Skip to main content
Top
Published in: Cardiology and Therapy 1/2020

Open Access 01-06-2020 | Antiarrhythmic Drugs | Review

Catheter Ablation of Atrial Fibrillation: State of the Art and Future Perspectives

Authors: Laura Rottner, Barbara Bellmann, Tina Lin, Bruno Reissmann, Tobias Tönnis, Ruben Schleberger, Moritz Nies, Christiane Jungen, Leon Dinshaw, Niklas Klatt, Jannis Dickow, Paula Münkler, Christian Meyer, Andreas Metzner, Andreas Rillig

Published in: Cardiology and Therapy | Issue 1/2020

Login to get access

Abstract

Purpose of Review

Atrial fibrillation (AF), the most common sustained arrhythmia, is associated with high rates of morbidity and mortality. Maintenance of stable sinus rhythm (SR) is the intended treatment target in symptomatic patients, and catheter ablation aimed at isolating the pulmonary veins provides the most effective treatment option, supported by encouraging clinical outcome data. A variety of energy sources and devices have been developed and evaluated. In this review, we summarize the current state of the art of catheter ablation of AF and describe future perspectives.

Recent Findings

Catheter ablation is a well-established treatment option for patients with symptomatic AF and is more successful at maintaining SR than antiarrhythmic drugs. Antral pulmonary vein isolation (PVI) as a stand-alone ablation strategy results in beneficial clinical outcomes and is therefore recommended as first-line strategy for both paroxysmal and persistent AF. While radiofrequency-based PVI in conjunction with a three-dimensional mapping system was for many years considered to be the “gold standard”, the cryoballoon has emerged as the most commonly used alternative AF ablation tool, especially in patients with paroxysmal AF. Patients with persistent or long-standing persistent AF and with arrhythmia recurrence after previous PVI may benefit from additional ablation strategies, such as substrate modification of various forms or left atrial appendage isolation. New technologies and techniques, such as identification of the AF sources and magnetic resonance imaging-guided substrate modification, are on the way to further improve the success rates of catheter ablation for selected patients and might help to further reduce arrhythmia recurrence.

Conclusions

Pulmonary vein isolation is the treatment of choice for symptomatic patients with paroxysmal and persistent drug-refractory AF. The reconnection of previously isolated pulmonary veins remains the major cause of AF recurrence. Novel ablation tools, such as balloon technologies or alternative energy sources, might help to overcome this limitation. Patients with non-paroxysmal AF and with AF recurrence might benefit from alternative ablation strategies. However, further studies are warranted to further improve our knowledge of the underlying mechanisms of AF and to obtain long-term clinical outcomes on new ablation techniques.
Literature
1.
go back to reference Feinberg WM, Blackshear JL, Laupacis A, Kronmal R, Hart RG. Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications. Arch intern Med. 1995;155(5):469–73.PubMedCrossRef Feinberg WM, Blackshear JL, Laupacis A, Kronmal R, Hart RG. Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications. Arch intern Med. 1995;155(5):469–73.PubMedCrossRef
2.
go back to reference Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace. 2016;18(11):1609–78.PubMedCrossRef Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Europace. 2016;18(11):1609–78.PubMedCrossRef
3.
go back to reference Packer DL, Mark DB, Robb RA, et al. Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation: The CABANA randomized clinical trial. JAMA. 2019;321:1261–74.PubMedPubMedCentralCrossRef Packer DL, Mark DB, Robb RA, et al. Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation: The CABANA randomized clinical trial. JAMA. 2019;321:1261–74.PubMedPubMedCentralCrossRef
4.
go back to reference Marrouche NF, Kheirkhahan M, Brachmann J. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med. 2018;379(5):492.PubMed Marrouche NF, Kheirkhahan M, Brachmann J. Catheter ablation for atrial fibrillation with heart failure. N Engl J Med. 2018;379(5):492.PubMed
5.
go back to reference Blomstrom-Lundqvist C, Gizurarson S, Schwieler J, et al. Effect of catheter ablation vs antiarrhythmic medication on quality of life in patients with atrial fibrillation: the CAPTAF randomized clinical trial. JAMA. 2019;321(11):1059–68.PubMedPubMedCentralCrossRef Blomstrom-Lundqvist C, Gizurarson S, Schwieler J, et al. Effect of catheter ablation vs antiarrhythmic medication on quality of life in patients with atrial fibrillation: the CAPTAF randomized clinical trial. JAMA. 2019;321(11):1059–68.PubMedPubMedCentralCrossRef
6.
go back to reference Kuck KH, Brugada J, Furnkranz A, et al. Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. N Engl J Med. 2016;374(23):2235–45.PubMedCrossRef Kuck KH, Brugada J, Furnkranz A, et al. Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. N Engl J Med. 2016;374(23):2235–45.PubMedCrossRef
7.
go back to reference Reissmann B, Budelmann T, Wissner E, et al. Five-year clinical outcomes of visually guided laser balloon pulmonary vein isolation for the treatment of paroxysmal atrial fibrillation. Clin Res Cardiol. 2018;107(5):405–12.PubMedCrossRef Reissmann B, Budelmann T, Wissner E, et al. Five-year clinical outcomes of visually guided laser balloon pulmonary vein isolation for the treatment of paroxysmal atrial fibrillation. Clin Res Cardiol. 2018;107(5):405–12.PubMedCrossRef
8.
go back to reference Calkins H, Hindricks G, Cappato R, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017;14(10):e275–444.PubMedPubMedCentralCrossRef Calkins H, Hindricks G, Cappato R, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017;14(10):e275–444.PubMedPubMedCentralCrossRef
9.
go back to reference Noheria A, Kumar A, Wylie JV Jr, Josephson ME. Catheter ablation vs antiarrhythmic drug therapy for atrial fibrillation: a systematic review. Arch Int Med. 2008;168(6):581–6.CrossRef Noheria A, Kumar A, Wylie JV Jr, Josephson ME. Catheter ablation vs antiarrhythmic drug therapy for atrial fibrillation: a systematic review. Arch Int Med. 2008;168(6):581–6.CrossRef
10.
go back to reference Tilz RR, Heeger CH, Wick A, et al. Ten-year clinical outcome after circumferential pulmonary vein isolation utilizing the Hamburg approach in patients with symptomatic drug-refractory paroxysmal atrial fibrillation. Circ Arrhythm Electrophysiol. 2018;11(2):e005250.PubMedCrossRef Tilz RR, Heeger CH, Wick A, et al. Ten-year clinical outcome after circumferential pulmonary vein isolation utilizing the Hamburg approach in patients with symptomatic drug-refractory paroxysmal atrial fibrillation. Circ Arrhythm Electrophysiol. 2018;11(2):e005250.PubMedCrossRef
11.
go back to reference Ouyang F, Tilz R, Chun J, et al. Long-term results of catheter ablation in paroxysmal atrial fibrillation: lessons from a 5-year follow-up. Circulation. 2010;122(23):2368–77.PubMedCrossRef Ouyang F, Tilz R, Chun J, et al. Long-term results of catheter ablation in paroxysmal atrial fibrillation: lessons from a 5-year follow-up. Circulation. 2010;122(23):2368–77.PubMedCrossRef
12.
go back to reference Brooks S, Metzner A, Wohlmuth P, et al. Insights into ablation of persistent atrial fibrillation: lessons from 6-year clinical outcomes. J Cardiovasc Elektrophysiol. 2018;29(2):257–63.CrossRef Brooks S, Metzner A, Wohlmuth P, et al. Insights into ablation of persistent atrial fibrillation: lessons from 6-year clinical outcomes. J Cardiovasc Elektrophysiol. 2018;29(2):257–63.CrossRef
13.
go back to reference Go AS, Reynolds K, Yang J, et al. Association of burden of atrial fibrillation with risk of ischemic stroke in adults with paroxysmal atrial fibrillation: the KP-RHYTHM study. JAMA Cardiol. 2018;3(7):601–8.PubMedPubMedCentralCrossRef Go AS, Reynolds K, Yang J, et al. Association of burden of atrial fibrillation with risk of ischemic stroke in adults with paroxysmal atrial fibrillation: the KP-RHYTHM study. JAMA Cardiol. 2018;3(7):601–8.PubMedPubMedCentralCrossRef
14.
go back to reference Kuck KH, Brugada J, Schluter M, et al. The FIRE AND ICE trial: what we know, what we can still learn, and what we need to address in the future. J Am Heart Assoc. 2018;7(24):e010777.PubMedPubMedCentralCrossRef Kuck KH, Brugada J, Schluter M, et al. The FIRE AND ICE trial: what we know, what we can still learn, and what we need to address in the future. J Am Heart Assoc. 2018;7(24):e010777.PubMedPubMedCentralCrossRef
15.
go back to reference Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339(10):659–66.PubMedCrossRef Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339(10):659–66.PubMedCrossRef
16.
go back to reference Fink T, Schluter M, Heeger CH, et al. Stand-alone pulmonary vein isolation versus pulmonary vein isolation with additional substrate modification as index ablation procedures in patients with persistent and long-standing persistent atrial fibrillation: the randomized Alster-Lost-AF Trial (Ablation at St. Georg Hospital for Long-Standing Persistent Atrial Fibrillation). Circ Arrhythm Electrophysiol. 2017;10(7):e005114.PubMedCrossRef Fink T, Schluter M, Heeger CH, et al. Stand-alone pulmonary vein isolation versus pulmonary vein isolation with additional substrate modification as index ablation procedures in patients with persistent and long-standing persistent atrial fibrillation: the randomized Alster-Lost-AF Trial (Ablation at St. Georg Hospital for Long-Standing Persistent Atrial Fibrillation). Circ Arrhythm Electrophysiol. 2017;10(7):e005114.PubMedCrossRef
17.
go back to reference Verma A, Jiang CY, Betts TR, et al. Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med. 2015;372(19):1812–22.PubMedCrossRef Verma A, Jiang CY, Betts TR, et al. Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med. 2015;372(19):1812–22.PubMedCrossRef
18.
go back to reference Vogler J, Willems S, Sultan A, et al. Pulmonary vein isolation versus defragmentation: the CHASE-AF clinical trial. J Am Coll Cardiol. 2015;66(24):2743–52.PubMedCrossRef Vogler J, Willems S, Sultan A, et al. Pulmonary vein isolation versus defragmentation: the CHASE-AF clinical trial. J Am Coll Cardiol. 2015;66(24):2743–52.PubMedCrossRef
19.
go back to reference Verma A, Mantovan R, Macle L, et al. Substrate and trigger ablation for reduction of atrial fibrillation (STAR AF): a randomized, multicentre, international trial. Eur Heart J. 2010;31(11):1344–56.PubMedPubMedCentralCrossRef Verma A, Mantovan R, Macle L, et al. Substrate and trigger ablation for reduction of atrial fibrillation (STAR AF): a randomized, multicentre, international trial. Eur Heart J. 2010;31(11):1344–56.PubMedPubMedCentralCrossRef
20.
go back to reference Arbelo E, Guiu E, Ramos P, et al. Benefit of left atrial roof linear ablation in paroxysmal atrial fibrillation: a prospective, randomized study. J Am Heart Assoc. 2014;3(5):e000877.PubMedPubMedCentralCrossRef Arbelo E, Guiu E, Ramos P, et al. Benefit of left atrial roof linear ablation in paroxysmal atrial fibrillation: a prospective, randomized study. J Am Heart Assoc. 2014;3(5):e000877.PubMedPubMedCentralCrossRef
21.
go back to reference Mun HS, Joung B, Shim J, et al. Does additional linear ablation after circumferential pulmonary vein isolation improve clinical outcome in patients with paroxysmal atrial fibrillation? Prospective randomised study. Heart. 2012;98(6):480–4.PubMedCrossRef Mun HS, Joung B, Shim J, et al. Does additional linear ablation after circumferential pulmonary vein isolation improve clinical outcome in patients with paroxysmal atrial fibrillation? Prospective randomised study. Heart. 2012;98(6):480–4.PubMedCrossRef
22.
go back to reference Cappato R, Calkins H, Chen SA, et al. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3(1):32–8.PubMedCrossRef Cappato R, Calkins H, Chen SA, et al. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3(1):32–8.PubMedCrossRef
23.
go back to reference Ouyang F, Ernst S, Chun J, et al. Electrophysiological findings during ablation of persistent atrial fibrillation with electroanatomic mapping and double Lasso catheter technique. Circulation. 2005;112(20):3038–48.PubMedCrossRef Ouyang F, Ernst S, Chun J, et al. Electrophysiological findings during ablation of persistent atrial fibrillation with electroanatomic mapping and double Lasso catheter technique. Circulation. 2005;112(20):3038–48.PubMedCrossRef
24.
go back to reference Powell BD, Packer DL. Does image integration improve atrial fibrillation ablation outcomes, or are other aspects of the ablation the key to success? Europace. 2009;11(8):973–4.PubMedCrossRef Powell BD, Packer DL. Does image integration improve atrial fibrillation ablation outcomes, or are other aspects of the ablation the key to success? Europace. 2009;11(8):973–4.PubMedCrossRef
25.
go back to reference Kistler PM, Rajappan K, Harris S, et al. The impact of image integration on catheter ablation of atrial fibrillation using electroanatomic mapping: a prospective randomized study. Eur Heart J. 2008;29(24):3029–36.PubMedCrossRef Kistler PM, Rajappan K, Harris S, et al. The impact of image integration on catheter ablation of atrial fibrillation using electroanatomic mapping: a prospective randomized study. Eur Heart J. 2008;29(24):3029–36.PubMedCrossRef
26.
go back to reference Rillig A, Lin T, Schmidt B, et al. Experience matters: long-term results of pulmonary vein isolation using a robotic navigation system for the treatment of paroxysmal atrial fibrillation. Clin Res Cardiol. 2016;105(2):106–16.PubMedCrossRef Rillig A, Lin T, Schmidt B, et al. Experience matters: long-term results of pulmonary vein isolation using a robotic navigation system for the treatment of paroxysmal atrial fibrillation. Clin Res Cardiol. 2016;105(2):106–16.PubMedCrossRef
27.
go back to reference Rillig A, Schmidt B, Di Biase L, et al. Manual versus robotic catheter ablation for the treatment of atrial fibrillation: the man and machine trial. JACC Clin Electrophysiol. 2017;3(8):875–83.PubMedCrossRef Rillig A, Schmidt B, Di Biase L, et al. Manual versus robotic catheter ablation for the treatment of atrial fibrillation: the man and machine trial. JACC Clin Electrophysiol. 2017;3(8):875–83.PubMedCrossRef
28.
go back to reference Maurer T, Sohns C, Deiss S, et al. Significant reduction in procedure duration in remote magnetic-guided catheter ablation of atrial fibrillation using the third-generation magnetic navigation system. J Interv Cardiac Electrophysiol. 2017;49(3):219–26.CrossRef Maurer T, Sohns C, Deiss S, et al. Significant reduction in procedure duration in remote magnetic-guided catheter ablation of atrial fibrillation using the third-generation magnetic navigation system. J Interv Cardiac Electrophysiol. 2017;49(3):219–26.CrossRef
29.
go back to reference Weerasooriya R, Jais P, Wright M, et al. Catheter ablation of atrial tachycardia following atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2009;20(7):833–8.PubMedCrossRef Weerasooriya R, Jais P, Wright M, et al. Catheter ablation of atrial tachycardia following atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2009;20(7):833–8.PubMedCrossRef
30.
go back to reference Maille B, Das M, Hussein A, et al. Accuracy of left atrial bipolar voltages obtained by ConfiDENSE multielectrode mapping in patients with persistent atrial fibrillation. J Cardiovasc Eelectrophysiol. 2018;29(6):881–8.CrossRef Maille B, Das M, Hussein A, et al. Accuracy of left atrial bipolar voltages obtained by ConfiDENSE multielectrode mapping in patients with persistent atrial fibrillation. J Cardiovasc Eelectrophysiol. 2018;29(6):881–8.CrossRef
31.
go back to reference Ptaszek LM, Chalhoub F, Perna F, et al. Rapid acquisition of high-resolution electroanatomical maps using a novel multielectrode mapping system. J Interven Cardiac Electrophysiol. 2013;36(3):233–42.CrossRef Ptaszek LM, Chalhoub F, Perna F, et al. Rapid acquisition of high-resolution electroanatomical maps using a novel multielectrode mapping system. J Interven Cardiac Electrophysiol. 2013;36(3):233–42.CrossRef
32.
go back to reference Sohns C, Saguner AM, Lemes C, et al. First clinical experience using a novel high-resolution electroanatomical mapping system for left atrial ablation procedures. Clin Res Cardiol. 2016;105:992–1002.PubMedCrossRef Sohns C, Saguner AM, Lemes C, et al. First clinical experience using a novel high-resolution electroanatomical mapping system for left atrial ablation procedures. Clin Res Cardiol. 2016;105:992–1002.PubMedCrossRef
33.
go back to reference Anter E, Tschabrunn CM, Contreras-Valdes FM, Li J, Josephson ME. Pulmonary vein isolation using the Rhythmia mapping system: verification of intracardiac signals using the Orion mini-basket catheter. Heart Rhythm. 2015;12(9):1927–34.PubMedCrossRef Anter E, Tschabrunn CM, Contreras-Valdes FM, Li J, Josephson ME. Pulmonary vein isolation using the Rhythmia mapping system: verification of intracardiac signals using the Orion mini-basket catheter. Heart Rhythm. 2015;12(9):1927–34.PubMedCrossRef
34.
go back to reference Ernst S, Saenen J, Rydman R, et al. Utility of noninvasive arrhythmia mapping in patients with adult congenital heart disease. Card Electrophysiol Clin. 2015;7(1):117–23.PubMedCrossRef Ernst S, Saenen J, Rydman R, et al. Utility of noninvasive arrhythmia mapping in patients with adult congenital heart disease. Card Electrophysiol Clin. 2015;7(1):117–23.PubMedCrossRef
35.
go back to reference Rottner L, Metzner A, Ouyang F, et al. Direct comparison of point-by-point and rapid ultra-high-resolution electroanatomical mapping in patients scheduled for ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2017;28(3):289–97.PubMedCrossRef Rottner L, Metzner A, Ouyang F, et al. Direct comparison of point-by-point and rapid ultra-high-resolution electroanatomical mapping in patients scheduled for ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2017;28(3):289–97.PubMedCrossRef
36.
go back to reference Kautzner J, Neuzil P, Lambert H, et al. EFFICAS II: optimization of catheter contact force improves outcome of pulmonary vein isolation for paroxysmal atrial fibrillation. Europace. 2015;17(8):1229–35.PubMedPubMedCentralCrossRef Kautzner J, Neuzil P, Lambert H, et al. EFFICAS II: optimization of catheter contact force improves outcome of pulmonary vein isolation for paroxysmal atrial fibrillation. Europace. 2015;17(8):1229–35.PubMedPubMedCentralCrossRef
37.
go back to reference Neuzil P, Reddy VY, Kautzner J, et al. Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment: results from the EFFICAS I study. Circ Arrhythm Electrophysiol. 2013;6(2):327–33.PubMedCrossRef Neuzil P, Reddy VY, Kautzner J, et al. Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment: results from the EFFICAS I study. Circ Arrhythm Electrophysiol. 2013;6(2):327–33.PubMedCrossRef
38.
go back to reference Cheema A, Dong J, Dalal D, et al. Incidence and time course of early recovery of pulmonary vein conduction after catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2007;18(4):387–91.PubMedCrossRef Cheema A, Dong J, Dalal D, et al. Incidence and time course of early recovery of pulmonary vein conduction after catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2007;18(4):387–91.PubMedCrossRef
39.
go back to reference Reddy VY, Shah D, Kautzner J, et al. The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study. Heart Rhythm. 2012;9(11):1789–95.PubMedCrossRef Reddy VY, Shah D, Kautzner J, et al. The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study. Heart Rhythm. 2012;9(11):1789–95.PubMedCrossRef
40.
go back to reference Makimoto H, Lin T, Rillig A, et al. In vivo contact force analysis and correlation with tissue impedance during left atrial mapping and catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 2014;7(1):46–54.PubMedCrossRef Makimoto H, Lin T, Rillig A, et al. In vivo contact force analysis and correlation with tissue impedance during left atrial mapping and catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 2014;7(1):46–54.PubMedCrossRef
41.
go back to reference Stabile G, Solimene F, Calo L, et al. Catheter-tissue contact force values do not impact mid-term clinical outcome following pulmonary vein isolation in patients with paroxysmal atrial fibrillation. J Interv Card Electrophysiol. 2015;42(1):21–6.PubMedCrossRef Stabile G, Solimene F, Calo L, et al. Catheter-tissue contact force values do not impact mid-term clinical outcome following pulmonary vein isolation in patients with paroxysmal atrial fibrillation. J Interv Card Electrophysiol. 2015;42(1):21–6.PubMedCrossRef
42.
go back to reference Das M, Loveday JJ, Wynn GJ, et al. Ablation index, a novel marker of ablation lesion quality: prediction of pulmonary vein reconnection at repeat electrophysiology study and regional differences in target values. Europace. 2017;19(5):775–83.PubMed Das M, Loveday JJ, Wynn GJ, et al. Ablation index, a novel marker of ablation lesion quality: prediction of pulmonary vein reconnection at repeat electrophysiology study and regional differences in target values. Europace. 2017;19(5):775–83.PubMed
43.
go back to reference Santoro F, Metzner A, Brunetti ND, et al. Left atrial anterior line ablation using ablation index and inter-lesion distance measurement. Clin Res Cardiol. 2019;108(9):1009–16 Santoro F, Metzner A, Brunetti ND, et al. Left atrial anterior line ablation using ablation index and inter-lesion distance measurement. Clin Res Cardiol. 2019;108(9):1009–16
44.
go back to reference Hussein A, Das M, Riva S, et al. Use of ablation index-guided ablation results in high rates of durable pulmonary vein isolation and freedom from arrhythmia in persistent atrial fibrillation patients. Circ Arrhythm Electrophysiol. 2018;11(9):e006576.PubMedCrossRef Hussein A, Das M, Riva S, et al. Use of ablation index-guided ablation results in high rates of durable pulmonary vein isolation and freedom from arrhythmia in persistent atrial fibrillation patients. Circ Arrhythm Electrophysiol. 2018;11(9):e006576.PubMedCrossRef
45.
go back to reference Rottner L, Fink T, Heeger CH, et al. Is less more? Impact of different ablation protocols on periprocedural complications in second-generation cryoballoon based pulmonary vein isolation. Europace. 2017;20:1459–67.CrossRef Rottner L, Fink T, Heeger CH, et al. Is less more? Impact of different ablation protocols on periprocedural complications in second-generation cryoballoon based pulmonary vein isolation. Europace. 2017;20:1459–67.CrossRef
46.
go back to reference Thomas D, Katus HA, Voss F. Asymptomatic pulmonary vein stenosis after cryoballoon catheter ablation of paroxysmal atrial fibrillation. J Electrocardiol. 2011;44(4):473–6.PubMedCrossRef Thomas D, Katus HA, Voss F. Asymptomatic pulmonary vein stenosis after cryoballoon catheter ablation of paroxysmal atrial fibrillation. J Electrocardiol. 2011;44(4):473–6.PubMedCrossRef
47.
go back to reference Tokutake K, Tokuda M, Ogawa T, Matsuo S, Yoshimura M, Yamane T. Pulmonary vein stenosis after second-generation cryoballoon ablation for atrial fibrillation. Heart Rhythm Case Rep. 2017;3(1):36–9. Tokutake K, Tokuda M, Ogawa T, Matsuo S, Yoshimura M, Yamane T. Pulmonary vein stenosis after second-generation cryoballoon ablation for atrial fibrillation. Heart Rhythm Case Rep. 2017;3(1):36–9.
48.
go back to reference Boveda SMA, Nguyen DQ, Chun KRJ, et al. Single-procedure outcomes and quality-of-life improvement 12 months post-cryoballoon ablation in persistent atrial fibrillation results from the multicenter CRYO4PERSISTENT AF trial. JACC Clin Electrophysiol. 2018;11:1440–7. Boveda SMA, Nguyen DQ, Chun KRJ, et al. Single-procedure outcomes and quality-of-life improvement 12 months post-cryoballoon ablation in persistent atrial fibrillation results from the multicenter CRYO4PERSISTENT AF trial. JACC Clin Electrophysiol. 2018;11:1440–7.
49.
go back to reference Mortsell D, Arbelo E, Dagres N, et al. Cryoballoon vs. radiofrequency ablation for atrial fibrillation: a study of outcome and safety based on the ESC-EHRA atrial fibrillation ablation long-term registry and the Swedish catheter ablation registry. Europace. 2019;21(4):581–9.PubMedCrossRef Mortsell D, Arbelo E, Dagres N, et al. Cryoballoon vs. radiofrequency ablation for atrial fibrillation: a study of outcome and safety based on the ESC-EHRA atrial fibrillation ablation long-term registry and the Swedish catheter ablation registry. Europace. 2019;21(4):581–9.PubMedCrossRef
50.
go back to reference Wissner E, Deiss S, Kuck KH. Balloon-based pulmonary vein isolation for the treatment of paroxysmal atrial fibrillation (cryoballoon and laserballoon). Fut Cardiol. 2015;11(6):663–71.CrossRef Wissner E, Deiss S, Kuck KH. Balloon-based pulmonary vein isolation for the treatment of paroxysmal atrial fibrillation (cryoballoon and laserballoon). Fut Cardiol. 2015;11(6):663–71.CrossRef
51.
go back to reference Metzner A, Wissner E, Schmidt B, et al. Acute and long-term clinical outcome after endoscopic pulmonary vein isolation: results from the first prospective, multicenter study. J Cardiovasc Electrophysiol. 2013;24(1):7–13.PubMedCrossRef Metzner A, Wissner E, Schmidt B, et al. Acute and long-term clinical outcome after endoscopic pulmonary vein isolation: results from the first prospective, multicenter study. J Cardiovasc Electrophysiol. 2013;24(1):7–13.PubMedCrossRef
52.
go back to reference Dukkipati SR, Kuck KH, Neuzil P, et al. Pulmonary vein isolation using a visually guided laser balloon catheter: the first 200-patient multicenter clinical experience. Circ Arrhythm Electrophysiol. 2013;6(3):467–72.PubMedCrossRef Dukkipati SR, Kuck KH, Neuzil P, et al. Pulmonary vein isolation using a visually guided laser balloon catheter: the first 200-patient multicenter clinical experience. Circ Arrhythm Electrophysiol. 2013;6(3):467–72.PubMedCrossRef
53.
go back to reference Schmidt B, Neuzil P, Luik A, et al. Laser balloon or wide-area circumferential irrigated radiofrequency ablation for persistent atrial fibrillation: a multicenter prospective randomized study. Circ Arrhythm Ectrophysiol. 2017;10(12):e005767.CrossRef Schmidt B, Neuzil P, Luik A, et al. Laser balloon or wide-area circumferential irrigated radiofrequency ablation for persistent atrial fibrillation: a multicenter prospective randomized study. Circ Arrhythm Ectrophysiol. 2017;10(12):e005767.CrossRef
54.
go back to reference Yamaguchi Y, Sohara H, Takeda H, et al. Long-term results of radiofrequency hot balloon ablation in patients with paroxysmal atrial fibrillation: safety and rhythm outcomes. J Cardiovasc Electrophysiol. 2015;26(12):1298–306.PubMedCrossRef Yamaguchi Y, Sohara H, Takeda H, et al. Long-term results of radiofrequency hot balloon ablation in patients with paroxysmal atrial fibrillation: safety and rhythm outcomes. J Cardiovasc Electrophysiol. 2015;26(12):1298–306.PubMedCrossRef
55.
go back to reference Nagashima K, Okumura Y, Watanabe I, et al. Hot balloon versus cryoballoon ablation for atrial fibrillation: lesion characteristics and middle-term outcomes. Circ Arrhythm Electrophysiol. 2018;11(5):e005861.PubMedCrossRef Nagashima K, Okumura Y, Watanabe I, et al. Hot balloon versus cryoballoon ablation for atrial fibrillation: lesion characteristics and middle-term outcomes. Circ Arrhythm Electrophysiol. 2018;11(5):e005861.PubMedCrossRef
56.
go back to reference Wakamatsu Y, Nagashima K, Nakahara S, et al. Electrophysiologic and anatomic factors predictive of a need for touch-up radiofrequency application for complete pulmonary vein isolation: comparison between hot balloon- and cryoballoon-based ablation. J Cardiovasc Electrophysiol. 2019;30(8):1261–69 Wakamatsu Y, Nagashima K, Nakahara S, et al. Electrophysiologic and anatomic factors predictive of a need for touch-up radiofrequency application for complete pulmonary vein isolation: comparison between hot balloon- and cryoballoon-based ablation. J Cardiovasc Electrophysiol. 2019;30(8):1261–69
57.
go back to reference Kottkamp H, Moser F, Rieger A, Schreiber D, Ponisch C, Trofin M. Global multielectrode contact mapping plus ablation with a single catheter: preclinical and preliminary experience in humans with atrial fibrillation. J Cardiovasc Electrophysiol. 2017;28(11):1247–56.PubMedCrossRef Kottkamp H, Moser F, Rieger A, Schreiber D, Ponisch C, Trofin M. Global multielectrode contact mapping plus ablation with a single catheter: preclinical and preliminary experience in humans with atrial fibrillation. J Cardiovasc Electrophysiol. 2017;28(11):1247–56.PubMedCrossRef
58.
go back to reference Lemes C, Wissner E, Lin T, et al. One-year clinical outcome after pulmonary vein isolation in persistent atrial fibrillation using the second-generation 28 mm cryoballoon: a retrospective analysis. Europace. 2016;18(2):201–5.PubMedCrossRef Lemes C, Wissner E, Lin T, et al. One-year clinical outcome after pulmonary vein isolation in persistent atrial fibrillation using the second-generation 28 mm cryoballoon: a retrospective analysis. Europace. 2016;18(2):201–5.PubMedCrossRef
59.
go back to reference Nademanee K, Schwab MC, Kosar EM, et al. Clinical outcomes of catheter substrate ablation for high-risk patients with atrial fibrillation. J Am Coll Cardiol. 2008;51(8):843–9.PubMedCrossRef Nademanee K, Schwab MC, Kosar EM, et al. Clinical outcomes of catheter substrate ablation for high-risk patients with atrial fibrillation. J Am Coll Cardiol. 2008;51(8):843–9.PubMedCrossRef
60.
go back to reference Wu SH, Jiang WF, Gu J, et al. Benefits and risks of additional ablation of complex fractionated atrial electrograms for patients with atrial fibrillation: a systematic review and meta-analysis. Int J Cardiol. 2013;169(1):35–43.PubMedCrossRef Wu SH, Jiang WF, Gu J, et al. Benefits and risks of additional ablation of complex fractionated atrial electrograms for patients with atrial fibrillation: a systematic review and meta-analysis. Int J Cardiol. 2013;169(1):35–43.PubMedCrossRef
61.
go back to reference Narayan SM, Krummen DE, Shivkumar K, Clopton P, Rappel WJ, Miller JM. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) trial. J Am Coll Cardiol. 2012;60(7):628–36.PubMedPubMedCentralCrossRef Narayan SM, Krummen DE, Shivkumar K, Clopton P, Rappel WJ, Miller JM. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) trial. J Am Coll Cardiol. 2012;60(7):628–36.PubMedPubMedCentralCrossRef
62.
go back to reference Mohanty S, Gianni C, Trivedi C, et al. Impact of rotor ablation in non-paroxysmal AF patients: findings from the per-protocol population of the OASIS trial at long-term follow-up. Am Heart J. 2018;205:145–8.PubMedCrossRef Mohanty S, Gianni C, Trivedi C, et al. Impact of rotor ablation in non-paroxysmal AF patients: findings from the per-protocol population of the OASIS trial at long-term follow-up. Am Heart J. 2018;205:145–8.PubMedCrossRef
63.
go back to reference Gianni C, Mohanty S, Di Biase L, et al. Acute and early outcomes of focal impulse and rotor modulation (FIRM)-guided rotors-only ablation in patients with nonparoxysmal atrial fibrillation. Heart Rhythm. 2016;13(4):830–5.PubMedCrossRef Gianni C, Mohanty S, Di Biase L, et al. Acute and early outcomes of focal impulse and rotor modulation (FIRM)-guided rotors-only ablation in patients with nonparoxysmal atrial fibrillation. Heart Rhythm. 2016;13(4):830–5.PubMedCrossRef
64.
go back to reference Steinberg JS, Shah Y, Bhatt A, et al. Focal impulse and rotor modulation: acute procedural observations and extended clinical follow-up. Heart Rhythm. 2017;14(2):192–7.PubMedCrossRef Steinberg JS, Shah Y, Bhatt A, et al. Focal impulse and rotor modulation: acute procedural observations and extended clinical follow-up. Heart Rhythm. 2017;14(2):192–7.PubMedCrossRef
65.
go back to reference Bellmann B, Lin T, Ruppersberg P, et al. Identification of active atrial fibrillation sources and their discrimination from passive rotors using electrographical flow mapping. Clin Res Cardiol. 2018;107(11):1021–32.PubMedCrossRef Bellmann B, Lin T, Ruppersberg P, et al. Identification of active atrial fibrillation sources and their discrimination from passive rotors using electrographical flow mapping. Clin Res Cardiol. 2018;107(11):1021–32.PubMedCrossRef
66.
go back to reference Bellmann B, Zettwitz M, Lin T, et al. Velocity characteristics of atrial fibrillation sources determined by electrographic flow mapping before and after catheter ablation. Int J Cardiol. 2019;286:56–60.PubMedCrossRef Bellmann B, Zettwitz M, Lin T, et al. Velocity characteristics of atrial fibrillation sources determined by electrographic flow mapping before and after catheter ablation. Int J Cardiol. 2019;286:56–60.PubMedCrossRef
67.
go back to reference Haissaguerre M, Hocini M, Shah AJ, et al. Noninvasive panoramic mapping of human atrial fibrillation mechanisms: a feasibility report. J Cardiovasc Electrophysiol. 2013;24(6):711–7.PubMedCrossRef Haissaguerre M, Hocini M, Shah AJ, et al. Noninvasive panoramic mapping of human atrial fibrillation mechanisms: a feasibility report. J Cardiovasc Electrophysiol. 2013;24(6):711–7.PubMedCrossRef
68.
go back to reference Knecht S, Sohal M, Deisenhofer I, et al. Multicentre evaluation of non-invasive biatrial mapping for persistent atrial fibrillation ablation: the AFACART study. Europace. 2017;19(8):1302–9.PubMedCrossRef Knecht S, Sohal M, Deisenhofer I, et al. Multicentre evaluation of non-invasive biatrial mapping for persistent atrial fibrillation ablation: the AFACART study. Europace. 2017;19(8):1302–9.PubMedCrossRef
69.
go back to reference Marrouche NF, Wilber D, Hindricks G, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA. 2014;311(5):498–506.PubMedCrossRef Marrouche NF, Wilber D, Hindricks G, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA. 2014;311(5):498–506.PubMedCrossRef
70.
go back to reference Jadidi AS, Lehrmann H, Keyl C, et al. Ablation of persistent atrial fibrillation targeting low-voltage areas with selective activation characteristics. Circ Arrhythm Electrophysiol. 2016;9(3):e002962.PubMedCrossRef Jadidi AS, Lehrmann H, Keyl C, et al. Ablation of persistent atrial fibrillation targeting low-voltage areas with selective activation characteristics. Circ Arrhythm Electrophysiol. 2016;9(3):e002962.PubMedCrossRef
71.
go back to reference Di Biase L, Burkhardt JD, Mohanty P, et al. Left atrial appendage isolation in patients with longstanding persistent af undergoing catheter ablation: BELIEF trial. J Am Coll Cardiol. 2016;68(18):1929–40.PubMedCrossRef Di Biase L, Burkhardt JD, Mohanty P, et al. Left atrial appendage isolation in patients with longstanding persistent af undergoing catheter ablation: BELIEF trial. J Am Coll Cardiol. 2016;68(18):1929–40.PubMedCrossRef
72.
go back to reference Yorgun H, Canpolat U, Kocyigit D, Coteli C, Evranos B, Aytemir K. Left atrial appendage isolation in addition to pulmonary vein isolation in persistent atrial fibrillation: one-year clinical outcome after cryoballoon-based ablation. Europace. 2017;19(5):758–68.PubMedCrossRef Yorgun H, Canpolat U, Kocyigit D, Coteli C, Evranos B, Aytemir K. Left atrial appendage isolation in addition to pulmonary vein isolation in persistent atrial fibrillation: one-year clinical outcome after cryoballoon-based ablation. Europace. 2017;19(5):758–68.PubMedCrossRef
73.
go back to reference Heeger CH, Rillig A, Geisler D, et al. Left atrial appendage isolation in patients not responding to pulmonary vein isolation. Circulation. 2019;139(5):712–5.PubMedCrossRef Heeger CH, Rillig A, Geisler D, et al. Left atrial appendage isolation in patients not responding to pulmonary vein isolation. Circulation. 2019;139(5):712–5.PubMedCrossRef
74.
go back to reference Rillig A, Tilz RR, Lin T, et al. Unexpectedly high incidence of stroke and left atrial appendage thrombus formation after electrical isolation of the left atrial appendage for the treatment of atrial tachyarrhythmias. Circ Arrhythm Electrophysiol. 2016;9(5):e003461.PubMedCrossRef Rillig A, Tilz RR, Lin T, et al. Unexpectedly high incidence of stroke and left atrial appendage thrombus formation after electrical isolation of the left atrial appendage for the treatment of atrial tachyarrhythmias. Circ Arrhythm Electrophysiol. 2016;9(5):e003461.PubMedCrossRef
75.
go back to reference Heeger CH, Rillig A, Lin T, et al. Feasibility and clinical efficacy of left atrial ablation for the treatment of atrial tachyarrhythmias in patients with left atrial appendage closure devices. Heart Rhythm. 2015;12(7):1524–31.PubMedCrossRef Heeger CH, Rillig A, Lin T, et al. Feasibility and clinical efficacy of left atrial ablation for the treatment of atrial tachyarrhythmias in patients with left atrial appendage closure devices. Heart Rhythm. 2015;12(7):1524–31.PubMedCrossRef
76.
go back to reference Wittkampf FHM, van Es R, Neven K. Electroporation and its relevance for cardiac catheter ablation. JACC Clin Electrophysiol. 2018;4(8):977–86.PubMedCrossRef Wittkampf FHM, van Es R, Neven K. Electroporation and its relevance for cardiac catheter ablation. JACC Clin Electrophysiol. 2018;4(8):977–86.PubMedCrossRef
77.
go back to reference Neven K, van Es R, van Driel V, et al. Acute and long-term effects of full-power electroporation ablation directly on the porcine esophagus. Circ Arrhythm Electrophysiol. 2017;10(5):e004672.PubMedCrossRef Neven K, van Es R, van Driel V, et al. Acute and long-term effects of full-power electroporation ablation directly on the porcine esophagus. Circ Arrhythm Electrophysiol. 2017;10(5):e004672.PubMedCrossRef
78.
go back to reference Bhaskaran A, Chik W, Pouliopoulos J, et al. Five seconds of 50-60 W radio frequency atrial ablations were transmural and safe: an in vitro mechanistic assessment and force-controlled in vivo validation. Europace. 2017;19(5):874–80.PubMed Bhaskaran A, Chik W, Pouliopoulos J, et al. Five seconds of 50-60 W radio frequency atrial ablations were transmural and safe: an in vitro mechanistic assessment and force-controlled in vivo validation. Europace. 2017;19(5):874–80.PubMed
79.
go back to reference Leshem E, Zilberman I, Tschabrunn CM, et al. High-power and short-duration ablation for pulmonary vein isolation: biophysical characterization. JACC Clin Electrophysiol. 2018;4(4):467–79.PubMedCrossRef Leshem E, Zilberman I, Tschabrunn CM, et al. High-power and short-duration ablation for pulmonary vein isolation: biophysical characterization. JACC Clin Electrophysiol. 2018;4(4):467–79.PubMedCrossRef
80.
go back to reference Winkle RA, Moskovitz R, Hardwin Mead R, et al. Atrial fibrillation ablation using very short duration 50 W ablations and contact force sensing catheters. J Interv Card Electrophysiol. 2018;52(1):1–8.PubMedPubMedCentralCrossRef Winkle RA, Moskovitz R, Hardwin Mead R, et al. Atrial fibrillation ablation using very short duration 50 W ablations and contact force sensing catheters. J Interv Card Electrophysiol. 2018;52(1):1–8.PubMedPubMedCentralCrossRef
81.
go back to reference Reddy VY, Grimaldi M, De Potter T, et al. Pulmonary vein isolation with very high power, short duration, temperature-controlled lesions: the QDOT-FAST trial. JACC Clin Electrophysiol. 2019;5(7):778–86.PubMedCrossRef Reddy VY, Grimaldi M, De Potter T, et al. Pulmonary vein isolation with very high power, short duration, temperature-controlled lesions: the QDOT-FAST trial. JACC Clin Electrophysiol. 2019;5(7):778–86.PubMedCrossRef
82.
go back to reference Maurer T, Kuck K-H, Schlüter M, et al. First clinical experience in high-resolution imaging of left atrial anatomy using a novel wide-band dielectric mapping system. Clin Res Cardiol 2019;108[Suppl 1]. Maurer T, Kuck K-H, Schlüter M, et al. First clinical experience in high-resolution imaging of left atrial anatomy using a novel wide-band dielectric mapping system. Clin Res Cardiol 2019;108[Suppl 1].
83.
go back to reference Willems S, Verma A, Betts T, et al. Targeting nonpulmonary vein sources in persistent atrial fibrillation identified by noncontact charge density mapping (UNCOVER-AF trial). Circ Arrhythm Electrophysiol. 2019;12:e007233.PubMedCrossRef Willems S, Verma A, Betts T, et al. Targeting nonpulmonary vein sources in persistent atrial fibrillation identified by noncontact charge density mapping (UNCOVER-AF trial). Circ Arrhythm Electrophysiol. 2019;12:e007233.PubMedCrossRef
Metadata
Title
Catheter Ablation of Atrial Fibrillation: State of the Art and Future Perspectives
Authors
Laura Rottner
Barbara Bellmann
Tina Lin
Bruno Reissmann
Tobias Tönnis
Ruben Schleberger
Moritz Nies
Christiane Jungen
Leon Dinshaw
Niklas Klatt
Jannis Dickow
Paula Münkler
Christian Meyer
Andreas Metzner
Andreas Rillig
Publication date
01-06-2020
Publisher
Springer Healthcare
Published in
Cardiology and Therapy / Issue 1/2020
Print ISSN: 2193-8261
Electronic ISSN: 2193-6544
DOI
https://doi.org/10.1007/s40119-019-00158-2

Other articles of this Issue 1/2020

Cardiology and Therapy 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.