Skip to main content
Top
Published in: Clinical Pharmacokinetics 5/2018

01-05-2018 | Original Research Article

Population Pharmacokinetics and Optimal Sampling Strategy for Model-Based Precision Dosing of Melphalan in Patients Undergoing Hematopoietic Stem Cell Transplantation

Authors: Kana Mizuno, Min Dong, Tsuyoshi Fukuda, Sharat Chandra, Parinda A. Mehta, Scott McConnell, Elias J. Anaissie, Alexander A. Vinks

Published in: Clinical Pharmacokinetics | Issue 5/2018

Login to get access

Abstract

Background

High-dose melphalan is an important component of conditioning regimens for patients undergoing hematopoietic stem cell transplantation. The current dosing strategy based on body surface area results in a high incidence of oral mucositis and gastrointestinal and liver toxicity. Pharmacokinetically guided dosing will individualize exposure and help minimize overexposure-related toxicity.

Objective

The purpose of this study was to develop a population pharmacokinetic model and optimal sampling strategy.

Methods

A population pharmacokinetic model was developed with NONMEM using 98 observations collected from 15 adult patients given the standard dose of 140 or 200 mg/m2 by intravenous infusion. The determinant-optimal sampling strategy was explored with PopED software. Individual area under the curve estimates were generated by Bayesian estimation using full and the proposed sparse sampling data. The predictive performance of the optimal sampling strategy was evaluated based on bias and precision estimates. The feasibility of the optimal sampling strategy was tested using pharmacokinetic data from five pediatric patients.

Results

A two-compartment model best described the data. The final model included body weight and creatinine clearance as predictors of clearance. The determinant-optimal sampling strategies (and windows) were identified at 0.08 (0.08–0.19), 0.61 (0.33–0.90), 2.0 (1.3–2.7), and 4.0 (3.6–4.0) h post-infusion. An excellent correlation was observed between area under the curve estimates obtained with the full and the proposed four-sample strategy (R 2 = 0.98; p < 0.01) with a mean bias of −2.2% and precision of 9.4%. A similar relationship was observed in children (R 2 = 0.99; p < 0.01).

Conclusions

The developed pharmacokinetic model-based sparse sampling strategy promises to achieve the target area under the curve as part of precision dosing.
Appendix
Available only for authorised users
Literature
1.
go back to reference Marsh RA, Vaughn G, Kim MO, Li DD, Jodele S, Joshi S, et al. Reduced-intensity conditioning significantly improves survival of patients with hemophagocytic lymphohistiocytosis undergoing allogeneic hematopoietic cell transplantation. Blood. 2010;116(26):5824–31.CrossRefPubMed Marsh RA, Vaughn G, Kim MO, Li DD, Jodele S, Joshi S, et al. Reduced-intensity conditioning significantly improves survival of patients with hemophagocytic lymphohistiocytosis undergoing allogeneic hematopoietic cell transplantation. Blood. 2010;116(26):5824–31.CrossRefPubMed
2.
go back to reference Barlogie B, Tricot G, Rasmussen E, Anaissie E, van Rhee F, Zangari M, et al. Total therapy 2 without thalidomide in comparison with total therapy 1: role of intensified induction and posttransplantation consolidation therapies. Blood. 2006;107(7):2633–8.CrossRefPubMed Barlogie B, Tricot G, Rasmussen E, Anaissie E, van Rhee F, Zangari M, et al. Total therapy 2 without thalidomide in comparison with total therapy 1: role of intensified induction and posttransplantation consolidation therapies. Blood. 2006;107(7):2633–8.CrossRefPubMed
3.
go back to reference Marsh R, Fukuda T, Emoto C, Neumeier L, Khandelwal P, Chandra S, et al. Pre-transplant absolute lymphocyte counts impact the pharmacokinetics of alemtuzumab. Biol Blood Marrow Tranplant. 2017;23(4):635–41.CrossRef Marsh R, Fukuda T, Emoto C, Neumeier L, Khandelwal P, Chandra S, et al. Pre-transplant absolute lymphocyte counts impact the pharmacokinetics of alemtuzumab. Biol Blood Marrow Tranplant. 2017;23(4):635–41.CrossRef
4.
go back to reference Shaw PJ, Nath CE, Lazarus HM. Not too little, not too much-just right! (Better ways to give high dose melphalan). Bone Marrow Transplant. 2014;49(12):1457–65.CrossRefPubMed Shaw PJ, Nath CE, Lazarus HM. Not too little, not too much-just right! (Better ways to give high dose melphalan). Bone Marrow Transplant. 2014;49(12):1457–65.CrossRefPubMed
5.
go back to reference Grazziutti ML, Dong L, Miceli MH, Krishna SG, Kiwan E, Syed N, et al. Oral mucositis in myeloma patients undergoing melphalan-based autologous stem cell transplantation: incidence, risk factors and a severity predictive model. Bone Marrow Transplant. 2006;38(7):501–6.CrossRefPubMed Grazziutti ML, Dong L, Miceli MH, Krishna SG, Kiwan E, Syed N, et al. Oral mucositis in myeloma patients undergoing melphalan-based autologous stem cell transplantation: incidence, risk factors and a severity predictive model. Bone Marrow Transplant. 2006;38(7):501–6.CrossRefPubMed
6.
go back to reference Blijlevens N, Schwenkglenks M, Bacon P, D’Addio A, Einsele H, Maertens J, et al. Prospective oral mucositis audit: oral mucositis in patients receiving high-dose melphalan or BEAM conditioning chemotherapy: European Blood and Marrow Transplantation Mucositis Advisory Group. J Clin Oncol. 2008;26(9):1519–25.CrossRefPubMed Blijlevens N, Schwenkglenks M, Bacon P, D’Addio A, Einsele H, Maertens J, et al. Prospective oral mucositis audit: oral mucositis in patients receiving high-dose melphalan or BEAM conditioning chemotherapy: European Blood and Marrow Transplantation Mucositis Advisory Group. J Clin Oncol. 2008;26(9):1519–25.CrossRefPubMed
7.
go back to reference Moreau P, Facon T, Attal M, Hulin C, Michallet M, Maloisel F, et al. Comparison of 200 mg/m2 melphalan and 8 Gy total body irradiation plus 140 mg/m2 melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe Francophone du Myelome 9502 randomized trial. Blood. 2002;99(3):731–5.CrossRefPubMed Moreau P, Facon T, Attal M, Hulin C, Michallet M, Maloisel F, et al. Comparison of 200 mg/m2 melphalan and 8 Gy total body irradiation plus 140 mg/m2 melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe Francophone du Myelome 9502 randomized trial. Blood. 2002;99(3):731–5.CrossRefPubMed
8.
go back to reference Peterman A, Cella D, Glandon G, Dobrez D, Yount S. Mucositis in head and neck cancer: economic and quality-of-life outcomes. J Natl Cancer Instit Monogr. 2001;29:45–51.CrossRef Peterman A, Cella D, Glandon G, Dobrez D, Yount S. Mucositis in head and neck cancer: economic and quality-of-life outcomes. J Natl Cancer Instit Monogr. 2001;29:45–51.CrossRef
9.
go back to reference Sonis ST, Oster G, Fuchs H, Bellm L, Bradford WZ, Edelsberg J, et al. Oral mucositis and the clinical and economic outcomes of hematopoietic stem-cell transplantation. J Clin Oncol. 2001;19(8):2201–5.CrossRefPubMed Sonis ST, Oster G, Fuchs H, Bellm L, Bradford WZ, Edelsberg J, et al. Oral mucositis and the clinical and economic outcomes of hematopoietic stem-cell transplantation. J Clin Oncol. 2001;19(8):2201–5.CrossRefPubMed
10.
go back to reference Shaw PJ, Nath CE, Nivison-Smith I, Joshua DE, Kerridge IH, Presgrave P, et al. Higher melphalan exposure is associated with improved overall survival for myeloma patients undergoing autologous transplant. Biol Blood Marrow Transplant. 2012;18(2):S207.CrossRef Shaw PJ, Nath CE, Nivison-Smith I, Joshua DE, Kerridge IH, Presgrave P, et al. Higher melphalan exposure is associated with improved overall survival for myeloma patients undergoing autologous transplant. Biol Blood Marrow Transplant. 2012;18(2):S207.CrossRef
11.
go back to reference Ploin DY, Tranchand B, Guastalla JP, Rebattu P, Chauvin F, Clavel M, et al. Pharmacokinetically guided dosing for intravenous melphalan: a pilot study in patients with advanced ovarian adenocarcinoma. Eur J Cancer. 1992;28A(8–9):1311–5.CrossRefPubMed Ploin DY, Tranchand B, Guastalla JP, Rebattu P, Chauvin F, Clavel M, et al. Pharmacokinetically guided dosing for intravenous melphalan: a pilot study in patients with advanced ovarian adenocarcinoma. Eur J Cancer. 1992;28A(8–9):1311–5.CrossRefPubMed
12.
go back to reference Kuhne A, Sezer O, Heider U, Meineke I, Muhlke S, Niere W, et al. Population pharmacokinetics of melphalan and glutathione S-transferase polymorphisms in relation to side effects. Clin Pharmacol Ther. 2008;83(5):749–57.CrossRefPubMed Kuhne A, Sezer O, Heider U, Meineke I, Muhlke S, Niere W, et al. Population pharmacokinetics of melphalan and glutathione S-transferase polymorphisms in relation to side effects. Clin Pharmacol Ther. 2008;83(5):749–57.CrossRefPubMed
13.
go back to reference Nath CE, Shaw PJ, Trotman J, Zeng LH, Duffull SB, Hegarty G, et al. Population pharmacokinetics of melphalan in patients with multiple myeloma undergoing high dose therapy. Br J Clin Pharmacol. 2010;69(5):484–97.CrossRefPubMedPubMedCentral Nath CE, Shaw PJ, Trotman J, Zeng LH, Duffull SB, Hegarty G, et al. Population pharmacokinetics of melphalan in patients with multiple myeloma undergoing high dose therapy. Br J Clin Pharmacol. 2010;69(5):484–97.CrossRefPubMedPubMedCentral
14.
go back to reference Nath CE, Trotman J, Tiley C, Presgrave P, Joshua D, Kerridge I, et al. High melphalan exposure is associated with improved overall survival in myeloma patients receiving high dose melphalan and autologous transplantation. Br J Clin Pharmacol. 2016;82(1):149–59.CrossRefPubMedPubMedCentral Nath CE, Trotman J, Tiley C, Presgrave P, Joshua D, Kerridge I, et al. High melphalan exposure is associated with improved overall survival in myeloma patients receiving high dose melphalan and autologous transplantation. Br J Clin Pharmacol. 2016;82(1):149–59.CrossRefPubMedPubMedCentral
15.
go back to reference Jelliffe RW, Schumitzky A, Van Guilder M, Liu M, Hu L, Maire P, et al. Individualizing drug dosage regimens: roles of population pharmacokinetic and dynamic models, Bayesian fitting, and adaptive control. Ther Drug Monit. 1993;15(5):380–93.CrossRefPubMed Jelliffe RW, Schumitzky A, Van Guilder M, Liu M, Hu L, Maire P, et al. Individualizing drug dosage regimens: roles of population pharmacokinetic and dynamic models, Bayesian fitting, and adaptive control. Ther Drug Monit. 1993;15(5):380–93.CrossRefPubMed
16.
go back to reference Mould DR, D’Haens G, Upton RN. Clinical decision support tools: the evolution of a revolution. Clin Pharmacol Ther. 2016;99(4):405–18.CrossRefPubMed Mould DR, D’Haens G, Upton RN. Clinical decision support tools: the evolution of a revolution. Clin Pharmacol Ther. 2016;99(4):405–18.CrossRefPubMed
17.
go back to reference Tesfaye H, Branova R, Klapkova E, Prusa R, Janeckova D, Riha P, et al. The importance of therapeutic drug monitoring (TDM) for parenteral busulfan dosing in conditioning regimen for hematopoietic stem cell transplantation (HSCT) in children. Ann Transplant. 2014;19:214–24.CrossRefPubMed Tesfaye H, Branova R, Klapkova E, Prusa R, Janeckova D, Riha P, et al. The importance of therapeutic drug monitoring (TDM) for parenteral busulfan dosing in conditioning regimen for hematopoietic stem cell transplantation (HSCT) in children. Ann Transplant. 2014;19:214–24.CrossRefPubMed
18.
go back to reference Philippe M, Neely M, Bertrand Y, Bleyzac N, Goutelle S. A nonparametric method to optimize initial drug dosing and attainment of a target exposure interval: concepts and application to busulfan in pediatrics. Clin Pharmacokinet. 2017;56(4):435–47.CrossRefPubMed Philippe M, Neely M, Bertrand Y, Bleyzac N, Goutelle S. A nonparametric method to optimize initial drug dosing and attainment of a target exposure interval: concepts and application to busulfan in pediatrics. Clin Pharmacokinet. 2017;56(4):435–47.CrossRefPubMed
19.
go back to reference Neely M, Philippe M, Rushing T, Fu X, van Guilder M, Bayard D, et al. Accurately achieving target busulfan exposure in children and adolescents with very limited sampling and the BestDose software. Ther Drug Monit. 2016;38(3):332–42.CrossRefPubMedPubMedCentral Neely M, Philippe M, Rushing T, Fu X, van Guilder M, Bayard D, et al. Accurately achieving target busulfan exposure in children and adolescents with very limited sampling and the BestDose software. Ther Drug Monit. 2016;38(3):332–42.CrossRefPubMedPubMedCentral
20.
go back to reference Bartelink IH, Lalmohamed A, van Reij EM, Dvorak CC, Savic RM, Zwaveling J, et al. Association of busulfan exposure with survival and toxicity after haemopoietic cell transplantation in children and young adults: a multicentre, retrospective cohort analysis. Lancet Haematol. 2016;3(11):e526–36.CrossRefPubMedPubMedCentral Bartelink IH, Lalmohamed A, van Reij EM, Dvorak CC, Savic RM, Zwaveling J, et al. Association of busulfan exposure with survival and toxicity after haemopoietic cell transplantation in children and young adults: a multicentre, retrospective cohort analysis. Lancet Haematol. 2016;3(11):e526–36.CrossRefPubMedPubMedCentral
21.
go back to reference Abdel-Rahman SM, Breitkreutz ML, Bi C, Matzuka BJ, Dalal J, Casey KL, et al. Design and testing of an EHR-integrated, busulfan pharmacokinetic decision support tool for the point-of-care clinician. Front Pharmacol. 2016;7:65.CrossRefPubMedPubMedCentral Abdel-Rahman SM, Breitkreutz ML, Bi C, Matzuka BJ, Dalal J, Casey KL, et al. Design and testing of an EHR-integrated, busulfan pharmacokinetic decision support tool for the point-of-care clinician. Front Pharmacol. 2016;7:65.CrossRefPubMedPubMedCentral
22.
go back to reference McCune JS, Bemer MJ, Barrett JS, Scott Baker K, Gamis AS, Holford NH. Busulfan in infant to adult hematopoietic cell transplant recipients: a population pharmacokinetic model for initial and Bayesian dose personalization. Clin Cancer Res. 2014;20(3):754–63.CrossRefPubMed McCune JS, Bemer MJ, Barrett JS, Scott Baker K, Gamis AS, Holford NH. Busulfan in infant to adult hematopoietic cell transplant recipients: a population pharmacokinetic model for initial and Bayesian dose personalization. Clin Cancer Res. 2014;20(3):754–63.CrossRefPubMed
23.
go back to reference Tranchand B, Ploin YD, Minuit MP, Sapet C, Biron P, Philip T, et al. High-dose melphalan dosage adjustment: possibility of using a test-dose. Cancer Chemother Pharmacol. 1989;23(2):95–100.CrossRefPubMed Tranchand B, Ploin YD, Minuit MP, Sapet C, Biron P, Philip T, et al. High-dose melphalan dosage adjustment: possibility of using a test-dose. Cancer Chemother Pharmacol. 1989;23(2):95–100.CrossRefPubMed
24.
go back to reference Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.CrossRefPubMed Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.CrossRefPubMed
25.
go back to reference Nath CE, Zeng L, Eslick A, Trotman J, Earl JW. An isocratic UV HPLC assay for analysis of total and free melphalan concentrations in human plasma. Acta Chromatogr. 2008;20(3):383–98.CrossRef Nath CE, Zeng L, Eslick A, Trotman J, Earl JW. An isocratic UV HPLC assay for analysis of total and free melphalan concentrations in human plasma. Acta Chromatogr. 2008;20(3):383–98.CrossRef
26.
go back to reference Beal S, Sheiner LB, Boeckmann A, Bauer RJ. NONMEM user’s guides (1989–2009). Ellicott City: Icon Development Solutions; 2009. Beal S, Sheiner LB, Boeckmann A, Bauer RJ. NONMEM user’s guides (1989–2009). Ellicott City: Icon Development Solutions; 2009.
27.
go back to reference Keizer RJ, Karlsson MO, Hooker A. Modeling and simulation workbench for NONMEM: tutorial on Pirana, PsN, and Xpose. CPT Pharmacometr Syst Pharmacol. 2013;2:e50.CrossRef Keizer RJ, Karlsson MO, Hooker A. Modeling and simulation workbench for NONMEM: tutorial on Pirana, PsN, and Xpose. CPT Pharmacometr Syst Pharmacol. 2013;2:e50.CrossRef
28.
go back to reference Choi L, Caffo BS, Kohli U, Pandharipande P, Kurnik D, Ely EW, et al. A Bayesian hierarchical nonlinear mixture model in the presence of artifactual outliers in a population pharmacokinetic study. J Pharmacokinet Pharmacodyn. 2011;38(5):613–36.CrossRefPubMedPubMedCentral Choi L, Caffo BS, Kohli U, Pandharipande P, Kurnik D, Ely EW, et al. A Bayesian hierarchical nonlinear mixture model in the presence of artifactual outliers in a population pharmacokinetic study. J Pharmacokinet Pharmacodyn. 2011;38(5):613–36.CrossRefPubMedPubMedCentral
29.
go back to reference Nath CE, Shaw PJ, Montgomery K, Earl JW. Population pharmacokinetics of melphalan in paediatric blood or marrow transplant recipients. Br J Clin Pharmacol. 2007;64(2):151–64.CrossRefPubMedPubMedCentral Nath CE, Shaw PJ, Montgomery K, Earl JW. Population pharmacokinetics of melphalan in paediatric blood or marrow transplant recipients. Br J Clin Pharmacol. 2007;64(2):151–64.CrossRefPubMedPubMedCentral
30.
go back to reference Cho YK, Sborov DW, Lamprecht M, Li J, Wang J, Hade EM, et al. Associations of high-dose melphalan pharmacokinetics and outcomes in the setting of a randomized cryotherapy trial. Clin Pharmacol Ther. 2017;. doi:10.1002/cpt.644 (Epub ahead of print). Cho YK, Sborov DW, Lamprecht M, Li J, Wang J, Hade EM, et al. Associations of high-dose melphalan pharmacokinetics and outcomes in the setting of a randomized cryotherapy trial. Clin Pharmacol Ther. 2017;. doi:10.​1002/​cpt.​644 (Epub ahead of print).
31.
go back to reference Anderson BJ, Holford NH. Mechanism-based concepts of size and maturity in pharmacokinetics. Ann Rev Pharmacol Toxicol. 2008;48:303–32.CrossRef Anderson BJ, Holford NH. Mechanism-based concepts of size and maturity in pharmacokinetics. Ann Rev Pharmacol Toxicol. 2008;48:303–32.CrossRef
32.
go back to reference Mould DR, Holford NH, Schellens JH, Beijnen JH, Hutson PR, Rosing H, et al. Population pharmacokinetic and adverse event analysis of topotecan in patients with solid tumors. Clin Pharmacol Ther. 2002;71(5):334–48.CrossRefPubMed Mould DR, Holford NH, Schellens JH, Beijnen JH, Hutson PR, Rosing H, et al. Population pharmacokinetic and adverse event analysis of topotecan in patients with solid tumors. Clin Pharmacol Ther. 2002;71(5):334–48.CrossRefPubMed
33.
go back to reference Jonsson EN, Karlsson MO. Xpose: an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed. 1999;58(1):51–64.CrossRefPubMed Jonsson EN, Karlsson MO. Xpose: an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed. 1999;58(1):51–64.CrossRefPubMed
34.
go back to reference Wang Y, Jadhav PR, Lala M, Gobburu JV. Clarification on precision criteria to derive sample size when designing pediatric pharmacokinetic studies. J Clin Pharmacol. 2012;52(10):1601–6.CrossRefPubMed Wang Y, Jadhav PR, Lala M, Gobburu JV. Clarification on precision criteria to derive sample size when designing pediatric pharmacokinetic studies. J Clin Pharmacol. 2012;52(10):1601–6.CrossRefPubMed
35.
go back to reference Mouksassi M, Marier J, Cyran J, Vinks A. Clinical trial simulations in pediatric patients using realistic covariates: application to teduglutide, a glucagon-like peptide-2 analog in neonates and infants with short-bowel syndrome. Clin Pharmacol Ther. 2009;86(6):667–71.CrossRefPubMed Mouksassi M, Marier J, Cyran J, Vinks A. Clinical trial simulations in pediatric patients using realistic covariates: application to teduglutide, a glucagon-like peptide-2 analog in neonates and infants with short-bowel syndrome. Clin Pharmacol Ther. 2009;86(6):667–71.CrossRefPubMed
36.
go back to reference Foracchia M, Hooker A, Vicini P, Ruggeri A. POPED, a software for optimal experiment design in population kinetics. Comput Methods Programs Biomed. 2004;74(1):29–46.CrossRefPubMed Foracchia M, Hooker A, Vicini P, Ruggeri A. POPED, a software for optimal experiment design in population kinetics. Comput Methods Programs Biomed. 2004;74(1):29–46.CrossRefPubMed
37.
go back to reference Ogungbenro K, Aarons L. An effective approach for obtaining optimal sampling windows for population pharmacokinetic experiments. J Biopharm Stat. 2009;19(1):174–89.CrossRefPubMed Ogungbenro K, Aarons L. An effective approach for obtaining optimal sampling windows for population pharmacokinetic experiments. J Biopharm Stat. 2009;19(1):174–89.CrossRefPubMed
38.
go back to reference D’Argenio DZ, Schumitzky A, Wang X. ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Los Angeles: Biomedical Simulations Resource; 2009. D’Argenio DZ, Schumitzky A, Wang X. ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Los Angeles: Biomedical Simulations Resource; 2009.
39.
go back to reference D’Argenio DZ. Optimal sampling times for pharmacokinetic experiments. J Pharmacokinet Biopharm. 1981;9(6):739–56.CrossRefPubMed D’Argenio DZ. Optimal sampling times for pharmacokinetic experiments. J Pharmacokinet Biopharm. 1981;9(6):739–56.CrossRefPubMed
40.
go back to reference Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981;9(4):503–12.CrossRefPubMed Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981;9(4):503–12.CrossRefPubMed
41.
go back to reference Proost JH, Meijer DK. MW/Pharm, an integrated software package for drug dosage regimen calculation and therapeutic drug monitoring. Comput Biol Med. 1992;22(3):155–63.CrossRefPubMed Proost JH, Meijer DK. MW/Pharm, an integrated software package for drug dosage regimen calculation and therapeutic drug monitoring. Comput Biol Med. 1992;22(3):155–63.CrossRefPubMed
42.
go back to reference Ardiet C, Tranchand B, Biron P, Rebattu P, Philip T. Pharmacokinetics of high-dose intravenous melphalan in children and adults with forced diuresis: report in 26 cases. Cancer Chemother Pharmacol. 1986;16(3):300–5.CrossRefPubMed Ardiet C, Tranchand B, Biron P, Rebattu P, Philip T. Pharmacokinetics of high-dose intravenous melphalan in children and adults with forced diuresis: report in 26 cases. Cancer Chemother Pharmacol. 1986;16(3):300–5.CrossRefPubMed
43.
go back to reference Fuchs A, Csajka C, Thoma Y, Buclin T, Widmer N. Benchmarking therapeutic drug monitoring software: a review of available computer tools. Clin Pharmacokinet. 2013;52(1):9–22.CrossRefPubMed Fuchs A, Csajka C, Thoma Y, Buclin T, Widmer N. Benchmarking therapeutic drug monitoring software: a review of available computer tools. Clin Pharmacokinet. 2013;52(1):9–22.CrossRefPubMed
44.
go back to reference Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14(6):498–509.CrossRefPubMedPubMedCentral Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14(6):498–509.CrossRefPubMedPubMedCentral
45.
go back to reference Wojciechowski J, Hopkins AM, Upton RN. Interactive pharmacometric applications using R and the Shiny Package. CPT Pharmacometr Syst Pharmacol. 2015;4(3):e00021.CrossRef Wojciechowski J, Hopkins AM, Upton RN. Interactive pharmacometric applications using R and the Shiny Package. CPT Pharmacometr Syst Pharmacol. 2015;4(3):e00021.CrossRef
46.
go back to reference Mougenot P, Pinguet F, Fabbro M, Culine S, Poujol S, Astre C, et al. Population pharmacokinetics of melphalan, infused over a 24-hour period, in patients with advanced malignancies. Cancer Chemother Pharmacol. 2004;53(6):503–12.CrossRefPubMed Mougenot P, Pinguet F, Fabbro M, Culine S, Poujol S, Astre C, et al. Population pharmacokinetics of melphalan, infused over a 24-hour period, in patients with advanced malignancies. Cancer Chemother Pharmacol. 2004;53(6):503–12.CrossRefPubMed
47.
go back to reference Reece PA, Hill HS, Green RM, Morris RG, Dale BM, Kotasek D, et al. Renal clearance and protein binding of melphalan in patients with cancer. Cancer Chemother Pharmacol. 1988;22(4):348–52.CrossRefPubMed Reece PA, Hill HS, Green RM, Morris RG, Dale BM, Kotasek D, et al. Renal clearance and protein binding of melphalan in patients with cancer. Cancer Chemother Pharmacol. 1988;22(4):348–52.CrossRefPubMed
48.
go back to reference Cornwell GG 3rd, Pajak TF, McIntyre OR, Kochwa S, Dosik H. Influence of renal failure on myelosuppressive effects of melphalan: cancer and leukemia group B experience. Cancer Treat Rep. 1982;66(3):475–81.PubMed Cornwell GG 3rd, Pajak TF, McIntyre OR, Kochwa S, Dosik H. Influence of renal failure on myelosuppressive effects of melphalan: cancer and leukemia group B experience. Cancer Treat Rep. 1982;66(3):475–81.PubMed
49.
go back to reference Bolton MG, Colvin OM, Hilton J. Specificity of isozymes of murine hepatic glutathione S-transferase for the conjugation of glutathione with l-phenylalanine mustard. Cancer Res. 1991;51(9):2410–5.PubMed Bolton MG, Colvin OM, Hilton J. Specificity of isozymes of murine hepatic glutathione S-transferase for the conjugation of glutathione with l-phenylalanine mustard. Cancer Res. 1991;51(9):2410–5.PubMed
50.
go back to reference Dirven HA, van Ommen B, van Bladeren PJ. Glutathione conjugation of alkylating cytostatic drugs with a nitrogen mustard group and the role of glutathione S-transferases. Chem Res Toxicol. 1996;9(2):351–60.CrossRefPubMed Dirven HA, van Ommen B, van Bladeren PJ. Glutathione conjugation of alkylating cytostatic drugs with a nitrogen mustard group and the role of glutathione S-transferases. Chem Res Toxicol. 1996;9(2):351–60.CrossRefPubMed
51.
go back to reference Bredschneider M, Klein K, Murdter TE, Marx C, Eichelbaum M, Nussler AK, et al. Genetic polymorphisms of glutathione S-transferase A1, the major glutathione S-transferase in human liver: consequences for enzyme expression and busulfan conjugation. Clin Pharmacol Ther. 2002;71(6):479–87.CrossRefPubMed Bredschneider M, Klein K, Murdter TE, Marx C, Eichelbaum M, Nussler AK, et al. Genetic polymorphisms of glutathione S-transferase A1, the major glutathione S-transferase in human liver: consequences for enzyme expression and busulfan conjugation. Clin Pharmacol Ther. 2002;71(6):479–87.CrossRefPubMed
52.
go back to reference Kim SD, Lee JH, Hur EH, Lee JH, Kim DY, Lim SN, et al. Influence of GST gene polymorphisms on the clearance of intravenous busulfan in adult patients undergoing hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2011;17(8):1222–30.CrossRefPubMed Kim SD, Lee JH, Hur EH, Lee JH, Kim DY, Lim SN, et al. Influence of GST gene polymorphisms on the clearance of intravenous busulfan in adult patients undergoing hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2011;17(8):1222–30.CrossRefPubMed
53.
go back to reference Elhasid R, Krivoy N, Rowe JM, Sprecher E, Adler L, Elkin H, et al. Influence of glutathione S-transferase A1, P1, M1, T1 polymorphisms on oral busulfan pharmacokinetics in children with congenital hemoglobinopathies undergoing hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2010;55(6):1172–9.CrossRefPubMed Elhasid R, Krivoy N, Rowe JM, Sprecher E, Adler L, Elkin H, et al. Influence of glutathione S-transferase A1, P1, M1, T1 polymorphisms on oral busulfan pharmacokinetics in children with congenital hemoglobinopathies undergoing hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2010;55(6):1172–9.CrossRefPubMed
54.
go back to reference Ansari M, Lauzon-Joset JF, Vachon MF, Duval M, Theoret Y, Champagne MA, et al. Influence of GST gene polymorphisms on busulfan pharmacokinetics in children. Bone Marrow Transplant. 2010;45(2):261–7.CrossRefPubMed Ansari M, Lauzon-Joset JF, Vachon MF, Duval M, Theoret Y, Champagne MA, et al. Influence of GST gene polymorphisms on busulfan pharmacokinetics in children. Bone Marrow Transplant. 2010;45(2):261–7.CrossRefPubMed
55.
go back to reference Srivastava A, Poonkuzhali B, Shaji RV, George B, Mathews V, Chandy M, et al. Glutathione S-transferase M1 polymorphism: a risk factor for hepatic venoocclusive disease in bone marrow transplantation. Blood. 2004;104(5):1574–7.CrossRefPubMed Srivastava A, Poonkuzhali B, Shaji RV, George B, Mathews V, Chandy M, et al. Glutathione S-transferase M1 polymorphism: a risk factor for hepatic venoocclusive disease in bone marrow transplantation. Blood. 2004;104(5):1574–7.CrossRefPubMed
56.
go back to reference Samuels BL, Bitran JD. High-dose intravenous melphalan: a review. J Clin Oncol. 1995;13(7):1786–99.CrossRefPubMed Samuels BL, Bitran JD. High-dose intravenous melphalan: a review. J Clin Oncol. 1995;13(7):1786–99.CrossRefPubMed
57.
go back to reference Krishna SG, Zhao W, Grazziutti ML, Sanathkumar N, Barlogie B, Anaissie EJ. Incidence and risk factors for lower alimentary tract mucositis after 1529 courses of chemotherapy in a homogenous population of oncology patients: clinical and research implications. Cancer. 2011;117(3):648–55.CrossRefPubMed Krishna SG, Zhao W, Grazziutti ML, Sanathkumar N, Barlogie B, Anaissie EJ. Incidence and risk factors for lower alimentary tract mucositis after 1529 courses of chemotherapy in a homogenous population of oncology patients: clinical and research implications. Cancer. 2011;117(3):648–55.CrossRefPubMed
58.
go back to reference Aljitawi OS, Ganguly S, Abhyankar SH, Ferree M, Marks R, Pipkin JD, et al. Phase IIa cross-over study of propylene glycol-free melphalan (LGD-353) and alkeran in multiple myeloma autologous transplantation. Bone Marrow Transplant. 2014;49(8):1042–5.CrossRefPubMed Aljitawi OS, Ganguly S, Abhyankar SH, Ferree M, Marks R, Pipkin JD, et al. Phase IIa cross-over study of propylene glycol-free melphalan (LGD-353) and alkeran in multiple myeloma autologous transplantation. Bone Marrow Transplant. 2014;49(8):1042–5.CrossRefPubMed
Metadata
Title
Population Pharmacokinetics and Optimal Sampling Strategy for Model-Based Precision Dosing of Melphalan in Patients Undergoing Hematopoietic Stem Cell Transplantation
Authors
Kana Mizuno
Min Dong
Tsuyoshi Fukuda
Sharat Chandra
Parinda A. Mehta
Scott McConnell
Elias J. Anaissie
Alexander A. Vinks
Publication date
01-05-2018
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 5/2018
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-017-0581-x

Other articles of this Issue 5/2018

Clinical Pharmacokinetics 5/2018 Go to the issue