Skip to main content
Top
Published in: Dermatology and Therapy 7/2022

Open Access 08-06-2022 | Alopecia | Case Series

Lichen Planopilaris Responsive to a Novel Phytoactive Botanical Treatment: A Case Series

Authors: Sanusi Umar, Petrina Kan, Marissa J. Carter, Paul Shitabata, Myroslava Novosilska

Published in: Dermatology and Therapy | Issue 7/2022

Login to get access

Abstract

Introduction

Lichen planopilaris (LPP) is characterized by chronic scarring alopecia that is progressive and typically refractory to therapy. Current drug treatments are suboptimal and not applicable for long-term use because of the high potential for adverse effects, warranting safer and more effective treatment alternatives.

Methods

Based on our previous success in treating a patient with central centrifugal cicatricial alopecia using a topical botanical formulation (Gashee), we reviewed records of four patients with biopsy-proven LPP treated with the topical formulation alone or in combination with its oral preparation. Three patients had failed previous treatment with intralesional steroid injections, topical minoxidil, tacrolimus, and clobetasol. Physical examination and photographic documentation were also used as outcome measures. Treatment duration with the botanical formulations ranged from 6 weeks to 9.5 months.

Results

All patients showed overall improvement in surrogate indicators of LPP activity as evidenced by the disappearance of symptoms (pruritus, tenderness, scalp irritation, and hair shedding), improvement in hair growth, and reduction in redness. All reported a high satisfaction level and no adverse effects.

Conclusions

Patients with treatment-refractory LPP responded to a novel botanical treatment. To the best of our knowledge, this is the first published report of LPP responding to a plant-based natural treatment. Further evaluation of this treatment in a controlled trial with a larger number of patients is warranted.
Literature
1.
go back to reference Errichetti E, Figini M, Croatto M, Stinco G. Therapeutic management of classic lichen planopilaris: a systematic review. Clin Cosmet Investig Dermatol. 2018;11:91–102.CrossRef Errichetti E, Figini M, Croatto M, Stinco G. Therapeutic management of classic lichen planopilaris: a systematic review. Clin Cosmet Investig Dermatol. 2018;11:91–102.CrossRef
2.
go back to reference Rongioletti F, Christana K. Cicatricial (scarring) alopecias: an overview of pathogenesis, classification, diagnosis, and treatment. Am J Clin Dermatol. 2012;13(4):247–60.CrossRef Rongioletti F, Christana K. Cicatricial (scarring) alopecias: an overview of pathogenesis, classification, diagnosis, and treatment. Am J Clin Dermatol. 2012;13(4):247–60.CrossRef
3.
go back to reference Strazzulla LC, Avila L, Lo Sicco K, Shapiro J. Novel treatment using low-dose naltrexone for lichen planopilaris. J Drugs Dermatol. 2017;16(11):1140–2.PubMed Strazzulla LC, Avila L, Lo Sicco K, Shapiro J. Novel treatment using low-dose naltrexone for lichen planopilaris. J Drugs Dermatol. 2017;16(11):1140–2.PubMed
4.
go back to reference Randolph MJ, Salhi WA, Tosti A. Lichen planopilaris and low-level light therapy: four case reports and review of the literature about low-level light therapy and lichenoid dermatosis. Dermatol Ther (Heidelb). 2020;10(2):311–9.CrossRef Randolph MJ, Salhi WA, Tosti A. Lichen planopilaris and low-level light therapy: four case reports and review of the literature about low-level light therapy and lichenoid dermatosis. Dermatol Ther (Heidelb). 2020;10(2):311–9.CrossRef
5.
go back to reference Bolanča Ž, Goren A, Getaldić-Švarc B, Vučić M, Šitum M. Platelet-rich plasma as a novel treatment for lichen planopillaris. Dermatol Ther. 2016;29(4):233–5.CrossRef Bolanča Ž, Goren A, Getaldić-Švarc B, Vučić M, Šitum M. Platelet-rich plasma as a novel treatment for lichen planopillaris. Dermatol Ther. 2016;29(4):233–5.CrossRef
6.
go back to reference Umar S, Carter MJ. A multimodal hair-loss treatment strategy using a new topical phytoactive formulation: a report of five cases. Case Rep Dermatol Med. 2021;2021:6659943.PubMedPubMedCentral Umar S, Carter MJ. A multimodal hair-loss treatment strategy using a new topical phytoactive formulation: a report of five cases. Case Rep Dermatol Med. 2021;2021:6659943.PubMedPubMedCentral
7.
go back to reference Sundberg JP, Hordinsky MK, Bergfeld W, et al. Cicatricial Alopecia Research Foundation meeting, May 2016: progress towards the diagnosis, treatment and cure of primary cicatricial alopecias. Exp Dermatol. 2018;27(3):302–10.CrossRef Sundberg JP, Hordinsky MK, Bergfeld W, et al. Cicatricial Alopecia Research Foundation meeting, May 2016: progress towards the diagnosis, treatment and cure of primary cicatricial alopecias. Exp Dermatol. 2018;27(3):302–10.CrossRef
8.
go back to reference Jordan CS, Chapman C, Kolivras A, Roberts JL, Thompson NB, Thompson CT. Clinicopathologic and immunophenotypic characterization of lichen planopilaris and central centrifugal cicatricial alopecia: a comparative study of 51 cases. J Cutan Pathol. 2020;47(2):128–34.CrossRef Jordan CS, Chapman C, Kolivras A, Roberts JL, Thompson NB, Thompson CT. Clinicopathologic and immunophenotypic characterization of lichen planopilaris and central centrifugal cicatricial alopecia: a comparative study of 51 cases. J Cutan Pathol. 2020;47(2):128–34.CrossRef
9.
go back to reference Tavakolpour S, Mahmoudi H, Abedini R, Kamyab Hesari K, Kiani A, Daneshpazhooh M. Frontal fibrosing alopecia: an update on the hypothesis of pathogenesis and treatment. Int J Womens Dermatol. 2019;5(2):116–23.CrossRef Tavakolpour S, Mahmoudi H, Abedini R, Kamyab Hesari K, Kiani A, Daneshpazhooh M. Frontal fibrosing alopecia: an update on the hypothesis of pathogenesis and treatment. Int J Womens Dermatol. 2019;5(2):116–23.CrossRef
10.
go back to reference Yang CC, Khanna T, Sallee B, Christiano AM, Bordone LA. Tofacitinib for the treatment of lichen planopilaris: a case series. Dermatol Ther. 2018;31(6): e12656.CrossRef Yang CC, Khanna T, Sallee B, Christiano AM, Bordone LA. Tofacitinib for the treatment of lichen planopilaris: a case series. Dermatol Ther. 2018;31(6): e12656.CrossRef
11.
go back to reference Mirmirani P, Karnik P. Lichen planopilaris treated with a peroxisome proliferator-activated receptor gamma agonist. Arch Dermatol. 2009;145(12):1363–6.CrossRef Mirmirani P, Karnik P. Lichen planopilaris treated with a peroxisome proliferator-activated receptor gamma agonist. Arch Dermatol. 2009;145(12):1363–6.CrossRef
12.
go back to reference Imanishi H, Ansell DM, Chéret J, et al. Epithelial-to-mesenchymal stem cell transition in a human organ: lessons from lichen planopilaris. J Invest Dermatol. 2018;138(3):511–9.CrossRef Imanishi H, Ansell DM, Chéret J, et al. Epithelial-to-mesenchymal stem cell transition in a human organ: lessons from lichen planopilaris. J Invest Dermatol. 2018;138(3):511–9.CrossRef
13.
go back to reference McPhie ML, Wang A, Molin S, Herzinger T. Lichen planopilaris induced by infliximab: a case report. SAGE Open Med Case Rep. 2020;8:2050313X20901967. McPhie ML, Wang A, Molin S, Herzinger T. Lichen planopilaris induced by infliximab: a case report. SAGE Open Med Case Rep. 2020;8:2050313X20901967.
14.
go back to reference Soma T, Tsuji Y, Hibino T. Involvement of transforming growth factor-beta2 in catagen induction during the human hair cycle. J Invest Dermatol. 2002;118(6):993–7.CrossRef Soma T, Tsuji Y, Hibino T. Involvement of transforming growth factor-beta2 in catagen induction during the human hair cycle. J Invest Dermatol. 2002;118(6):993–7.CrossRef
15.
go back to reference Kim HY, Park EJ, Joe EH, Jou I. Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol. 2003;171(11):6072–9.CrossRef Kim HY, Park EJ, Joe EH, Jou I. Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol. 2003;171(11):6072–9.CrossRef
18.
go back to reference Hu Y, Liang H, Du Y, Zhu Y, Wang X. Curcumin inhibits transforming growth factor-beta activity via inhibition of Smad signaling in HK-2 cells. Am J Nephrol. 2010;31(4):332–41.CrossRef Hu Y, Liang H, Du Y, Zhu Y, Wang X. Curcumin inhibits transforming growth factor-beta activity via inhibition of Smad signaling in HK-2 cells. Am J Nephrol. 2010;31(4):332–41.CrossRef
19.
go back to reference Pan Y, Zhao D, Yu N, et al. Curcumin improves glycolipid metabolism through regulating peroxisome proliferator activated receptor γ signalling pathway in high-fat diet-induced obese mice and 3T3-L1 adipocytes. R Soc Open Sci. 2017;4(11): 170917.CrossRef Pan Y, Zhao D, Yu N, et al. Curcumin improves glycolipid metabolism through regulating peroxisome proliferator activated receptor γ signalling pathway in high-fat diet-induced obese mice and 3T3-L1 adipocytes. R Soc Open Sci. 2017;4(11): 170917.CrossRef
20.
go back to reference Jacob A, Wu R, Zhou M, Wang P. Mechanism of the anti-inflammatory effect of curcumin: PPAR-gamma activation. PPAR Res. 2007;2007:89369.CrossRef Jacob A, Wu R, Zhou M, Wang P. Mechanism of the anti-inflammatory effect of curcumin: PPAR-gamma activation. PPAR Res. 2007;2007:89369.CrossRef
21.
go back to reference Kim JH, Gupta SC, Park B, Yadav VR, Aggarwal BB. Turmeric (Curcuma longa) inhibits inflammatory nuclear factor (NF)-κB and NF-κB-regulated gene products and induces death receptors leading to suppressed proliferation, induced chemosensitization, and suppressed osteoclastogenesis. Mol Nutr Food Res. 2012;56(3):454–65.CrossRef Kim JH, Gupta SC, Park B, Yadav VR, Aggarwal BB. Turmeric (Curcuma longa) inhibits inflammatory nuclear factor (NF)-κB and NF-κB-regulated gene products and induces death receptors leading to suppressed proliferation, induced chemosensitization, and suppressed osteoclastogenesis. Mol Nutr Food Res. 2012;56(3):454–65.CrossRef
22.
go back to reference Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research [published correction appears in Altern Med Rev. 2009 Sep; 14:277]. Altern Med Rev. 2009;14:141–53.PubMed Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research [published correction appears in Altern Med Rev. 2009 Sep; 14:277]. Altern Med Rev. 2009;14:141–53.PubMed
23.
go back to reference Abe Y, Hashimoto S, Horie T. Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol Res. 1999;39:41–7.CrossRef Abe Y, Hashimoto S, Horie T. Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol Res. 1999;39:41–7.CrossRef
24.
go back to reference Li F, Fernandez PP, Rajendran P, Hui KM, Sethi G. Diosgenin, a steroidal saponin, inhibits STAT3 signaling pathway leading to suppression of proliferation and chemosensitization of human hepatocellular carcinoma cells. Cancer Lett. 2010;292(2):197–207.CrossRef Li F, Fernandez PP, Rajendran P, Hui KM, Sethi G. Diosgenin, a steroidal saponin, inhibits STAT3 signaling pathway leading to suppression of proliferation and chemosensitization of human hepatocellular carcinoma cells. Cancer Lett. 2010;292(2):197–207.CrossRef
26.
go back to reference Dinesh Babu V, Suresh Kumar A, Sudhandiran G. Diosgenin inhibits TGF-β1/Smad signaling and regulates epithelial mesenchymal transition in experimental pulmonary fibrosis. Drug Chem Toxicol. 2020;1–12. Dinesh Babu V, Suresh Kumar A, Sudhandiran G. Diosgenin inhibits TGF-β1/Smad signaling and regulates epithelial mesenchymal transition in experimental pulmonary fibrosis. Drug Chem Toxicol. 2020;1–12.
27.
go back to reference Mohammad-Sadeghipour M, Mahmoodi M, Noroozi Karimabad M, Mirzaei MR, Hajizadeh MR. Diosgenin and 4-hydroxyisoleucine from fenugreek are regulators of genes involved in lipid metabolism in the human colorectal cancer cell line SW480. Cell J. 2021;22(4):514–22.PubMed Mohammad-Sadeghipour M, Mahmoodi M, Noroozi Karimabad M, Mirzaei MR, Hajizadeh MR. Diosgenin and 4-hydroxyisoleucine from fenugreek are regulators of genes involved in lipid metabolism in the human colorectal cancer cell line SW480. Cell J. 2021;22(4):514–22.PubMed
28.
go back to reference Jung D-H, Park H-J, Byun H-E, et al. Diosgenin inhibits macrophage-derived inflammatory mediators through downregulation of CK2, JNK, Nf-κb and AP-1 activation. Int Immunopharmacol. 2010;10:1047–54.CrossRef Jung D-H, Park H-J, Byun H-E, et al. Diosgenin inhibits macrophage-derived inflammatory mediators through downregulation of CK2, JNK, Nf-κb and AP-1 activation. Int Immunopharmacol. 2010;10:1047–54.CrossRef
29.
go back to reference Chowdhury AA, Gawali NB, Munshi R, Juvekar AR. Trigonelline insulates against oxidative stress, proinflammatory cytokines and restores BDNF levels in lipopolysaccharide induced cognitive impairment in adult mice. Metab Brain Dis. 2018;33:681–91.CrossRef Chowdhury AA, Gawali NB, Munshi R, Juvekar AR. Trigonelline insulates against oxidative stress, proinflammatory cytokines and restores BDNF levels in lipopolysaccharide induced cognitive impairment in adult mice. Metab Brain Dis. 2018;33:681–91.CrossRef
30.
go back to reference Moers-Carpi M. Influence of nutritive factors on hair growth. Aktuelle Dermatol. 2011;37:171–5.CrossRef Moers-Carpi M. Influence of nutritive factors on hair growth. Aktuelle Dermatol. 2011;37:171–5.CrossRef
31.
go back to reference Cai B, Zhang Y, Wang Z, et al. Therapeutic potential of diosgenin and its major derivatives against neurological diseases: recent advances. Oxid Med Cell Longev. 2020;2020:3153082.CrossRef Cai B, Zhang Y, Wang Z, et al. Therapeutic potential of diosgenin and its major derivatives against neurological diseases: recent advances. Oxid Med Cell Longev. 2020;2020:3153082.CrossRef
32.
go back to reference Tang SN, Fu J, Shankar S, Srivastava RK. EGCG enhances the therapeutic potential of gemcitabine and CP690550 by inhibiting STAT3 signaling pathway in human pancreatic cancer. PLoS ONE. 2012;7(2): e31067.CrossRef Tang SN, Fu J, Shankar S, Srivastava RK. EGCG enhances the therapeutic potential of gemcitabine and CP690550 by inhibiting STAT3 signaling pathway in human pancreatic cancer. PLoS ONE. 2012;7(2): e31067.CrossRef
33.
go back to reference Farooqi AA, Pinheiro M, Granja A et al. EGCG mediated targeting of deregulated signaling pathways and non-coding RNAs in different cancers: focus on JAK/STAT, Wnt/β-Catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL mediated signaling pathways. Cancers (Basel). 2020;12(4):951. Published 2020 Apr 12. https://doi.org/10.3390/cancers12040951 Farooqi AA, Pinheiro M, Granja A et al. EGCG mediated targeting of deregulated signaling pathways and non-coding RNAs in different cancers: focus on JAK/STAT, Wnt/β-Catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL mediated signaling pathways. Cancers (Basel). 2020;12(4):951. Published 2020 Apr 12. https://​doi.​org/​10.​3390/​cancers12040951
35.
go back to reference Ohishi T, Goto S, Monira P, Isemura M, Nakamura Y. Anti-inflammatory action of green tea. Antiinflamm Antiallergy Agents Med Chem. 2016;15(2):74–90.CrossRef Ohishi T, Goto S, Monira P, Isemura M, Nakamura Y. Anti-inflammatory action of green tea. Antiinflamm Antiallergy Agents Med Chem. 2016;15(2):74–90.CrossRef
37.
go back to reference Harries MJ, Meyer K, Chaudhry I, et al. Lichen planopilaris is characterized by immune privilege collapse of the hair follicle’s epithelial stem cell niche. J Pathol. 2013;231(2):236–47.CrossRef Harries MJ, Meyer K, Chaudhry I, et al. Lichen planopilaris is characterized by immune privilege collapse of the hair follicle’s epithelial stem cell niche. J Pathol. 2013;231(2):236–47.CrossRef
38.
go back to reference Karnik P, Tekeste Z, McCormick TS, et al. Hair follicle stem cell-specific PPARgamma deletion causes scarring alopecia. J Invest Dermatol. 2009;129(5):1243–57.CrossRef Karnik P, Tekeste Z, McCormick TS, et al. Hair follicle stem cell-specific PPARgamma deletion causes scarring alopecia. J Invest Dermatol. 2009;129(5):1243–57.CrossRef
39.
go back to reference Tsuji Y, Denda S, Soma T, Raftery L, Momoi T, Hibino T. A potential suppressor of TGF-beta delays catagen progression in hair follicles. J Investig Dermatol Symp Proc. 2003;8(1):65–8.CrossRef Tsuji Y, Denda S, Soma T, Raftery L, Momoi T, Hibino T. A potential suppressor of TGF-beta delays catagen progression in hair follicles. J Investig Dermatol Symp Proc. 2003;8(1):65–8.CrossRef
40.
go back to reference Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998;391(6662):82–6.CrossRef Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998;391(6662):82–6.CrossRef
Metadata
Title
Lichen Planopilaris Responsive to a Novel Phytoactive Botanical Treatment: A Case Series
Authors
Sanusi Umar
Petrina Kan
Marissa J. Carter
Paul Shitabata
Myroslava Novosilska
Publication date
08-06-2022
Publisher
Springer Healthcare
Published in
Dermatology and Therapy / Issue 7/2022
Print ISSN: 2193-8210
Electronic ISSN: 2190-9172
DOI
https://doi.org/10.1007/s13555-022-00749-3

Other articles of this Issue 7/2022

Dermatology and Therapy 7/2022 Go to the issue