sombogaard F, Neumann I, van Hest RM, Doorduijn JK, et al. Differences in clearance of mycophenolic acid among renal transplant recipients, hematopoietic stem cell transplant recipients, and patients with autoimmune disease. Ther Drug Monit. 2010;32(5):606–14.PubMed
29.
go back to reference de Winter BC, Monchaud C, Premaud A, Pison C, Kessler R, Reynaud-Gaubert M, et al. Bayesian estimation of mycophenolate mofetil in lung transplantation, using a population pharmacokinetic model developed in kidney and lung transplant recipients. Clin Pharmacokinet. 2012;51(1):29–39.PubMed de Winter BC, Monchaud C, Premaud A, Pison C, Kessler R, Reynaud-Gaubert M, et al. Bayesian estimation of mycophenolate mofetil in lung transplantation, using a population pharmacokinetic model developed in kidney and lung transplant recipients. Clin Pharmacokinet. 2012;51(1):29–39.PubMed
30.
go back to reference de Winter BC, van Gelder T, Glander P, Cattaneo D, Tedesco-Silva H, Neumann I, et al. Population pharmacokinetics of mycophenolic acid: a comparison between enteric-coated mycophenolate sodium and mycophenolate mofetil in renal transplant recipients. Clin Pharmacokinet. 2008;47(12):827–38.PubMed de Winter BC, van Gelder T, Glander P, Cattaneo D, Tedesco-Silva H, Neumann I, et al. Population pharmacokinetics of mycophenolic acid: a comparison between enteric-coated mycophenolate sodium and mycophenolate mofetil in renal transplant recipients. Clin Pharmacokinet. 2008;47(12):827–38.PubMed
31.
go back to reference Staatz CE, Duffull SB, Kiberd B, Fraser AD, Tett SE. Population pharmacokinetics of mycophenolic acid during the first week after renal transplantation. Eur J Clin Pharmacol. 2005;61(7):507–16.PubMed Staatz CE, Duffull SB, Kiberd B, Fraser AD, Tett SE. Population pharmacokinetics of mycophenolic acid during the first week after renal transplantation. Eur J Clin Pharmacol. 2005;61(7):507–16.PubMed
32.
go back to reference Velickovic-Radovanovic RM, Jankovic SM, Milovanovic JR, Catic-Dordevic AK, Spasic AA, Stefanovic NZ, et al. Variability of mycophenolic acid elimination in the renal transplant recipients: population pharmacokinetic approach. Ren Fail. 2015;37(4):652–8.PubMed Velickovic-Radovanovic RM, Jankovic SM, Milovanovic JR, Catic-Dordevic AK, Spasic AA, Stefanovic NZ, et al. Variability of mycophenolic acid elimination in the renal transplant recipients: population pharmacokinetic approach. Ren Fail. 2015;37(4):652–8.PubMed
33.
go back to reference Shum B, Duffull SB, Taylor PJ, Tett SE. Population pharmacokinetic analysis of mycophenolic acid in renal transplant recipients following oral administration of mycophenolate mofetil. Br J Clin Pharmacol. 2003;56(2):188–97.PubMedPubMedCentral Shum B, Duffull SB, Taylor PJ, Tett SE. Population pharmacokinetic analysis of mycophenolic acid in renal transplant recipients following oral administration of mycophenolate mofetil. Br J Clin Pharmacol. 2003;56(2):188–97.PubMedPubMedCentral
34.
go back to reference Musuamba FT, Mourad M, Haufroid V, Demeyer M, Capron A, Delattre IK, et al. A simultaneous d-optimal designed study for population pharmacokinetic analyses of mycophenolic acid and tacrolimus early after renal transplantation. J Clin Pharmacol. 2012;52(12):1833–43.PubMed Musuamba FT, Mourad M, Haufroid V, Demeyer M, Capron A, Delattre IK, et al. A simultaneous d-optimal designed study for population pharmacokinetic analyses of mycophenolic acid and tacrolimus early after renal transplantation. J Clin Pharmacol. 2012;52(12):1833–43.PubMed
35.
go back to reference Lamba M, Tafti B, Melcher M, Chan G, Krishnaswami S, Busque S. Population pharmacokinetic analysis of mycophenolic acid coadministered with either tasocitinib (CP-690,550) or tacrolimus in adult renal allograft recipients. Ther Drug Monit. 2010;32(6):778–81.PubMed Lamba M, Tafti B, Melcher M, Chan G, Krishnaswami S, Busque S. Population pharmacokinetic analysis of mycophenolic acid coadministered with either tasocitinib (CP-690,550) or tacrolimus in adult renal allograft recipients. Ther Drug Monit. 2010;32(6):778–81.PubMed
36.
go back to reference Guillet BA, Simon NS, Purgus R, Botta C, Morange S, Berland Y, et al. Population pharmacokinetics analysis of mycophenolic acid in adult kidney transplant patients with chronic graft dysfunction. Ther Drug Monit. 2010;32(4):427–32.PubMed Guillet BA, Simon NS, Purgus R, Botta C, Morange S, Berland Y, et al. Population pharmacokinetics analysis of mycophenolic acid in adult kidney transplant patients with chronic graft dysfunction. Ther Drug Monit. 2010;32(4):427–32.PubMed
37.
go back to reference Han N, Yun HY, Kim IW, Oh YJ, Kim YS, Oh JM. Population pharmacogenetic pharmacokinetic modeling for flip-flop phenomenon of enteric-coated mycophenolate sodium in kidney transplant recipients. Eur J Clin Pharmacol. 2014;70(10):1211–9.PubMed Han N, Yun HY, Kim IW, Oh YJ, Kim YS, Oh JM. Population pharmacogenetic pharmacokinetic modeling for flip-flop phenomenon of enteric-coated mycophenolate sodium in kidney transplant recipients. Eur J Clin Pharmacol. 2014;70(10):1211–9.PubMed
38.
go back to reference Funaki T. Enterohepatic circulation model for population pharmacokinetic analysis. J Pharm Pharmacol. 1999;51(10):1143–8.PubMed Funaki T. Enterohepatic circulation model for population pharmacokinetic analysis. J Pharm Pharmacol. 1999;51(10):1143–8.PubMed
39.
go back to reference van Hest RM, Mathot RA, Pescovitz MD, Gordon R, Mamelok RD, van Gelder T. Explaining variability in mycophenolic acid exposure to optimize mycophenolate mofetil dosing: a population pharmacokinetic meta-analysis of mycophenolic acid in renal transplant recipients. J Am Soc Nephrol. 2006;17(3):871–80.PubMed van Hest RM, Mathot RA, Pescovitz MD, Gordon R, Mamelok RD, van Gelder T. Explaining variability in mycophenolic acid exposure to optimize mycophenolate mofetil dosing: a population pharmacokinetic meta-analysis of mycophenolic acid in renal transplant recipients. J Am Soc Nephrol. 2006;17(3):871–80.PubMed
40.
go back to reference van Hest RM, van Gelder T, Bouw R, Goggin T, Gordon R, Mamelok RD, et al. Time-dependent clearance of mycophenolic acid in renal transplant recipients. Br J Clin Pharmacol. 2007;63(6):741–52.PubMedPubMedCentral van Hest RM, van Gelder T, Bouw R, Goggin T, Gordon R, Mamelok RD, et al. Time-dependent clearance of mycophenolic acid in renal transplant recipients. Br J Clin Pharmacol. 2007;63(6):741–52.PubMedPubMedCentral
41.
go back to reference van Hest RM, van Gelder T, Vulto AG, Mathot RA. Population pharmacokinetics of mycophenolic acid in renal transplant recipients. Clin Pharmacokinet. 2005;44(10):1083–96.PubMed van Hest RM, van Gelder T, Vulto AG, Mathot RA. Population pharmacokinetics of mycophenolic acid in renal transplant recipients. Clin Pharmacokinet. 2005;44(10):1083–96.PubMed
42.
go back to reference Le Guellec C, Buchler M, Giraudeau B, Le Meur Y, Gakoue JE, Lebranchu Y, et al. Simultaneous estimation of cyclosporin and mycophenolic acid areas under the curve in stable renal transplant patients using a limited sampling strategy. Eur J Clin Pharmacol. 2002;57(11):805–11.PubMed Le Guellec C, Buchler M, Giraudeau B, Le Meur Y, Gakoue JE, Lebranchu Y, et al. Simultaneous estimation of cyclosporin and mycophenolic acid areas under the curve in stable renal transplant patients using a limited sampling strategy. Eur J Clin Pharmacol. 2002;57(11):805–11.PubMed
43.
go back to reference Ting LS, Partovi N, Levy RD, Riggs KW, Ensom MH. Pharmacokinetics of mycophenolic acid and its phenolic-glucuronide and ACYl glucuronide metabolites in stable thoracic transplant recipients. Ther Drug Monit. 2008;30(3):282–91.PubMed Ting LS, Partovi N, Levy RD, Riggs KW, Ensom MH. Pharmacokinetics of mycophenolic acid and its phenolic-glucuronide and ACYl glucuronide metabolites in stable thoracic transplant recipients. Ther Drug Monit. 2008;30(3):282–91.PubMed
44.
go back to reference Ting LS, Decarie D, Ensom MH. Effect of acidification on protein binding of mycophenolic acid. Ther Drug Monit. 2007;29(1):132–3.PubMed Ting LS, Decarie D, Ensom MH. Effect of acidification on protein binding of mycophenolic acid. Ther Drug Monit. 2007;29(1):132–3.PubMed
46.
go back to reference Kiang TKL, Sherwin CM, Spigarelli MG, Ensom MHH. Fundamentals of population pharmacokinetic modelling: modelling and software. Clin Pharmacokinet. 2012;51(8):515–25.PubMed Kiang TKL, Sherwin CM, Spigarelli MG, Ensom MHH. Fundamentals of population pharmacokinetic modelling: modelling and software. Clin Pharmacokinet. 2012;51(8):515–25.PubMed
47.
go back to reference Sherwin CM, Kiang TKL, Spigarelli MG, Ensom MHH. Fundamentals of population pharmacokinetic modelling: validation methods. Clin Pharmacokinet. 2012;51(9):573–90.PubMed Sherwin CM, Kiang TKL, Spigarelli MG, Ensom MHH. Fundamentals of population pharmacokinetic modelling: validation methods. Clin Pharmacokinet. 2012;51(9):573–90.PubMed
48.
go back to reference Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacometrics Syst Pharmacol. 2012;1:e6.PubMedPubMedCentral Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacometrics Syst Pharmacol. 2012;1:e6.PubMedPubMedCentral
51.
go back to reference Savic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11(3):558–69.PubMedPubMedCentral Savic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11(3):558–69.PubMedPubMedCentral
52.
go back to reference Tedesco-Silva H, Bastien MC, Choi L, Felipe C, Campestrini J, Picard F, et al. Mycophenolic acid metabolite profile in renal transplant patients receiving enteric-coated mycophenolate sodium or mycophenolate mofetil. Transplant Proc. 2005;37(2):852–5.PubMed Tedesco-Silva H, Bastien MC, Choi L, Felipe C, Campestrini J, Picard F, et al. Mycophenolic acid metabolite profile in renal transplant patients receiving enteric-coated mycophenolate sodium or mycophenolate mofetil. Transplant Proc. 2005;37(2):852–5.PubMed
53.
go back to reference Usui T, Kuno T, Mizutani T. Induction of human UDP-glucuronosyltransferase 1A1 by cortisol-GR. Mol Biol Rep. 2006;33(2):91–6.PubMed Usui T, Kuno T, Mizutani T. Induction of human UDP-glucuronosyltransferase 1A1 by cortisol-GR. Mol Biol Rep. 2006;33(2):91–6.PubMed
54.
go back to reference Kanou M, Usui T, Ueyama H, Sato H, Ohkubo I, Mizutani T. Stimulation of transcriptional expression of human UDP-glucuronosyltransferase 1A1 by dexamethasone. Mol Biol Rep. 2004;31(3):151–8.PubMed Kanou M, Usui T, Ueyama H, Sato H, Ohkubo I, Mizutani T. Stimulation of transcriptional expression of human UDP-glucuronosyltransferase 1A1 by dexamethasone. Mol Biol Rep. 2004;31(3):151–8.PubMed
56.
go back to reference Mackenzie PI. Identification of uridine diphosphate glucuronosyltransferases involved in the metabolism and clearance of mycophenolic acid. Ther Drug Monit. 2000;22(1):10–3.PubMed Mackenzie PI. Identification of uridine diphosphate glucuronosyltransferases involved in the metabolism and clearance of mycophenolic acid. Ther Drug Monit. 2000;22(1):10–3.PubMed
57.
go back to reference Miles KK, Stern ST, Smith PC, Kessler FK, Ali S, Ritter JK. An investigation of human and rat liver microsomal mycophenolic acid glucuronidation: evidence for a principal role of UGT1A enzymes and species differences in UGT1A specificity. Drug Metab Dispos. 2005;33(10):1513–20.PubMed Miles KK, Stern ST, Smith PC, Kessler FK, Ali S, Ritter JK. An investigation of human and rat liver microsomal mycophenolic acid glucuronidation: evidence for a principal role of UGT1A enzymes and species differences in UGT1A specificity. Drug Metab Dispos. 2005;33(10):1513–20.PubMed
58.
go back to reference Bernard O, Guillemette C. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab Dispos. 2004;32(8):775–8.PubMed Bernard O, Guillemette C. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab Dispos. 2004;32(8):775–8.PubMed
59.
go back to reference Picard N, Ratanasavanh D, Premaud A, Le Meur Y, Marquet P. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos. 2005;33(1):139–46.PubMed Picard N, Ratanasavanh D, Premaud A, Le Meur Y, Marquet P. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos. 2005;33(1):139–46.PubMed
60.
go back to reference Bernard O, Tojcic J, Journault K, Perusse L, Guillemette C. Influence of nonsynonymous polymorphisms of UGT1A8 and UGT2B7 metabolizing enzymes on the formation of phenolic and acyl glucuronides of mycophenolic acid. Drug Metab Dispos. 2006;34(9):1539–45.PubMed Bernard O, Tojcic J, Journault K, Perusse L, Guillemette C. Influence of nonsynonymous polymorphisms of UGT1A8 and UGT2B7 metabolizing enzymes on the formation of phenolic and acyl glucuronides of mycophenolic acid. Drug Metab Dispos. 2006;34(9):1539–45.PubMed
61.
go back to reference Johnson LA, Oetting WS, Basu S, Prausa S, Matas A, Jacobson PA. Pharmacogenetic effect of the UGT polymorphisms on mycophenolate is modified by calcineurin inhibitors. Eur J Clin Pharmacol. 2008;64(11):1047–56.PubMed Johnson LA, Oetting WS, Basu S, Prausa S, Matas A, Jacobson PA. Pharmacogenetic effect of the UGT polymorphisms on mycophenolate is modified by calcineurin inhibitors. Eur J Clin Pharmacol. 2008;64(11):1047–56.PubMed
62.
go back to reference Vanhove T, Bouwsma H, Hilbrands L, Swen JJ, Spriet I, Annaert P, et al. Determinants of the magnitude of interaction between tacrolimus and voriconazole/posaconazole in solid organ recipients. Am J Transplant. 2017;17(9):2372–80.PubMed Vanhove T, Bouwsma H, Hilbrands L, Swen JJ, Spriet I, Annaert P, et al. Determinants of the magnitude of interaction between tacrolimus and voriconazole/posaconazole in solid organ recipients. Am J Transplant. 2017;17(9):2372–80.PubMed
63.
go back to reference Atcheson BA, Taylor PJ, Kirkpatrick CM, et al. Free mycophenolic acid should be monitored in renal transplant recipients with hypoalbuminemia. Ther Drug Monit. 2004;26(3):284–6.PubMed Atcheson BA, Taylor PJ, Kirkpatrick CM, et al. Free mycophenolic acid should be monitored in renal transplant recipients with hypoalbuminemia. Ther Drug Monit. 2004;26(3):284–6.PubMed
64.
go back to reference Li P, Shuker N, Hesselink DA, van Schaik RH, Zhang X, van Gelder T. Do Asian renal transplant patients need another mycophenolate mofetil dose compared with Caucasian or African American patients? Transpl Int. 2014;27(10):994–1004.PubMed Li P, Shuker N, Hesselink DA, van Schaik RH, Zhang X, van Gelder T. Do Asian renal transplant patients need another mycophenolate mofetil dose compared with Caucasian or African American patients? Transpl Int. 2014;27(10):994–1004.PubMed
Metadata
Title
Population Pharmacokinetics of Mycophenolic Acid Co-Administered with Tacrolimus in Corticosteroid-Free Adult Kidney Transplant Patients
Authors
Yan Rong
Patrick Mayo
Mary H. H. Ensom
Tony K. L. Kiang
Publication date
01-11-2019
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 11/2019
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-019-00771-3

Other articles of this Issue 11/2019

Clinical Pharmacokinetics 11/2019 Go to the issue