Skip to main content
Top
Published in: Infection 6/2020

01-12-2020 | Fosfomycin | Review

Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: an approach based on the mechanisms of resistance to carbapenems

Authors: Stamatis Karakonstantis, Evangelos I Kritsotakis, Achilleas Gikas

Published in: Infection | Issue 6/2020

Login to get access

Abstract

The management of carbapenem-resistant infections is often based on polymyxins, tigecycline, aminoglycosides and their combinations. However, in a recent systematic review, we found that Gram-negative bacteria (GNB) co-resistant to carbapanems, aminoglycosides, polymyxins and tigecycline (CAPT-resistant) are increasingly being reported worldwide. Clinical data to guide the treatment of CAPT-resistant GNB are scarce and based exclusively on few case reports and small case series, but seem to indicate that appropriate (in vitro active) antimicrobial regimens, including newer antibiotics and synergistic combinations, may be associated with lower mortality. In this review, we consolidate the available literature to inform clinicians dealing with CAPT-resistant GNB about treatment options by considering the mechanisms of resistance to carbapenems. In combination with rapid diagnostic methods that allow fast detection of carbapenemase production, the approach proposed in this review may guide a timely and targeted treatment of patients with infections by CAPT-resistant GNB. Specifically, we focus on the three most problematic species, namely Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. Several treatment options are currently available for CAPT-resistant K. pneumonia. Newer β-lactam-β-lactamase combinations, including the combination of ceftazidime/avibactam with aztreonam against metallo-β-lactamase-producing isolates, appear to be more effective compared to combinations of older agents. Options for P. aeruginosa (especially metallo-β-lactamase-producing strains) and A. baumannii remain limited. Synergistic combination of older agents (e.g., polymyxin- or fosfomycin-based synergistic combinations) may represent a last resort option, but their use against CAPT-resistant GNB requires further study.
Literature
1.
go back to reference Papst L, Beović B, Pulcini C, Durante-Mangoni E, Rodríguez-Baño J, Kaye KS, et al. Antibiotic treatment of infections caused by carbapenem-resistant Gram-negative bacilli: an international ESCMID cross-sectional survey among infectious diseases specialists practicing in large hospitals. Clin Microbiol Infect. 2018;24:1070–6. https://doi.org/10.1016/j.cmi.2018.01.015.CrossRefPubMed Papst L, Beović B, Pulcini C, Durante-Mangoni E, Rodríguez-Baño J, Kaye KS, et al. Antibiotic treatment of infections caused by carbapenem-resistant Gram-negative bacilli: an international ESCMID cross-sectional survey among infectious diseases specialists practicing in large hospitals. Clin Microbiol Infect. 2018;24:1070–6. https://​doi.​org/​10.​1016/​j.​cmi.​2018.​01.​015.CrossRefPubMed
10.
go back to reference Castanheira M, Deshpande LM, Woosley LN, Serio AW, Krause KM, Flamm RK. Activity of plazomicin compared with other aminoglycosides against isolates from European and adjacent countries, including Enterobacteriaceae molecularly characterized for aminoglycoside-modifying enzymes and other resistance mechanisms. J Antimicrob Chemother. 2018;73:3346–54. https://doi.org/10.1093/jac/dky344.CrossRefPubMed Castanheira M, Deshpande LM, Woosley LN, Serio AW, Krause KM, Flamm RK. Activity of plazomicin compared with other aminoglycosides against isolates from European and adjacent countries, including Enterobacteriaceae molecularly characterized for aminoglycoside-modifying enzymes and other resistance mechanisms. J Antimicrob Chemother. 2018;73:3346–54. https://​doi.​org/​10.​1093/​jac/​dky344.CrossRefPubMed
13.
go back to reference Yasmin M, Fouts DE, Jacobs MR, Haydar H, Marshall SH, White R, et al. Monitoring Ceftazidime–avibactam (CAZ-AVI) and Aztreonam (ATM) concentrations in the treatment of a bloodstream infection caused by a multidrug-resistant Enterobacter sp. Carrying both KPC-4 and NDM-1 carbapenemases. Clin Infect Dis. 2019;71:1095–98. https://doi.org/10.1093/cid/ciz1155.CrossRef Yasmin M, Fouts DE, Jacobs MR, Haydar H, Marshall SH, White R, et al. Monitoring Ceftazidime–avibactam (CAZ-AVI) and Aztreonam (ATM) concentrations in the treatment of a bloodstream infection caused by a multidrug-resistant Enterobacter sp. Carrying both KPC-4 and NDM-1 carbapenemases. Clin Infect Dis. 2019;71:1095–98. https://​doi.​org/​10.​1093/​cid/​ciz1155.CrossRef
14.
go back to reference Bassetti M, Ariyasu M, Binkowitz B, Nagata TD, Echols RM, Matsunaga Y, et al. Designing a pathogen-focused study to address the high unmet medical need represented by carbapenem-resistant Gram-negative pathogens—the international, multicenter, randomized, open-label, phase 3 CREDIBLE-CR Study. Infect Drug Resist. 2019;12:3607–23. https://doi.org/10.2147/idr.S225553.CrossRefPubMedPubMedCentral Bassetti M, Ariyasu M, Binkowitz B, Nagata TD, Echols RM, Matsunaga Y, et al. Designing a pathogen-focused study to address the high unmet medical need represented by carbapenem-resistant Gram-negative pathogens—the international, multicenter, randomized, open-label, phase 3 CREDIBLE-CR Study. Infect Drug Resist. 2019;12:3607–23. https://​doi.​org/​10.​2147/​idr.​S225553.CrossRefPubMedPubMedCentral
16.
go back to reference Dortet L, Tandé D, de Briel D, Bernabeu S, Lasserre C, Gregorowicz G, et al. MALDI-TOF for the rapid detection of carbapenemase-producing Enterobacteriaceae: comparison of the commercialized MBT STAR®-Carba IVD Kit with two in-house MALDI-TOF techniques and the RAPIDEC® CARBA NP. J Antimicrob Chemother. 2018;73:2352–9. https://doi.org/10.1093/jac/dky209.CrossRefPubMed Dortet L, Tandé D, de Briel D, Bernabeu S, Lasserre C, Gregorowicz G, et al. MALDI-TOF for the rapid detection of carbapenemase-producing Enterobacteriaceae: comparison of the commercialized MBT STAR®-Carba IVD Kit with two in-house MALDI-TOF techniques and the RAPIDEC® CARBA NP. J Antimicrob Chemother. 2018;73:2352–9. https://​doi.​org/​10.​1093/​jac/​dky209.CrossRefPubMed
17.
go back to reference Gutierrez-Gutierrez B, Salamanca E, de Cueto M, Hsueh PR, Viale P, Pano-Pardo JR, et al. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study. Lancet Infect Dis. 2017;17:726–34. https://doi.org/10.1016/s1473-3099(17)30228-1.CrossRefPubMed Gutierrez-Gutierrez B, Salamanca E, de Cueto M, Hsueh PR, Viale P, Pano-Pardo JR, et al. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study. Lancet Infect Dis. 2017;17:726–34. https://​doi.​org/​10.​1016/​s1473-3099(17)30228-1.CrossRefPubMed
22.
go back to reference Hoyos-Mallecot Y, Cabrera-Alvargonzalez JJ, Miranda-Casas C, Rojo-Martin MD, Liebana-Martos C, Navarro-Mari JM. MALDI-TOF MS, a useful instrument for differentiating metallo-beta-lactamases in Enterobacteriaceae and Pseudomonas spp. Lett Appl Microbiol. 2014;58:325–9. https://doi.org/10.1111/lam.12203.CrossRefPubMed Hoyos-Mallecot Y, Cabrera-Alvargonzalez JJ, Miranda-Casas C, Rojo-Martin MD, Liebana-Martos C, Navarro-Mari JM. MALDI-TOF MS, a useful instrument for differentiating metallo-beta-lactamases in Enterobacteriaceae and Pseudomonas spp. Lett Appl Microbiol. 2014;58:325–9. https://​doi.​org/​10.​1111/​lam.​12203.CrossRefPubMed
29.
go back to reference van Duin D, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence Orgo. 2017;8(4):460–9.CrossRef van Duin D, Doi Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence Orgo. 2017;8(4):460–9.CrossRef
30.
go back to reference Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasevic AT, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis. 2017;17:153–63. https://doi.org/10.1016/s1473-3099(16)30257-2.CrossRefPubMed Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasevic AT, et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis. 2017;17:153–63. https://​doi.​org/​10.​1016/​s1473-3099(16)30257-2.CrossRefPubMed
35.
go back to reference Papadimitriou-Olivgeris M, Bartzavali C, Lambropoulou A, Solomou A, Tsiata E, Anastassiou ED, et al. Reversal of carbapenemase-producing Klebsiella pneumoniae epidemiology from blaKPC- to blaVIM-harbouring isolates in a Greek ICU after introduction of ceftazidime/avibactam. J Antimicrob Chemother. 2019;74:2051–4. https://doi.org/10.1093/jac/dkz125.CrossRefPubMed Papadimitriou-Olivgeris M, Bartzavali C, Lambropoulou A, Solomou A, Tsiata E, Anastassiou ED, et al. Reversal of carbapenemase-producing Klebsiella pneumoniae epidemiology from blaKPC- to blaVIM-harbouring isolates in a Greek ICU after introduction of ceftazidime/avibactam. J Antimicrob Chemother. 2019;74:2051–4. https://​doi.​org/​10.​1093/​jac/​dkz125.CrossRefPubMed
40.
go back to reference Dupont H, Gaillot O, Goetgheluck A-S, Plassart C, Emond J-P, Lecuru M, et al. Molecular characterization of carbapenem-nonsusceptible Enterobacterial isolates collected during a prospective interregional survey in france and susceptibility to the novel Ceftazidime–avibactam and aztreonam–avibactam combinations. Antimicrob Agents Chemother. 2015;60:215–21. https://doi.org/10.1128/AAC.01559-15.CrossRefPubMedPubMedCentral Dupont H, Gaillot O, Goetgheluck A-S, Plassart C, Emond J-P, Lecuru M, et al. Molecular characterization of carbapenem-nonsusceptible Enterobacterial isolates collected during a prospective interregional survey in france and susceptibility to the novel Ceftazidime–avibactam and aztreonam–avibactam combinations. Antimicrob Agents Chemother. 2015;60:215–21. https://​doi.​org/​10.​1128/​AAC.​01559-15.CrossRefPubMedPubMedCentral
41.
go back to reference Castanheira M, Deshpande LM, Costello A, Davies TA, Jones RN. Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009–11 in 14 European and Mediterranean countries. J Antimicrob Chemother. 2014;69:1804–14. https://doi.org/10.1093/jac/dku048.CrossRefPubMed Castanheira M, Deshpande LM, Costello A, Davies TA, Jones RN. Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009–11 in 14 European and Mediterranean countries. J Antimicrob Chemother. 2014;69:1804–14. https://​doi.​org/​10.​1093/​jac/​dku048.CrossRefPubMed
45.
46.
59.
go back to reference Karlowsky JA, Kazmierczak KM, Bouchillon SK, de Jonge BLM, Stone GG, Sahm DF. In Vitro activity of Ceftazidime–avibactam against clinical isolates of Enterobacteriaceae and Pseudomonas aeruginosa collected in Latin American countries: results from the INFORM global surveillance program, 2012–2015. Antimicrob Agents Chemother. 2019. https://doi.org/10.1128/aac.01814-18.CrossRefPubMedPubMedCentral Karlowsky JA, Kazmierczak KM, Bouchillon SK, de Jonge BLM, Stone GG, Sahm DF. In Vitro activity of Ceftazidime–avibactam against clinical isolates of Enterobacteriaceae and Pseudomonas aeruginosa collected in Latin American countries: results from the INFORM global surveillance program, 2012–2015. Antimicrob Agents Chemother. 2019. https://​doi.​org/​10.​1128/​aac.​01814-18.CrossRefPubMedPubMedCentral
61.
72.
75.
79.
go back to reference Kazmierczak KM, Bradford PA, Stone GG, de Jonge BLM, Sahm DF. In Vitro Activity of Ceftazidime–avibactam and aztreonam–avibactam against OXA-48-carrying enterobacteriaceae isolated as part of the international network for optimal resistance monitoring (INFORM) global surveillance program from 2012 to 2015. Antimicrob Agents Chemother. 2018;62:e00592–e618. https://doi.org/10.1128/aac.00592-18.CrossRefPubMedPubMedCentral Kazmierczak KM, Bradford PA, Stone GG, de Jonge BLM, Sahm DF. In Vitro Activity of Ceftazidime–avibactam and aztreonam–avibactam against OXA-48-carrying enterobacteriaceae isolated as part of the international network for optimal resistance monitoring (INFORM) global surveillance program from 2012 to 2015. Antimicrob Agents Chemother. 2018;62:e00592–e618. https://​doi.​org/​10.​1128/​aac.​00592-18.CrossRefPubMedPubMedCentral
80.
86.
94.
105.
107.
go back to reference Alvarez Lerma F, Munoz Bermudez R, Grau S, Gracia Arnillas MP, Sorli L, Recasens L, et al. Ceftolozane–tazobactam for the treatment of ventilator-associated infections by colistin-resistant Pseudomonas aeruginosa. Rev Esp Quimioter. 2017;30:224–8.PubMed Alvarez Lerma F, Munoz Bermudez R, Grau S, Gracia Arnillas MP, Sorli L, Recasens L, et al. Ceftolozane–tazobactam for the treatment of ventilator-associated infections by colistin-resistant Pseudomonas aeruginosa. Rev Esp Quimioter. 2017;30:224–8.PubMed
108.
go back to reference Fraile-Ribot PA, Cabot G, Mulet X, Perianez L, Martin-Pena ML, Juan C, et al. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa. J Antimicrob Chemother. 2018;73:658–63. https://doi.org/10.1093/jac/dkx424.CrossRefPubMed Fraile-Ribot PA, Cabot G, Mulet X, Perianez L, Martin-Pena ML, Juan C, et al. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa. J Antimicrob Chemother. 2018;73:658–63. https://​doi.​org/​10.​1093/​jac/​dkx424.CrossRefPubMed
113.
go back to reference Mikhail S, Singh NB, Kebriaei R, Rice SA, Stamper KC, Castanheira M, et al. Evaluation of the synergy of Ceftazidime–avibactam in combination with meropenem, amikacin, aztreonam, colistin, or fosfomycin against well-characterized multidrug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019;63:e00779-19. https://doi.org/10.1128/aac.00779-19.CrossRefPubMedPubMedCentral Mikhail S, Singh NB, Kebriaei R, Rice SA, Stamper KC, Castanheira M, et al. Evaluation of the synergy of Ceftazidime–avibactam in combination with meropenem, amikacin, aztreonam, colistin, or fosfomycin against well-characterized multidrug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019;63:e00779-19. https://​doi.​org/​10.​1128/​aac.​00779-19.CrossRefPubMedPubMedCentral
119.
go back to reference Abbott IJ, van Gorp E, Wijma RA, Dekker J, Croughs PD, Meletiadis J, et al. Efficacy of single and multiple oral doses of fosfomycin against Pseudomonas aeruginosa urinary tract infections in a dynamic in vitro bladder infection model. J Antimicrob Chemother. 2020;75:1879–88. https://doi.org/10.1093/jac/dkaa127.CrossRefPubMed Abbott IJ, van Gorp E, Wijma RA, Dekker J, Croughs PD, Meletiadis J, et al. Efficacy of single and multiple oral doses of fosfomycin against Pseudomonas aeruginosa urinary tract infections in a dynamic in vitro bladder infection model. J Antimicrob Chemother. 2020;75:1879–88. https://​doi.​org/​10.​1093/​jac/​dkaa127.CrossRefPubMed
124.
go back to reference Hsueh SC, Lee YJ, Huang YT, Liao CH, Tsuji M, Hsueh PR. In vitro activities of cefiderocol, ceftolozane/tazobactam, ceftazidime/avibactam and other comparative drugs against imipenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, and stenotrophomonas maltophilia, all associated with bloodstream infections in Taiwan. J Antimicrob Chemother. 2018;74:380–86. https://doi.org/10.1093/jac/dky425.CrossRef Hsueh SC, Lee YJ, Huang YT, Liao CH, Tsuji M, Hsueh PR. In vitro activities of cefiderocol, ceftolozane/tazobactam, ceftazidime/avibactam and other comparative drugs against imipenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, and stenotrophomonas maltophilia, all associated with bloodstream infections in Taiwan. J Antimicrob Chemother. 2018;74:380–86. https://​doi.​org/​10.​1093/​jac/​dky425.CrossRef
142.
go back to reference Durante-Mangoni E, Signoriello G, Andini R, Mattei A, De Cristoforo M, Murino P, et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter. Randomized Clinical Trial Clin Infect Dis. 2013;57:349–58. https://doi.org/10.1093/cid/cit253.CrossRefPubMed Durante-Mangoni E, Signoriello G, Andini R, Mattei A, De Cristoforo M, Murino P, et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter. Randomized Clinical Trial Clin Infect Dis. 2013;57:349–58. https://​doi.​org/​10.​1093/​cid/​cit253.CrossRefPubMed
146.
go back to reference Tsuji BT, Pogue JM, Zavascki AP, Paul M, Daikos GL, Forrest A, et al. International consensus guidelines for the optimal use of the polymyxins: endorsed by the American college of clinical pharmacy (ACCP), European society of clinical microbiology and infectious diseases (ESCMID), infectious diseases society of America (IDSA), international society for anti-infective pharmacology (ISAP), Society of critical care medicine (SCCM), and Society of infectious diseases pharmacists (SIDP). Pharmacotherapy. 2019;39:10–39. https://doi.org/10.1002/phar.2209.CrossRefPubMedPubMedCentral Tsuji BT, Pogue JM, Zavascki AP, Paul M, Daikos GL, Forrest A, et al. International consensus guidelines for the optimal use of the polymyxins: endorsed by the American college of clinical pharmacy (ACCP), European society of clinical microbiology and infectious diseases (ESCMID), infectious diseases society of America (IDSA), international society for anti-infective pharmacology (ISAP), Society of critical care medicine (SCCM), and Society of infectious diseases pharmacists (SIDP). Pharmacotherapy. 2019;39:10–39. https://​doi.​org/​10.​1002/​phar.​2209.CrossRefPubMedPubMedCentral
153.
go back to reference Assimakopoulos SF, Karamouzos V, Lefkaditi A, Sklavou C, Kolonitsiou F, Christofidou M, et al. Triple combination therapy with high-dose ampicillin/sulbactam, high-dose tigecycline and colistin in the treatment of ventilator-associated pneumonia caused by pan-drug resistant Acinetobacter baumannii: a case series study. Infez Med. 2019;27:11–6.PubMed Assimakopoulos SF, Karamouzos V, Lefkaditi A, Sklavou C, Kolonitsiou F, Christofidou M, et al. Triple combination therapy with high-dose ampicillin/sulbactam, high-dose tigecycline and colistin in the treatment of ventilator-associated pneumonia caused by pan-drug resistant Acinetobacter baumannii: a case series study. Infez Med. 2019;27:11–6.PubMed
155.
go back to reference Lertsrisatit Y, Santimaleeworagun W, Thunyaharn S, Traipattanakul J. In vitro activity of colistin mono- and combination therapy against colistin-resistant Acinetobacter baumannii, mechanism of resistance, and clinical outcomes of patients infected with colistin-resistant A. baumannii at a Thai university hospital. Infect Drug Resist. 2017;10:437–43. https://doi.org/10.2147/idr.S148185.CrossRefPubMedPubMedCentral Lertsrisatit Y, Santimaleeworagun W, Thunyaharn S, Traipattanakul J. In vitro activity of colistin mono- and combination therapy against colistin-resistant Acinetobacter baumannii, mechanism of resistance, and clinical outcomes of patients infected with colistin-resistant A. baumannii at a Thai university hospital. Infect Drug Resist. 2017;10:437–43. https://​doi.​org/​10.​2147/​idr.​S148185.CrossRefPubMedPubMedCentral
165.
170.
go back to reference Fiore M, Alfieri A, Di Franco S, Pace MC, Simeon V, Ingoglia G, et al. Ceftazidime–avibactam combination therapy compared to Ceftazidime–avibactam monotherapy for the treatment of severe infections due to carbapenem-resistant pathogens: a systematic review and network meta-analysis. Antibiotics (Basel). 2020;9:388. https://doi.org/10.3390/antibiotics9070388.CrossRef Fiore M, Alfieri A, Di Franco S, Pace MC, Simeon V, Ingoglia G, et al. Ceftazidime–avibactam combination therapy compared to Ceftazidime–avibactam monotherapy for the treatment of severe infections due to carbapenem-resistant pathogens: a systematic review and network meta-analysis. Antibiotics (Basel). 2020;9:388. https://​doi.​org/​10.​3390/​antibiotics90703​88.CrossRef
172.
go back to reference Kaye KS, Boucher HW, Brown ML, Aggrey A, Khan I, Joeng HK, et al. Comparison of treatment outcomes between analysis populations in the RESTORE-IMI 1 Phase 3 trial of imipenem-cilastatin-relebactam versus colistin plus imipenem-cilastatin in patients with imipenem-nonsusceptible bacterial infections. Antimicrob Agents Chemother. 2020;64:e02203-19. https://doi.org/10.1128/aac.02203-19.CrossRefPubMedPubMedCentral Kaye KS, Boucher HW, Brown ML, Aggrey A, Khan I, Joeng HK, et al. Comparison of treatment outcomes between analysis populations in the RESTORE-IMI 1 Phase 3 trial of imipenem-cilastatin-relebactam versus colistin plus imipenem-cilastatin in patients with imipenem-nonsusceptible bacterial infections. Antimicrob Agents Chemother. 2020;64:e02203-19. https://​doi.​org/​10.​1128/​aac.​02203-19.CrossRefPubMedPubMedCentral
173.
go back to reference Tumbarello M, Trecarichi EM, Corona A, De Rosa FG, Bassetti M, Mussini C, et al. Efficacy of Ceftazidime–avibactam salvage therapy in patients with infections Caused by Klebsiella pneumoniae carbapenemase–producing K. pneumoniae. Clin Infect Dis. 2018;68(3):355–64. https://doi.org/10.1093/cid/ciy492.CrossRef Tumbarello M, Trecarichi EM, Corona A, De Rosa FG, Bassetti M, Mussini C, et al. Efficacy of Ceftazidime–avibactam salvage therapy in patients with infections Caused by Klebsiella pneumoniae carbapenemase–producing K. pneumoniae. Clin Infect Dis. 2018;68(3):355–64. https://​doi.​org/​10.​1093/​cid/​ciy492.CrossRef
182.
183.
go back to reference Lodise TP, Smith NM, O'Donnell N, Eakin AE, Holden PN, Boissonneault KR, et al. Determining the optimal dosing of a novel combination regimen of ceftazidime/avibactam with aztreonam against NDM-1-producing Enterobacteriaceae using a hollow-fibre infection model. J Antimicrob Chemother. 2020;75:2622–32. https://doi.org/10.1093/jac/dkaa197.CrossRefPubMed Lodise TP, Smith NM, O'Donnell N, Eakin AE, Holden PN, Boissonneault KR, et al. Determining the optimal dosing of a novel combination regimen of ceftazidime/avibactam with aztreonam against NDM-1-producing Enterobacteriaceae using a hollow-fibre infection model. J Antimicrob Chemother. 2020;75:2622–32. https://​doi.​org/​10.​1093/​jac/​dkaa197.CrossRefPubMed
190.
go back to reference Jaruratanasirikul S, Wongpoowarak W, Wattanavijitkul T, Sukarnjanaset W, Samaeng M, Nawakitrangsan M, et al. Population pharmacokinetics and pharmacodynamics modeling to optimize dosage regimens of sulbactam in critically ill patients with severe sepsis caused by Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60:7236–44. https://doi.org/10.1128/aac.01669-16.CrossRefPubMedPubMedCentral Jaruratanasirikul S, Wongpoowarak W, Wattanavijitkul T, Sukarnjanaset W, Samaeng M, Nawakitrangsan M, et al. Population pharmacokinetics and pharmacodynamics modeling to optimize dosage regimens of sulbactam in critically ill patients with severe sepsis caused by Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60:7236–44. https://​doi.​org/​10.​1128/​aac.​01669-16.CrossRefPubMedPubMedCentral
192.
Metadata
Title
Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: an approach based on the mechanisms of resistance to carbapenems
Authors
Stamatis Karakonstantis
Evangelos I Kritsotakis
Achilleas Gikas
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
Infection / Issue 6/2020
Print ISSN: 0300-8126
Electronic ISSN: 1439-0973
DOI
https://doi.org/10.1007/s15010-020-01520-6

Other articles of this Issue 6/2020

Infection 6/2020 Go to the issue