Skip to main content
Top
Published in: Neurology and Therapy 5/2023

Open Access 20-07-2023 | Alzheimer's Disease | REVIEW

Potential Ocular Biomarkers for Early Detection of Alzheimer’s Disease and Their Roles in Artificial Intelligence Studies

Authors: Pareena Chaitanuwong, Panisa Singhanetr, Methaphon Chainakul, Niracha Arjkongharn, Paisan Ruamviboonsuk, Andrzej Grzybowski

Published in: Neurology and Therapy | Issue 5/2023

Login to get access

Abstract

Alzheimer’s disease (AD) is the leading cause of dementia worldwide. Early detection is believed to be essential to disease management because it enables physicians to initiate treatment in patients with early-stage AD (early AD), with the possibility of stopping the disease or slowing disease progression, preserving function and ultimately reducing disease burden. The purpose of this study was to review prior research on the use of eye biomarkers and artificial intelligence (AI) for detecting AD and early AD. The PubMed database was searched to identify studies for review. Ocular biomarkers in AD research and AI research on AD were reviewed and summarized. According to numerous studies, there is a high likelihood that ocular biomarkers can be used to detect early AD: tears, corneal nerves, retina, visual function and, in particular, eye movement tracking have been identified as ocular biomarkers with the potential to detect early AD. However, there is currently no ocular biomarker that can be used to definitely detect early AD. A few studies that used AI with ocular biomarkers to detect AD reported promising results, demonstrating that using AI with ocular biomarkers through multimodal imaging could improve the accuracy of identifying AD patients. This strategy may become a screening tool for detecting early AD in older patients prior to the onset of AD symptoms.
Literature
1.
go back to reference Prince AC-H, Maëlenn G, Maria K, Martin K. World Alzheimer report 2016: improving healthcare for people living with dementia: coverage, quality and costs now and in the future. London: Alzheimer’s Disease International (ADI); 2016. Prince AC-H, Maëlenn G, Maria K, Martin K. World Alzheimer report 2016: improving healthcare for people living with dementia: coverage, quality and costs now and in the future. London: Alzheimer’s Disease International (ADI); 2016.
2.
go back to reference Patterson C. World Alzheimer report 2018: the state of the art of dementia research: new frontiers. London: Alzheimer’s Disease International (ADI); 2018. Patterson C. World Alzheimer report 2018: the state of the art of dementia research: new frontiers. London: Alzheimer’s Disease International (ADI); 2018.
3.
go back to reference Gauthier S, Rosa-Neto P, Morais JA, Webster C. World Alzheimer report 2021: journey through the diagnosis of dementia. London: Alzheimer’s Disease International (ADI); 2021. Gauthier S, Rosa-Neto P, Morais JA, Webster C. World Alzheimer report 2021: journey through the diagnosis of dementia. London: Alzheimer’s Disease International (ADI); 2021.
4.
go back to reference Rasmussen J, Langerman H. Alzheimer’s disease—why we need early diagnosis. Degener Neurol Neuromuscul Dis. 2019;9:123–30.PubMedPubMedCentral Rasmussen J, Langerman H. Alzheimer’s disease—why we need early diagnosis. Degener Neurol Neuromuscul Dis. 2019;9:123–30.PubMedPubMedCentral
5.
go back to reference Weller J, Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res. 2018;7:F1000. Weller J, Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res. 2018;7:F1000.
6.
go back to reference Budson AE, Solomon PR. New criteria for Alzheimer disease and mild cognitive impairment: implications for the practicing clinician. Neurologist. 2012;18(6):356–63.PubMedPubMedCentral Budson AE, Solomon PR. New criteria for Alzheimer disease and mild cognitive impairment: implications for the practicing clinician. Neurologist. 2012;18(6):356–63.PubMedPubMedCentral
7.
go back to reference Dong L, Yang Q, Zhang RH, Wei WB. Artificial intelligence for the detection of age-related macular degeneration in color fundus photographs: a systematic review and meta-analysis. EClinicalMedicine. 2021;35:100875.PubMedPubMedCentral Dong L, Yang Q, Zhang RH, Wei WB. Artificial intelligence for the detection of age-related macular degeneration in color fundus photographs: a systematic review and meta-analysis. EClinicalMedicine. 2021;35:100875.PubMedPubMedCentral
8.
go back to reference Zheng C, Johnson TV, Garg A, Boland MV. Artificial intelligence in glaucoma. Curr Opin Ophthalmol. 2019;30(2):97–103.PubMed Zheng C, Johnson TV, Garg A, Boland MV. Artificial intelligence in glaucoma. Curr Opin Ophthalmol. 2019;30(2):97–103.PubMed
9.
go back to reference Milea D, Najjar RP, Jiang Z, et al. Artificial intelligence to detect papilledema from ocular fundus photographs. N Engl J Med. 2020;382(18):1687–95.PubMed Milea D, Najjar RP, Jiang Z, et al. Artificial intelligence to detect papilledema from ocular fundus photographs. N Engl J Med. 2020;382(18):1687–95.PubMed
10.
go back to reference Grzybowski A, Brona P, Lim G, et al. Artificial intelligence for diabetic retinopathy screening: a review. Eye (Lond). 2020;34(3):451–60.PubMed Grzybowski A, Brona P, Lim G, et al. Artificial intelligence for diabetic retinopathy screening: a review. Eye (Lond). 2020;34(3):451–60.PubMed
11.
go back to reference Wagner SK, Fu DJ, Faes L, et al. Insights into systemic disease through retinal imaging-based oculomics. Transl Vis Sci Technol. 2020;9(2):6.PubMedPubMedCentral Wagner SK, Fu DJ, Faes L, et al. Insights into systemic disease through retinal imaging-based oculomics. Transl Vis Sci Technol. 2020;9(2):6.PubMedPubMedCentral
12.
13.
14.
go back to reference Bălaşa AF, Chircov C, Grumezescu AMJB. Body fluid biomarkers for Alzheimer’s disease—an up-to-date overview. Biomedicines. 2020;8(10):421.PubMedPubMedCentral Bălaşa AF, Chircov C, Grumezescu AMJB. Body fluid biomarkers for Alzheimer’s disease—an up-to-date overview. Biomedicines. 2020;8(10):421.PubMedPubMedCentral
15.
go back to reference Boerger M, Funke S, Leha A, et al. Proteomic analysis of tear fluid reveals disease-specific patterns in patients with Parkinson’s disease—a pilot study. Parkinsonism Relat Disord. 2019;63:3–9.PubMed Boerger M, Funke S, Leha A, et al. Proteomic analysis of tear fluid reveals disease-specific patterns in patients with Parkinson’s disease—a pilot study. Parkinsonism Relat Disord. 2019;63:3–9.PubMed
16.
go back to reference Salvisberg C, Tajouri N, Hainard A, Burkhard PR, Lalive PH, Turck N. Exploring the human tear fluid: discovery of new biomarkers in multiple sclerosis. Proteom Clin Appl. 2014;8(3–4):185–94. Salvisberg C, Tajouri N, Hainard A, Burkhard PR, Lalive PH, Turck N. Exploring the human tear fluid: discovery of new biomarkers in multiple sclerosis. Proteom Clin Appl. 2014;8(3–4):185–94.
17.
go back to reference Pieragostino D, Lanuti P, Cicalini I, et al. Proteomics characterization of extracellular vesicles sorted by flow cytometry reveals a disease-specific molecular cross-talk from cerebrospinal fluid and tears in multiple sclerosis. J Proteom. 2019;204:103403. Pieragostino D, Lanuti P, Cicalini I, et al. Proteomics characterization of extracellular vesicles sorted by flow cytometry reveals a disease-specific molecular cross-talk from cerebrospinal fluid and tears in multiple sclerosis. J Proteom. 2019;204:103403.
18.
go back to reference Król-Grzymała A, Sienkiewicz-Szłapka E, Fiedorowicz E, Rozmus D, Cieślińska A, Grzybowski A. Tear biomarkers in Alzheimer’s and Parkinson’s diseases, and multiple sclerosis: implications for diagnosis (systematic review). Int J Mol Sci. 2022;23(17):10123.PubMedPubMedCentral Król-Grzymała A, Sienkiewicz-Szłapka E, Fiedorowicz E, Rozmus D, Cieślińska A, Grzybowski A. Tear biomarkers in Alzheimer’s and Parkinson’s diseases, and multiple sclerosis: implications for diagnosis (systematic review). Int J Mol Sci. 2022;23(17):10123.PubMedPubMedCentral
19.
go back to reference Kalló G, Emri M, Varga Z, et al. Changes in the chemical barrier composition of tears in Alzheimer’s disease reveal potential tear diagnostic biomarkers. PLoS One. 2016;11(6):e0158000.PubMedPubMedCentral Kalló G, Emri M, Varga Z, et al. Changes in the chemical barrier composition of tears in Alzheimer’s disease reveal potential tear diagnostic biomarkers. PLoS One. 2016;11(6):e0158000.PubMedPubMedCentral
20.
go back to reference Gijs M, Nuijts RM, Ramakers I, Verhey F, Webers CA. Differences in tear protein biomarkers between patients with Alzheimer’s disease and controls. Invest Ophthalmol Vis Sci. 2019;60(9):1744. Gijs M, Nuijts RM, Ramakers I, Verhey F, Webers CA. Differences in tear protein biomarkers between patients with Alzheimer’s disease and controls. Invest Ophthalmol Vis Sci. 2019;60(9):1744.
21.
go back to reference Wang Y-R, Chuang H-C, Tripathi A, et al. High-sensitivity and trace-amount specimen electrochemical sensors for exploring the levels of β-amyloid in human blood and tears. Anal Chem. 2021;93(22):8099–106.PubMed Wang Y-R, Chuang H-C, Tripathi A, et al. High-sensitivity and trace-amount specimen electrochemical sensors for exploring the levels of β-amyloid in human blood and tears. Anal Chem. 2021;93(22):8099–106.PubMed
22.
go back to reference Wang X, Yu Z, Zhao X, et al. Comparative proteomic characterization of bovine milk containing β-casein variants A1A1 and A2A2, and their heterozygote A1A2. J Sci Food Agric. 2021;101(2):718–25.PubMed Wang X, Yu Z, Zhao X, et al. Comparative proteomic characterization of bovine milk containing β-casein variants A1A1 and A2A2, and their heterozygote A1A2. J Sci Food Agric. 2021;101(2):718–25.PubMed
23.
go back to reference Gijs M, Ramakers IHGB, Visser PJ, et al. Association of tear fluid amyloid and tau levels with disease severity and neurodegeneration. Sci Rep. 2021;11(1):22675.PubMedPubMedCentral Gijs M, Ramakers IHGB, Visser PJ, et al. Association of tear fluid amyloid and tau levels with disease severity and neurodegeneration. Sci Rep. 2021;11(1):22675.PubMedPubMedCentral
24.
25.
go back to reference Kenny A, Jiménez-Mateos EM, Zea-Sevilla MA, et al. Proteins and microRNAs are differentially expressed in tear fluid from patients with Alzheimer’s disease. Sci Rep. 2019;9(1):15437.PubMedPubMedCentral Kenny A, Jiménez-Mateos EM, Zea-Sevilla MA, et al. Proteins and microRNAs are differentially expressed in tear fluid from patients with Alzheimer’s disease. Sci Rep. 2019;9(1):15437.PubMedPubMedCentral
26.
go back to reference Örnek N, Dağ E, Örnek K. Corneal sensitivity and tear function in neurodegenerative diseases. Curr Eye Res. 2015;40(4):423–8.PubMed Örnek N, Dağ E, Örnek K. Corneal sensitivity and tear function in neurodegenerative diseases. Curr Eye Res. 2015;40(4):423–8.PubMed
27.
go back to reference Ponirakis G, Al Hamad H, Sankaranarayanan A, et al. Association of corneal nerve fiber measures with cognitive function in dementia. Ann Clin Transl Neurol. 2019;6(4):689–97.PubMedPubMedCentral Ponirakis G, Al Hamad H, Sankaranarayanan A, et al. Association of corneal nerve fiber measures with cognitive function in dementia. Ann Clin Transl Neurol. 2019;6(4):689–97.PubMedPubMedCentral
28.
go back to reference Al-Janahi E, Ponirakis G, Al Hamad H, et al. Corneal nerve and brain imaging in mild cognitive impairment and dementia. J Alzheimers Dis. 2020;77(4):1533–43.PubMedPubMedCentral Al-Janahi E, Ponirakis G, Al Hamad H, et al. Corneal nerve and brain imaging in mild cognitive impairment and dementia. J Alzheimers Dis. 2020;77(4):1533–43.PubMedPubMedCentral
29.
go back to reference Dehghani C, Frost S, Jayasena R, et al. Morphometric changes to corneal dendritic cells in individuals with mild cognitive impairment. Front Neurosci. 2020;14:556137.PubMedPubMedCentral Dehghani C, Frost S, Jayasena R, et al. Morphometric changes to corneal dendritic cells in individuals with mild cognitive impairment. Front Neurosci. 2020;14:556137.PubMedPubMedCentral
30.
go back to reference Shen J, Wu J. Nicotinic cholinergic mechanisms in Alzheimer’s disease. Int Rev Neurobiol. 2015;124:275–92.PubMed Shen J, Wu J. Nicotinic cholinergic mechanisms in Alzheimer’s disease. Int Rev Neurobiol. 2015;124:275–92.PubMed
31.
go back to reference Singh AK, Verma S. Use of ocular biomarkers as a potential tool for early diagnosis of Alzheimer’s disease. Indian J Ophthalmol. 2020;68(4):555–61.PubMedPubMedCentral Singh AK, Verma S. Use of ocular biomarkers as a potential tool for early diagnosis of Alzheimer’s disease. Indian J Ophthalmol. 2020;68(4):555–61.PubMedPubMedCentral
32.
go back to reference Fotiou D, Stergiou V, Tsiptsios D, Lithari C, Nakou M, Karlovasitou A. Cholinergic deficiency in Alzheimer’s and Parkinson’s disease: evaluation with pupillometry. Int J Psychophysiol. 2009;73(2):143–9.PubMed Fotiou D, Stergiou V, Tsiptsios D, Lithari C, Nakou M, Karlovasitou A. Cholinergic deficiency in Alzheimer’s and Parkinson’s disease: evaluation with pupillometry. Int J Psychophysiol. 2009;73(2):143–9.PubMed
33.
go back to reference Frost SM, Kanagasingam Y, Sohrabi HR, et al. Pupil response biomarkers distinguish amyloid precursor protein mutation carriers from non-carriers. Curr Alzheimer Res. 2013;10(8):790–6.PubMedPubMedCentral Frost SM, Kanagasingam Y, Sohrabi HR, et al. Pupil response biomarkers distinguish amyloid precursor protein mutation carriers from non-carriers. Curr Alzheimer Res. 2013;10(8):790–6.PubMedPubMedCentral
34.
go back to reference Ho CY, Troncoso JC, Knox D, Stark W, Eberhart CG. Beta-amyloid, phospho-tau and alpha-synuclein deposits similar to those in the brain are not identified in the eyes of Alzheimer’s and Parkinson’s disease patients. Brain Pathol. 2014;24(1):25–32.PubMed Ho CY, Troncoso JC, Knox D, Stark W, Eberhart CG. Beta-amyloid, phospho-tau and alpha-synuclein deposits similar to those in the brain are not identified in the eyes of Alzheimer’s and Parkinson’s disease patients. Brain Pathol. 2014;24(1):25–32.PubMed
35.
go back to reference Williams EA, McGuone D, Frosch MP, Hyman BT, Laver N, Stemmer-Rachamimov A. Absence of Alzheimer disease neuropathologic changes in eyes of subjects with Alzheimer disease. J Neuropathol Exp Neurol. 2017;76(5):376–83.PubMedPubMedCentral Williams EA, McGuone D, Frosch MP, Hyman BT, Laver N, Stemmer-Rachamimov A. Absence of Alzheimer disease neuropathologic changes in eyes of subjects with Alzheimer disease. J Neuropathol Exp Neurol. 2017;76(5):376–83.PubMedPubMedCentral
36.
go back to reference Michael R, Rosandić J, Montenegro GA, et al. Absence of beta-amyloid in cortical cataracts of donors with and without Alzheimer’s disease. Exp Eye Res. 2013;106:5–13.PubMed Michael R, Rosandić J, Montenegro GA, et al. Absence of beta-amyloid in cortical cataracts of donors with and without Alzheimer’s disease. Exp Eye Res. 2013;106:5–13.PubMed
37.
go back to reference Dehghani C, Frost S, Jayasena R, Masters CL, Kanagasingam Y. Ocular biomarkers of Alzheimer’s disease: the role of anterior eye and potential future directions. Investig Ophthalmol Vis Sci. 2018;59(8):3554–63. Dehghani C, Frost S, Jayasena R, Masters CL, Kanagasingam Y. Ocular biomarkers of Alzheimer’s disease: the role of anterior eye and potential future directions. Investig Ophthalmol Vis Sci. 2018;59(8):3554–63.
38.
go back to reference Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, et al. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage. 2011;54:S204–17.PubMed Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, et al. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage. 2011;54:S204–17.PubMed
39.
go back to reference Doustar J, Torbati T, Black KL, Koronyo Y, Koronyo-Hamaoui M. Optical coherence tomography in Alzheimer’s disease and other neurodegenerative diseases. Front Neurol. 2017;8:701.PubMedPubMedCentral Doustar J, Torbati T, Black KL, Koronyo Y, Koronyo-Hamaoui M. Optical coherence tomography in Alzheimer’s disease and other neurodegenerative diseases. Front Neurol. 2017;8:701.PubMedPubMedCentral
40.
go back to reference Campbell MC, Vries DD, Emptage L, et al. Polarization properties of amyloid beta in the retina of the eye as a biomarker of Alzheimer’s disease. Bio-Optics: design and application. Optica Publishing Group. 2015;BM3A:4. Campbell MC, Vries DD, Emptage L, et al. Polarization properties of amyloid beta in the retina of the eye as a biomarker of Alzheimer’s disease. Bio-Optics: design and application. Optica Publishing Group. 2015;BM3A:4.
41.
go back to reference Hadoux X, Hui F, Lim JKH, et al. Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer’s disease. Nat Commun. 2019;10(1):4227.PubMedPubMedCentral Hadoux X, Hui F, Lim JKH, et al. Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer’s disease. Nat Commun. 2019;10(1):4227.PubMedPubMedCentral
42.
go back to reference Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosc. 2011;12(12):723–38. Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosc. 2011;12(12):723–38.
43.
go back to reference Alber J, Goldfarb D, Thompson LI, et al. Developing retinal biomarkers for the earliest stages of Alzheimer’s disease: what we know, what we don’t, and how to move forward. Alzheimers Dement. 2020;16(1):229–43.PubMed Alber J, Goldfarb D, Thompson LI, et al. Developing retinal biomarkers for the earliest stages of Alzheimer’s disease: what we know, what we don’t, and how to move forward. Alzheimers Dement. 2020;16(1):229–43.PubMed
44.
go back to reference Ge Y-J, Xu W, Ou Y-N, et al. Retinal biomarkers in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Ageing Res Rev. 2021;69: 101361.PubMed Ge Y-J, Xu W, Ou Y-N, et al. Retinal biomarkers in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Ageing Res Rev. 2021;69: 101361.PubMed
45.
go back to reference Lemmens S, Devulder A, Van Keer K, Bierkens J, De Boever P, Stalmans I. Systematic review on fractal dimension of the retinal vasculature in neurodegeneration and stroke: assessment of a potential biomarker. Front Neurosci. 2020;14:16.PubMedPubMedCentral Lemmens S, Devulder A, Van Keer K, Bierkens J, De Boever P, Stalmans I. Systematic review on fractal dimension of the retinal vasculature in neurodegeneration and stroke: assessment of a potential biomarker. Front Neurosci. 2020;14:16.PubMedPubMedCentral
46.
go back to reference Wu H, Wang C, Chen C, et al. Association between retinal vascular geometric changes and cognitive impairment: a systematic review and meta-analysis. J Clin Neurol. 2020;16(1):19–28.PubMed Wu H, Wang C, Chen C, et al. Association between retinal vascular geometric changes and cognitive impairment: a systematic review and meta-analysis. J Clin Neurol. 2020;16(1):19–28.PubMed
47.
go back to reference McGrory S, Cameron JR, Pellegrini E, et al. The application of retinal fundus camera imaging in dementia: a systematic review. Alzheimers Dement (Amst). 2017;6:91–107.PubMed McGrory S, Cameron JR, Pellegrini E, et al. The application of retinal fundus camera imaging in dementia: a systematic review. Alzheimers Dement (Amst). 2017;6:91–107.PubMed
48.
go back to reference Chan VTT, Sun Z, Tang S, et al. Spectral-domain OCT measurements in Alzheimer’s disease: a systematic review and meta-analysis. Ophthalmology. 2019;126(4):497–510.PubMed Chan VTT, Sun Z, Tang S, et al. Spectral-domain OCT measurements in Alzheimer’s disease: a systematic review and meta-analysis. Ophthalmology. 2019;126(4):497–510.PubMed
49.
go back to reference Chhablani PP, Ambiya V, Nair AG, Bondalapati S, Chhablani J. Retinal findings on OCT in systemic conditions. Semin Ophthalmol. 2018;33(4):525–46.PubMed Chhablani PP, Ambiya V, Nair AG, Bondalapati S, Chhablani J. Retinal findings on OCT in systemic conditions. Semin Ophthalmol. 2018;33(4):525–46.PubMed
50.
go back to reference den Haan J, Verbraak FD, Visser PJ, Bouwman FH. Retinal thickness in Alzheimer’s disease: a systematic review and meta-analysis. Alzheimers Dement (Amst). 2017;6:162–70. den Haan J, Verbraak FD, Visser PJ, Bouwman FH. Retinal thickness in Alzheimer’s disease: a systematic review and meta-analysis. Alzheimers Dement (Amst). 2017;6:162–70.
51.
go back to reference Knoll B, Simonett J, Volpe NJ, et al. Retinal nerve fiber layer thickness in amnestic mild cognitive impairment: case-control study and meta-analysis. Alzheimers Dement (Amst). 2016;4:85–93.PubMed Knoll B, Simonett J, Volpe NJ, et al. Retinal nerve fiber layer thickness in amnestic mild cognitive impairment: case-control study and meta-analysis. Alzheimers Dement (Amst). 2016;4:85–93.PubMed
52.
go back to reference López-de-Eguileta A, Cerveró A, de Sabando AR, Sánchez-Juan P, Casado A. Ganglion cell layer thinning in Alzheimer’s disease. Medicina (Kaunas). 2020;56(10):553.PubMed López-de-Eguileta A, Cerveró A, de Sabando AR, Sánchez-Juan P, Casado A. Ganglion cell layer thinning in Alzheimer’s disease. Medicina (Kaunas). 2020;56(10):553.PubMed
53.
go back to reference Mejia-Vergara AJ, Restrepo-Jimenez P, Pelak VS. Optical coherence tomography in mild cognitive impairment: a systematic review and meta-analysis. Front Neurol. 2020;11: 578698.PubMedPubMedCentral Mejia-Vergara AJ, Restrepo-Jimenez P, Pelak VS. Optical coherence tomography in mild cognitive impairment: a systematic review and meta-analysis. Front Neurol. 2020;11: 578698.PubMedPubMedCentral
54.
go back to reference Noah AM, Almghairbi D, Moppett IK. Optical coherence tomography in mild cognitive impairment—systematic review and meta-analysis. Clin Neurol Neurosurg. 2020;196: 106036.PubMed Noah AM, Almghairbi D, Moppett IK. Optical coherence tomography in mild cognitive impairment—systematic review and meta-analysis. Clin Neurol Neurosurg. 2020;196: 106036.PubMed
55.
go back to reference Hui J, Zhao Y, Yu S, Liu J, Chiu K, Wang Y. Detection of retinal changes with optical coherence tomography angiography in mild cognitive impairment and Alzheimer’s disease patients: a meta-analysis. PLoS One. 2021;16(8): e0255362.PubMedPubMedCentral Hui J, Zhao Y, Yu S, Liu J, Chiu K, Wang Y. Detection of retinal changes with optical coherence tomography angiography in mild cognitive impairment and Alzheimer’s disease patients: a meta-analysis. PLoS One. 2021;16(8): e0255362.PubMedPubMedCentral
56.
go back to reference Jin Q, Lei Y, Wang R, Wu H, Ji K, Ling L. A systematic review and meta-analysis of retinal microvascular features in Alzheimer’s disease. Front Aging Neurosci. 2021;13: 683824.PubMedPubMedCentral Jin Q, Lei Y, Wang R, Wu H, Ji K, Ling L. A systematic review and meta-analysis of retinal microvascular features in Alzheimer’s disease. Front Aging Neurosci. 2021;13: 683824.PubMedPubMedCentral
57.
go back to reference Katsimpris A, Karamaounas A, Sideri AM, Katsimpris J, Georgalas I, Petrou P. Optical coherence tomography angiography in Alzheimer’s disease: a systematic review and meta-analysis. Eye (Lond). 2022;36(7):1419–26.PubMed Katsimpris A, Karamaounas A, Sideri AM, Katsimpris J, Georgalas I, Petrou P. Optical coherence tomography angiography in Alzheimer’s disease: a systematic review and meta-analysis. Eye (Lond). 2022;36(7):1419–26.PubMed
58.
go back to reference Rifai OM, McGrory S, Robbins CB, et al. The application of optical coherence tomography angiography in Alzheimer’s disease: a systematic review. Alzheimers Dement (Amst). 2021;13(1): e12149.PubMed Rifai OM, McGrory S, Robbins CB, et al. The application of optical coherence tomography angiography in Alzheimer’s disease: a systematic review. Alzheimers Dement (Amst). 2021;13(1): e12149.PubMed
59.
go back to reference Zhang J-F, Wiseman S, Valdés-Hernández MC, et al. The application of optical coherence tomography angiography in cerebral small vessel disease, ischemic stroke, and dementia: a systematic review. Front Neurol. 2020;11:1009.PubMedPubMedCentral Zhang J-F, Wiseman S, Valdés-Hernández MC, et al. The application of optical coherence tomography angiography in cerebral small vessel disease, ischemic stroke, and dementia: a systematic review. Front Neurol. 2020;11:1009.PubMedPubMedCentral
60.
go back to reference Cabrera DeBuc D, Gaca-Wysocka M, Grzybowski A, Kanclerz P. Identification of retinal biomarkers in Alzheimer’s disease using optical coherence tomography: recent insights, challenges, and opportunities. J Clin Med. 2019;8(7):996.PubMedPubMedCentral Cabrera DeBuc D, Gaca-Wysocka M, Grzybowski A, Kanclerz P. Identification of retinal biomarkers in Alzheimer’s disease using optical coherence tomography: recent insights, challenges, and opportunities. J Clin Med. 2019;8(7):996.PubMedPubMedCentral
61.
go back to reference Snyder PJ, Johnson LN, Lim YY, et al. Nonvascular retinal imaging markers of preclinical Alzheimer’s disease. Alzheimers Dement (Amst). 2016;4:169–78.PubMed Snyder PJ, Johnson LN, Lim YY, et al. Nonvascular retinal imaging markers of preclinical Alzheimer’s disease. Alzheimers Dement (Amst). 2016;4:169–78.PubMed
62.
go back to reference Costanzo E, Lengyel I, Parravano M, et al. Ocular biomarkers for Alzheimer disease dementia: an umbrella review of systematic reviews and meta-analyses. JAMA Ophthalmol. 2023;141(1):84–91.PubMed Costanzo E, Lengyel I, Parravano M, et al. Ocular biomarkers for Alzheimer disease dementia: an umbrella review of systematic reviews and meta-analyses. JAMA Ophthalmol. 2023;141(1):84–91.PubMed
63.
go back to reference Yeh T-C, Kuo C-T, Chou Y-B. Retinal microvascular changes in mild cognitive impairment and Alzheimer’s disease: a systematic review, meta-analysis, and meta-regression. Front Aging Neurosci. 2022;14: 860759.PubMedPubMedCentral Yeh T-C, Kuo C-T, Chou Y-B. Retinal microvascular changes in mild cognitive impairment and Alzheimer’s disease: a systematic review, meta-analysis, and meta-regression. Front Aging Neurosci. 2022;14: 860759.PubMedPubMedCentral
64.
go back to reference Wierenga CE, Hays CC, Zlatar ZZ. Cerebral blood flow measured by arterial spin labeling MRI as a preclinical marker of Alzheimer’s disease. J Alzheimers Dis. 2014;42:S411–9.PubMedPubMedCentral Wierenga CE, Hays CC, Zlatar ZZ. Cerebral blood flow measured by arterial spin labeling MRI as a preclinical marker of Alzheimer’s disease. J Alzheimers Dis. 2014;42:S411–9.PubMedPubMedCentral
65.
go back to reference Wang X, Wang Y, Liu H, et al. Macular microvascular density as a diagnostic biomarker for Alzheimer’s disease. J Alzheimers Dis. 2022;90:139–49.PubMed Wang X, Wang Y, Liu H, et al. Macular microvascular density as a diagnostic biomarker for Alzheimer’s disease. J Alzheimers Dis. 2022;90:139–49.PubMed
66.
go back to reference Polo V, Rodrigo MJ, Garcia-Martin E, et al. Visual dysfunction and its correlation with retinal changes in patients with Alzheimer’s disease. Eye (Lond). 2017;31(7):1034–41.PubMed Polo V, Rodrigo MJ, Garcia-Martin E, et al. Visual dysfunction and its correlation with retinal changes in patients with Alzheimer’s disease. Eye (Lond). 2017;31(7):1034–41.PubMed
67.
go back to reference Colligris P, de Lara MJP, Colligris B, Pintor J. Ocular manifestations of Alzheimer’s and other neurodegenerative diseases: the prospect of the eye as a tool for the early diagnosis of Alzheimer’s disease. J Ophthalmol. 2018;2018:8538573.PubMedPubMedCentral Colligris P, de Lara MJP, Colligris B, Pintor J. Ocular manifestations of Alzheimer’s and other neurodegenerative diseases: the prospect of the eye as a tool for the early diagnosis of Alzheimer’s disease. J Ophthalmol. 2018;2018:8538573.PubMedPubMedCentral
68.
go back to reference Salobrar-García E, de Hoz R, Ramírez AI, et al. Changes in visual function and retinal structure in the progression of Alzheimer’s disease. PLoS One. 2019;14(8):e0220535.PubMedPubMedCentral Salobrar-García E, de Hoz R, Ramírez AI, et al. Changes in visual function and retinal structure in the progression of Alzheimer’s disease. PLoS One. 2019;14(8):e0220535.PubMedPubMedCentral
69.
go back to reference Lee ATC, Richards M, Chan WC, Chiu HFK, Lee RSY, Lam LCW. Higher dementia incidence in older adults with poor visual acuity. J Gerontol A Biol Sci Med Sci. 2020;75(11):2162–8.PubMedPubMedCentral Lee ATC, Richards M, Chan WC, Chiu HFK, Lee RSY, Lam LCW. Higher dementia incidence in older adults with poor visual acuity. J Gerontol A Biol Sci Med Sci. 2020;75(11):2162–8.PubMedPubMedCentral
70.
go back to reference Lee C-N, Ko D, Suh Y-W, Park K-W. Cognitive functions and stereopsis in patients with Parkinson’s disease and Alzheimer’s disease using 3-dimensional television: a case controlled trial. PLoS One. 2015;10(3):e0123229.PubMedPubMedCentral Lee C-N, Ko D, Suh Y-W, Park K-W. Cognitive functions and stereopsis in patients with Parkinson’s disease and Alzheimer’s disease using 3-dimensional television: a case controlled trial. PLoS One. 2015;10(3):e0123229.PubMedPubMedCentral
71.
go back to reference Kim N-G, Lee H-W. Stereoscopic depth perception and visuospatial dysfunction in Alzheimer’s disease. Healthcare (Basel). 2021;9(2):157.PubMed Kim N-G, Lee H-W. Stereoscopic depth perception and visuospatial dysfunction in Alzheimer’s disease. Healthcare (Basel). 2021;9(2):157.PubMed
72.
go back to reference Binder MD, Hirokawa N, Windhorst U (eds). Encyclopedia of neuroscience. Saccadic eye movement. Springer, Berlin, p. 3564. Binder MD, Hirokawa N, Windhorst U (eds). Encyclopedia of neuroscience. Saccadic eye movement. Springer, Berlin, p. 3564.
73.
go back to reference Broerse A, Crawford TJ, den Boer JA. Parsing cognition in schizophrenia using saccadic eye movements: a selective overview. Neuropsychologia. 2001;39(7):742–56.PubMed Broerse A, Crawford TJ, den Boer JA. Parsing cognition in schizophrenia using saccadic eye movements: a selective overview. Neuropsychologia. 2001;39(7):742–56.PubMed
74.
go back to reference Jamadar SD, Fielding J, Egan GF. Quantitative meta-analysis of fMRI and PET studies reveals consistent activation in fronto-striatal-parietal regions and cerebellum during antisaccades and prosaccades. Front Psychol. 2013;4:749.PubMedPubMedCentral Jamadar SD, Fielding J, Egan GF. Quantitative meta-analysis of fMRI and PET studies reveals consistent activation in fronto-striatal-parietal regions and cerebellum during antisaccades and prosaccades. Front Psychol. 2013;4:749.PubMedPubMedCentral
75.
go back to reference McDowell JE, Dyckman KA, Austin BP, Clementz BA. Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain Cogn. 2008;68(3):255–70.PubMedPubMedCentral McDowell JE, Dyckman KA, Austin BP, Clementz BA. Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain Cogn. 2008;68(3):255–70.PubMedPubMedCentral
76.
go back to reference Chehrehnegar N, Shati M, Esmaeili M, Foroughan M. Executive function deficits in mild cognitive impairment: evidence from saccade tasks. Aging Ment Health. 2022;26(5):1001–9.PubMed Chehrehnegar N, Shati M, Esmaeili M, Foroughan M. Executive function deficits in mild cognitive impairment: evidence from saccade tasks. Aging Ment Health. 2022;26(5):1001–9.PubMed
77.
go back to reference Alichniewicz KK, Brunner F, Klünemann HH, Greenlee MW. Neural correlates of saccadic inhibition in healthy elderly and patients with amnestic mild cognitive impairment. Front Psychol. 2013;4:467.PubMedPubMedCentral Alichniewicz KK, Brunner F, Klünemann HH, Greenlee MW. Neural correlates of saccadic inhibition in healthy elderly and patients with amnestic mild cognitive impairment. Front Psychol. 2013;4:467.PubMedPubMedCentral
78.
go back to reference Opwonya J, Doan DNT, Kim SG, et al. Saccadic eye movement in mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. Neuropsychol Rev. 2022;32(2):193–227.PubMed Opwonya J, Doan DNT, Kim SG, et al. Saccadic eye movement in mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. Neuropsychol Rev. 2022;32(2):193–227.PubMed
79.
go back to reference Wang B, Lim JS. Zoom-in neural network deep-learning model for Alzheimer’s disease assessments. Sensors (Basel). 2022;22(22):8887.PubMed Wang B, Lim JS. Zoom-in neural network deep-learning model for Alzheimer’s disease assessments. Sensors (Basel). 2022;22(22):8887.PubMed
80.
go back to reference Liu S, Masurkar AV, Rusinek H, et al. Generalizable deep learning model for early Alzheimer’s disease detection from structural MRIs. Sci Rep. 2022;12(1):17106.PubMedPubMedCentral Liu S, Masurkar AV, Rusinek H, et al. Generalizable deep learning model for early Alzheimer’s disease detection from structural MRIs. Sci Rep. 2022;12(1):17106.PubMedPubMedCentral
81.
go back to reference Tinauer C, Heber S, Pirpamer L, et al. Interpretable brain disease classification and relevance-guided deep learning. Sci Rep. 2022;12(1):20254.PubMedPubMedCentral Tinauer C, Heber S, Pirpamer L, et al. Interpretable brain disease classification and relevance-guided deep learning. Sci Rep. 2022;12(1):20254.PubMedPubMedCentral
82.
go back to reference Tuan TA, Pham TB, Kim JY, Tavares J. Alzheimer’s diagnosis using deep learning in segmenting and classifying 3D brain MR images. Int J Neurosci. 2022;132(7):689–98.PubMed Tuan TA, Pham TB, Kim JY, Tavares J. Alzheimer’s diagnosis using deep learning in segmenting and classifying 3D brain MR images. Int J Neurosci. 2022;132(7):689–98.PubMed
83.
go back to reference Feng X, Provenzano FA, Small SA. A deep learning MRI approach outperforms other biomarkers of prodromal Alzheimer’s disease. Alzheimers Res Ther. 2022;14(1):45.PubMedPubMedCentral Feng X, Provenzano FA, Small SA. A deep learning MRI approach outperforms other biomarkers of prodromal Alzheimer’s disease. Alzheimers Res Ther. 2022;14(1):45.PubMedPubMedCentral
84.
go back to reference Houria L, Belkhamsa N, Cherfa A, Cherfa Y. Multi-modality MRI for Alzheimer’s disease detection using deep learning. Phys Eng Sci Med. 2022;45(4):1043–53.PubMed Houria L, Belkhamsa N, Cherfa A, Cherfa Y. Multi-modality MRI for Alzheimer’s disease detection using deep learning. Phys Eng Sci Med. 2022;45(4):1043–53.PubMed
85.
go back to reference Kim JS, Han JW, Bae JB, et al. Deep learning-based diagnosis of Alzheimer’s disease using brain magnetic resonance images: an empirical study. Sci Rep. 2022;12(1):18007.PubMedPubMedCentral Kim JS, Han JW, Bae JB, et al. Deep learning-based diagnosis of Alzheimer’s disease using brain magnetic resonance images: an empirical study. Sci Rep. 2022;12(1):18007.PubMedPubMedCentral
86.
go back to reference Loddo A, Buttau S, Di Ruberto C. Deep learning based pipelines for Alzheimer’s disease diagnosis: a comparative study and a novel deep-ensemble method. Comput Biol Med. 2022;141: 105032.PubMed Loddo A, Buttau S, Di Ruberto C. Deep learning based pipelines for Alzheimer’s disease diagnosis: a comparative study and a novel deep-ensemble method. Comput Biol Med. 2022;141: 105032.PubMed
87.
go back to reference Hu Y, Wen C, Cao G, Wang J, Feng Y. Brain network connectivity feature extraction using deep learning for Alzheimer’s disease classification. Neurosci Lett. 2022;782: 136673.PubMed Hu Y, Wen C, Cao G, Wang J, Feng Y. Brain network connectivity feature extraction using deep learning for Alzheimer’s disease classification. Neurosci Lett. 2022;782: 136673.PubMed
88.
go back to reference AlSaeed D, Omar SF. Brain MRI analysis for Alzheimer’s disease diagnosis using CNN-based feature extraction and machine learning. Sensors (Basel). 2022;22(8):2911.PubMed AlSaeed D, Omar SF. Brain MRI analysis for Alzheimer’s disease diagnosis using CNN-based feature extraction and machine learning. Sensors (Basel). 2022;22(8):2911.PubMed
89.
go back to reference Coupé P, Manjón JV, Mansencal B, Tourdias T, Catheline G, Planche V. Hippocampal-amygdalo-ventricular atrophy score: Alzheimer disease detection using normative and pathological lifespan models. Hum Brain Mapp. 2022;43(10):3270–82.PubMedPubMedCentral Coupé P, Manjón JV, Mansencal B, Tourdias T, Catheline G, Planche V. Hippocampal-amygdalo-ventricular atrophy score: Alzheimer disease detection using normative and pathological lifespan models. Hum Brain Mapp. 2022;43(10):3270–82.PubMedPubMedCentral
90.
go back to reference Tomassini S, Sbrollini A, Covella G, et al. Brain-on-Cloud for automatic diagnosis of Alzheimer’s disease from 3D structural magnetic resonance whole-brain scans. Comput Methods Programs Biomed. 2022;227:107191.PubMed Tomassini S, Sbrollini A, Covella G, et al. Brain-on-Cloud for automatic diagnosis of Alzheimer’s disease from 3D structural magnetic resonance whole-brain scans. Comput Methods Programs Biomed. 2022;227:107191.PubMed
91.
go back to reference Etminani K, Soliman A, Davidsson A, et al. A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2022;49(2):563–84.PubMed Etminani K, Soliman A, Davidsson A, et al. A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer’s disease, and mild cognitive impairment using brain 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2022;49(2):563–84.PubMed
92.
go back to reference Jo T, Nho K, Bice P, Saykin AJ. Deep learning-based identification of genetic variants: application to Alzheimer’s disease classification. Brief Bioinform. 2022;23(2):bbac022.PubMedPubMedCentral Jo T, Nho K, Bice P, Saykin AJ. Deep learning-based identification of genetic variants: application to Alzheimer’s disease classification. Brief Bioinform. 2022;23(2):bbac022.PubMedPubMedCentral
93.
go back to reference Chiricosta L, D’Angiolini S, Gugliandolo A, Mazzon E. Artificial intelligence predictor for Alzheimer’s disease trained on blood transcriptome: the role of oxidative stress. Int J Mol Sci. 2022;23(9):5237.PubMedPubMedCentral Chiricosta L, D’Angiolini S, Gugliandolo A, Mazzon E. Artificial intelligence predictor for Alzheimer’s disease trained on blood transcriptome: the role of oxidative stress. Int J Mol Sci. 2022;23(9):5237.PubMedPubMedCentral
94.
go back to reference Mahendran N, Durai Raj VPM. A deep learning framework with an embedded-based feature selection approach for the early detection of the Alzheimer’s disease. Comput Biol Med. 2022;141: 105056.PubMed Mahendran N, Durai Raj VPM. A deep learning framework with an embedded-based feature selection approach for the early detection of the Alzheimer’s disease. Comput Biol Med. 2022;141: 105056.PubMed
95.
go back to reference Bahado-Singh RO, Radhakrishna U, Gordevičius J, et al. Artificial intelligence and circulating cell-free DNA methylation profiling: mechanism and detection of Alzheimer’s disease. Cells. 2022;11(11):1744.PubMedPubMedCentral Bahado-Singh RO, Radhakrishna U, Gordevičius J, et al. Artificial intelligence and circulating cell-free DNA methylation profiling: mechanism and detection of Alzheimer’s disease. Cells. 2022;11(11):1744.PubMedPubMedCentral
96.
go back to reference Koga S, Ikeda A, Dickson DW. Deep learning-based model for diagnosing Alzheimer’s disease and tauopathies. Neuropathol Appl Neurobiol. 2022;48(1):e12759.PubMed Koga S, Ikeda A, Dickson DW. Deep learning-based model for diagnosing Alzheimer’s disease and tauopathies. Neuropathol Appl Neurobiol. 2022;48(1):e12759.PubMed
97.
go back to reference Kherchouche A, Ben-Ahmed O, Guillevin C, et al. Attention-guided neural network for early dementia detection using MRS data. Comput Med Imaging Graph. 2022;99:102074.PubMed Kherchouche A, Ben-Ahmed O, Guillevin C, et al. Attention-guided neural network for early dementia detection using MRS data. Comput Med Imaging Graph. 2022;99:102074.PubMed
98.
go back to reference Qiu S, Miller MI, Joshi PS, et al. Multimodal deep learning for Alzheimer’s disease dementia assessment. Nat Commun. 2022;13(1):3404.PubMedPubMedCentral Qiu S, Miller MI, Joshi PS, et al. Multimodal deep learning for Alzheimer’s disease dementia assessment. Nat Commun. 2022;13(1):3404.PubMedPubMedCentral
99.
go back to reference Golovanevsky M, Eickhoff C, Singh R. Multimodal attention-based deep learning for Alzheimer’s disease diagnosis. J Am Med Inform Assoc. 2022;29(12):2014–22.PubMed Golovanevsky M, Eickhoff C, Singh R. Multimodal attention-based deep learning for Alzheimer’s disease diagnosis. J Am Med Inform Assoc. 2022;29(12):2014–22.PubMed
100.
go back to reference Tu Y, Lin S, Qiao J, Zhuang Y, Zhang P. Alzheimer’s disease diagnosis via multimodal feature fusion. Comput Biol Med. 2022;148:105901.PubMed Tu Y, Lin S, Qiao J, Zhuang Y, Zhang P. Alzheimer’s disease diagnosis via multimodal feature fusion. Comput Biol Med. 2022;148:105901.PubMed
101.
go back to reference Wisely CE, Wang D, Henao R, et al. Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging. Br J Ophthalmol. 2022;106(3):388–95.PubMed Wisely CE, Wang D, Henao R, et al. Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging. Br J Ophthalmol. 2022;106(3):388–95.PubMed
102.
go back to reference Cheung CY, Ran AR, Wang S, et al. A deep learning model for detection of Alzheimer’s disease based on retinal photographs: a retrospective, multicentre case-control study. Lancet Digit Health. 2022;4(11):e806–15.PubMed Cheung CY, Ran AR, Wang S, et al. A deep learning model for detection of Alzheimer’s disease based on retinal photographs: a retrospective, multicentre case-control study. Lancet Digit Health. 2022;4(11):e806–15.PubMed
103.
go back to reference Corbin D, Lesage F. Assessment of the predictive potential of cognitive scores from retinal images and retinal fundus metadata via deep learning using the CLSA database. Sci Rep. 2022;12(1):5767.PubMedPubMedCentral Corbin D, Lesage F. Assessment of the predictive potential of cognitive scores from retinal images and retinal fundus metadata via deep learning using the CLSA database. Sci Rep. 2022;12(1):5767.PubMedPubMedCentral
104.
go back to reference Trojanowski JQ, Growdon JH. A new consensus report on biomarkers for the early antemortem diagnosis of Alzheimer disease: current status, relevance to drug discovery, and recommendations for future research. J Neuropathol Exp Neurol. 1998;57(6):643–4.PubMed Trojanowski JQ, Growdon JH. A new consensus report on biomarkers for the early antemortem diagnosis of Alzheimer disease: current status, relevance to drug discovery, and recommendations for future research. J Neuropathol Exp Neurol. 1998;57(6):643–4.PubMed
105.
go back to reference Hays CC, Zlatar ZZ, Wierenga CE. The utility of cerebral blood flow as a biomarker of preclinical Alzheimer’s disease. Cell Mol Neurobiol. 2016;36(2):167–79.PubMedPubMedCentral Hays CC, Zlatar ZZ, Wierenga CE. The utility of cerebral blood flow as a biomarker of preclinical Alzheimer’s disease. Cell Mol Neurobiol. 2016;36(2):167–79.PubMedPubMedCentral
Metadata
Title
Potential Ocular Biomarkers for Early Detection of Alzheimer’s Disease and Their Roles in Artificial Intelligence Studies
Authors
Pareena Chaitanuwong
Panisa Singhanetr
Methaphon Chainakul
Niracha Arjkongharn
Paisan Ruamviboonsuk
Andrzej Grzybowski
Publication date
20-07-2023
Publisher
Springer Healthcare
Published in
Neurology and Therapy / Issue 5/2023
Print ISSN: 2193-8253
Electronic ISSN: 2193-6536
DOI
https://doi.org/10.1007/s40120-023-00526-0

Other articles of this Issue 5/2023

Neurology and Therapy 5/2023 Go to the issue